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Abstract: Drought is among the most common natural disasters in North China. In order to monitor
the drought of the typically arid areas in North China, this study proposes an innovative multi-source
remote sensing drought index called the improved Temperature–Vegetation–Soil Moisture Dryness
Index (iTVMDI), which is based on passive microwave remote sensing data from the FengYun
(FY)3B-Microwave Radiation Imager (MWRI) and optical and infrared data from the Moderate
Resolution Imaging Spectroradiometer (MODIS), and takes the Shandong Province of China as the
research area. The iTVMDI integrated the advantages of microwave and optical remote sensing
data to improve the original Temperature–Vegetation–Soil Moisture Dryness Index (TVMDI) model,
and was constructed based on the Modified Soil-Adjusted Vegetation Index (MSAVI), land surface
temperature (LST), and downscaled soil moisture (SM) as the three-dimensional axes. The global
land data assimilation system (GLDAS) SM, meteorological data and surface water were used to
evaluate and verify the monitoring results. The results showed that iTVMDI had a higher negative
correlation with GLDAS SM (R = −0.73) than TVMDI (R = −0.55). Additionally, the iTVMDI was well
correlated with both precipitation and surface water, with mean correlation coefficients (R) of 0.65
and 0.81, respectively. Overall, the accuracy of drought estimation can be significantly improved by
using multi-source satellite data to measure the required surface variables, and the iTVMDI is an
effective method for monitoring the spatial and temporal variations of drought.
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1. Introduction

Drought is usually a water deficit caused by an imbalance in the water supply and demand
due to the lack of precipitation [1,2]. It can be commonly divided into three types: meteorological
drought (water shortage caused by the imbalance between precipitation and evaporation amount
for a long time), agricultural drought (insufficient soil moisture available to plants) and hydrological
drought (the phenomenon when runoff does not reach the standard value or the water level of aquifer
drops) [3,4]. Drought can cause serious social and economic impacts, so it is necessary to assess the
variations in droughts [5]. An in-depth analysis of the spatial and temporal evolution characteristics of
drought can provide a reference for integrated water resource management and drought response [6].

With the development of remote sensing technology, the amount of data is abundant, which
can enable the procurement of a large range of land surface information [7,8]. Therefore, remote
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sensing data have become the main data source for drought monitoring [9]. In recent decades,
researchers have developed a number of drought indices to monitor and predict droughts. Land
surface temperature (LST) indices, such as the Temperature Condition Index (TCI), were proposed
to monitor and assess drought [10]. Under the same energy conditions, the LST will decrease with
increasing soil moisture (SM), and vice versa [11]. In addition, several vegetation-based drought
indices based on remotely sensed products have also been proposed, including the Perpendicular
Vegetation Index (PVI), Anomaly Vegetation Index (AVI), Vegetation Condition Index (VCI), Enhanced
Vegetation Index (EVI) and Vegetation Condition Albedo Drought Index (VCADI) [12–15]. However,
the temporal and spatial variations of LST are greatly affected by the atmospheric and environmental
conditions and the vegetation index has a delayed response to precipitation or soil water deficit. Thus,
some researchers used a combination of vegetation index (VI) and LST for drought monitoring, such
as the Vegetation Temperature Condition Index (VTCI) and Temperature Vegetation Dryness Index
(TVDI) [16–18].

SM is a key factor in drought monitoring because it is related to climate change, evapotranspiration,
vegetation coverage, and surface radiation change, especially when SM is reduced, creating conditions
conducive to drought occurrence [19–23]. In the study of Amani et al. (2016), the change in SM can
affect the reflectance of bare soil, which is more obvious in the near-infrared (NIR) band [24]. Based on
this principle, a drought model was established through the NIR-Red spectral reflectance space, which
contains not only vegetation information, but also SM information [25]. Some indices are based on such
a spectral reflectance space such as the Perpendicular Drought Index (PDI), Modified Perpendicular
Drought Index (MPDI) and Second Modified Perpendicular Drought Index (MPDI1) [26–28].

Many studies have also found that SM, LST and VI are closely related and interact with each
other [29–32]. Among these variables, SM is the direct expression of drought, but LST and VI
are the indirect expressions of drought [33]. Based on these principles, Amani et al. [34] used a
three-dimensional space of LST, PVI and SM to construct the Temperature–Vegetation–Soil Moisture
Dryness Index (TVMDI), which proved to be suitable to estimate and monitor drought. However,
the data used to calculate the TVMDI model are all from the optical and infrared data [35]. Therefore,
there are more requirements in terms of the data quality. Although some breakthroughs have been
made in recent years, such as the second simulation of the satellite signal in the solar spectrum model,
which can correct the errors caused by atmospheric and other factors, optical and infrared data have
many limitations, and it is difficult to overcome the shortcomings of demanding data requirements,
time scale effects and missing data caused by the impact of the atmospheric environment, such as
clouds [36,37]. As a result, the acquired data cannot truly reflect the information of the ground object,
which affects the quantity, quality and application scope of the data.

Considering the above problems, this study integrates optical, infrared and microwave sensor data,
which have different physical properties, to develop a new operational, real-time drought monitoring
method, known as the improved Temperature–Vegetation–Soil Moisture Dryness Index (iTVMDI). To a
certain extent, multi-satellite remote sensing data fusion can make up for the shortcomings of a single
sensor and make the invisible or unclear features in single sensor data prominent or enhanced [38].
Specifically, this study used passive microwave remote sensing data to replace the original model
of the SM parameter to improve the accuracy of SM in the model. Compared with optical data and
infrared data, passive microwave remote sensing data have all-day and all-weather capacities, and
are relatively less affected by roughness and topography [39,40]. In addition, microwave data have
penetrability and can pass through tree shrubs on the ground to directly reach the soil. Whether the
ground is a bare soil area or a vegetation area, microwave data can use the difference in the dielectric
constants of soil and water to obtain higher accuracy SM data that can be used to monitor SM [41,42].

The purpose of this study is to further explore the fusion of different source data to establish a
new and high accuracy drought index, iTVMDI, which is based on FY3B-Microwave Radiation Imager
(MWRI) microwave data and Moderate Resolution Imaging Spectroradiometer (MODIS) data in order



Water 2020, 12, 1504 3 of 17

to determine the drought level to provide a real-time and reliable basis for future disaster prevention
and mitigation work.

2. Study Area and Data

2.1. Study Area

Shandong Province is located in the eastern part of China and the downstream area of the Yellow
River, with an area of 158,000 km2. It lies between E 114◦09′–E 122◦43′ and N 34◦22′–N 38◦23′.
The annual average temperature is between 11–14 ◦C, and the annual accumulated precipitation is
550–950 mm/year [43]. The research area is very sensitive to climate change due to the fragile ecosystem.
In 2016, there was little rainfall in spring, and the precipitation recorded by 70 meteorological stations
was the lowest in the same period of history. Crops suffered from water shortages caused by drought
during the growing period, which has a seriously negative impact on economic development in the
study area. The land types in Shandong Province are mainly divided into forestlands, grasslands,
croplands, wetlands, built-up lands and other lands (Figure 1). The main land cover types are built-up
lands and croplands. According to the Shandong Statistical Yearbook, by the end of 2015, the land area
for construction was 2.8201 million hectares and that of cultivated land was 7.611 million hectares.
The total amount of water resources is 22.032 billion cubic meters, of which the total surface water
resource is 12.118 billion cubic meters. The main lakes include Weishan Lake and Zhaoyang Lake.
The rivers include the Yihe River and Majiahe River.
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cover map of the Shandong Province in China.

2.2. Satellite Image Data and Data Preprocessing

The data used in this study include satellite remote sensing data (MODIS, FY-3B-MWRI), GLDAS
SM, in situ meteorological data and agricultural statistical data. The dataset is specifically described,
as shown below.

2.2.1. MODIS Data

The MODIS data (h27v05) from January to December 2016 used in this study include the MODIS
LST product (MOD11A2, collection v006), surface reflectance product (MOD09Q1, collection v006), VI
product (MOD13A2, collection v006) and albedo product (MCD43B3, collection v005) downloaded from
the NASA Land Processes Distributed Active Archive Center (LP DAAC, https://lpdaac.usgs.gov/).
The eight-day gridded level-3 product MOD09Q1 includes NIR and Red bands, with a spatial
resolution of 250 m; the spatial resolution of MOD11A2, MOD13A2 and MCD43B3 is 1 km. The MODIS
Reprojection Tool (MRT) was used for the projection transformation, resampling and format conversions
of these products [44]. Because of the influence of sensor design, atmosphere and other factors when
acquiring remote sensing images, there will be considerable noise in the image. Data will be partly
missing as a result of clouds, so the acquired image data cannot accurately express the surface conditions.

https://lpdaac.usgs.gov/
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Therefore, it is necessary to reconstruct VI and LST using the Savitzky–Golay filtering method, which is
a weighted average algorithm that uses smooth time series data as the moving window, and has been
proven to more realistically reflect the growth and change in vegetation [45]. To eliminate deviations
in the image space, a median filter that uses the median of neighboring pixels to replace outliers was
implemented in the image space. Finally, the VI and LST were obtained for the monthly time scale.

2.2.2. FY3B Soil Moisture Product

Chinese FengYun (FY) series meteorological satellites were designed and manufactured to obtain
meteorological observations, weather forecasts, and nautical aviation [46]. The MWRI aboard the FY-3B
satellite is an instrument that obtains products by receiving electromagnetic radiation information
inversion from both the horizontal and vertical directions for the Earth’s atmosphere and the Earth’s
surface. The MWRI daily product of the global SM includes values retrieved by measurements from
ascending (daytime) and descending (nighttime) half-orbits [47]. Through verification, it was found
that the effective value proportion of ascending data was higher, so only the ascending data were
used in this study. The data were downloaded from the National Satellite Meteorological Centre
(http://nsmc.org.cn). The data projection is an Equal-Area Scalable Earth Grid (EASE-Grid) with a data
format of HDF5 and a spatial resolution of 25 km [48].

2.2.3. Meteorological Data and Agricultural Statistical Data

The meteorological data, including temperature and precipitation data, were provided by the
National Meteorological Information Center (http://data.cma.cn/). The monthly average temperature
and monthly accumulated precipitation of nine national meteorological stations (Weifang, Zibo,
Yanzhou, Huimin, Jinan, Dingtao, Laiwu, Feixian and Fushan) were selected, and the time range was
from January to December 2016. The spatial distribution of nine national meteorological stations in
Shandong Province is shown in Figure 1. Surface water, effective irrigation area and farmland area are
from the Shandong Provincial Bureau of Statistics (http://www.stats-sd.gov.cn/).

2.2.4. GLDAS SM

The global land data assimilation system (GLDAS) is a global offline high-resolution ground
simulation system, which drives a variety of offline surface models and combines ground observation
data with satellite observation data to generate the optimal field of surface state and flux (https:
//giovanni.gsfc.nasa.gov/). GLDAS-2.1 is one of the two components of the GLDAS version 2 (GLDAS-2)
dataset. The dataset contains many variables, such as albedo, soil temperature, evapotranspiration and
SM [49]. The SM content is divided into four grades: 0–10 cm, 10–40 cm, 40–100 cm and 100–200 cm.
The use of GLDAS SM data with a depth of more than 10 cm may add some uncertainty to the
assessment because FY3B-MWRI SM data can only obtain the land surface SM at 0–5 cm depth [50].
In addition, in many previous studies, the top 10 cm SM data from the surface models was used to
verify various satellite SM data [50–53]. Therefore, 0–10 cm SM data from January to December were
selected [54].

3. Methods

3.1. Technical Route

Figure 2 shows the flow chart for the TVMDI improvement, comparison and validation in this
study. First, NDVI, LST and albedo with a resolution of 1 km in 2016 and SM data at 25 km were
obtained from MODIS and FY3B-MWRI products. Then, we built a linear downscaling model and
downscaled the SM data. iTVMDI and TVMDI were calculated using FY3B-MWRI-downscaled SM
and MODSI data. In Section 4.1, GLDAS SM is based on a large number of observed data and multiple
model simulations, which can represent the measured SM to some extent. Therefore, GLDAS SM
was used to verify the accuracy of the results of the two models. We then used meteorological data

http://nsmc.org.cn
http://data.cma.cn/
http://www.stats-sd.gov.cn/
https://giovanni.gsfc.nasa.gov/
https://giovanni.gsfc.nasa.gov/
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from nine meteorological stations in 2016 to verify the results of the two models and analyze the
response capacity of the two models to meteorological drought (see Section 4.2). Then, we used surface
water to test the monitoring capability of the two models for hydrological drought (see Section 4.3).
Finally, we used the iTVMDI model to analyze the drought condition of Shandong Province in 2016
(see Section 4.4).
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Figure 2. Data processing flow diagram to improve the Temperature–Vegetation–Soil Moisture Dryness
Index (TVMDI) based on multi-satellite data.

3.2. Improved Temperature–Vegetation–Soil Moisture Dryness Index (iTVMDI)

Amani et al. [34] proposed the concept of the TVMDI, which is based on the relationship among
the vegetation, temperature and SM (see Appendix A for further details and calculation formula).
The iTVMDI proposed in this study improves the TVMDI model. The TVMDI uses optical and infrared
data to calculate the SM, which is largely affected by the data quality. Microwave remote sensing is
considered to be the most effective way to obtain SM because of its strong physical mechanism [55].
Compared with the SM data calculated based on the NIR-Red spectral space, the microwave data are
not only less affected by the weather, but also have better penetrability, the surface SM data under
the vegetation can be obtained, and the higher temporal resolution makes the data more accurate.
The FY3B-MWRI SM product uses a dual-channel inversion algorithm that can eliminate the influences
of vegetation and roughness, and the inversion model of SM is based on the development of the
parameterized microwave radiation model (multifrequency polarization (Qp) model). Therefore, SM
derived from passive microwave remote sensing data was used to replace that derived from the optical
and infrared data in the original model [56,57].

Since the spatial resolution of FY3B SM data is 25 km, it cannot be directly used to build a model
with other data with a resolution of 1 km, so we downscaled the SM data to achieve the same scale for
all data [58–60]. The downscaling method of multivariate statistical regression is currently one of the
most commonly used downscaling methods with a simple calculation form and strong applicability,
which can downscale passive microwave low-resolution SM data with the help of remote sensing
data [61,62]. The principle of this method is to build a linear relationship between SM and its related
variables at low spatial resolution and apply the relationship at a high spatial resolution to obtain
high spatial resolution SM [63]. To reduce the dependence of LST, VI and albedo on the external
environment and to facilitate comparisons among different regions, a linear model of SM and the
normalized difference vegetation index (NDVI), LST and albedo was established, and the formula is
as follows:

Sm = a000 + a001A∗ + a010T∗ + a100NDVI∗ + a002A∗2+
a020T∗2 + a200NDVI∗2 + a011T∗A∗ + a101A∗NDVI∗ + a110NDVI∗T∗

(1)
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where A∗ is the normalized surface albedo, NDVI∗ is the normalized VI, and T∗ is the normalized LST.
The process of normalization is as follows:

T∗ =
T − Tmin

Tmax − Tmin
(2)

NDVI∗ =
NDVI −NDVImin

NDVImax −NDVImin
(3)

A∗ =
A−Amin

Amax −Amin
(4)

Another improvement is to replace the PVI in the original model with the Modified Soil-Adjusted
Vegetation Index (MSAVI). Because PVI is easily affected by the soil background, it is not the best VI
for drought monitoring used in the TVMDI [64]. Some VIs, such as the Soil Adjusted Vegetation Index
(SAVI) and MSAVI, have been developed to improve the sensitivity of vegetation by considering the
influence of the atmosphere and soil effects [65]. By using MSAVI instead of PVI, the impact of the soil
background can be effectively eliminated and the shortcomings of some vegetation indices that cannot
correctly reflect the real situation of the land surface when the SM is high can be corrected. The MSAVI
is calculated as follows:

MSAVI =
2RNIR + 1−

√
(2RNIR + 1)2

− 8(RNIR −RRed)

2
(5)

where RRed and RNIR are the reflectance values of the red and NIR bands, respectively.
Therefore, the iTVMDI is constructed in a three-dimensional space integrating normalized LST,

normalized downscaled SM and normalized MSAVI, and can be calculated using Equation (6).

iTVMDI =

√
LST2 + SM2 + (

√
3

3
−MSAVI)

2

(6)

4. Results

4.1. Comparisons of Drought Indices and GLDAS SM

To evaluate the iTVMDI, the correlation coefficient (R) and p-value (P) between the iTVMDI and
the GLDAS SM were selected. As shown in Table 1, the correlation coefficients between the SM and
iTVMDI can exceed 0.62, with an average correlation coefficient of 0.73 and a significant correlation
(P < 0.05). The slope of the fitting line is negative, indicating that they are negatively correlated.
The average correlation coefficient between TVMDI and SM is 0.55, which cannot reach the level of
the iTVMDI. Among all sites, Huimin, Fushan and Dingtao fail to pass the 0.05 significance test, and
have the lowest correlation, with correlation coefficients of 0.49, 0.49 and 0.33, respectively. Therefore,
compared with iTVMDI and TVMDI, iTVMDI is more stable than TVMDI. The reason for this is that
the iTVMDI is based on microwave data, and the downscaled FY3B SM data are used to replace the
NIR-Red spectral space data in the TVMDI model. Although the calculation of TVMDI is very simple
and integrates the remote sensing data’s optical and infrared bands, it is easily affected by land cover
change, atmosphere and clouds. Therefore, the iTVMDI that is calculated by using the downscaling
FY3B SM data is more reasonable. Furthermore, we calculated the monthly variation in GLDAS SM,
iTVMDI and TVMDI, as shown in Figure 3. Because the drought index depends not only on SM, but
also on VI and LST, the change in the drought index is not exactly the same as that of SM, but there
should be a significant correlation between them. It is obvious that iTVMDI is more consistent with
this feature than TVMDI.
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Table 1. The relationship between drought indices of nine stations and global land data assimilation
system soil moisture (GLDAS SM).

Weather
Station

iTVMDI TVMDI

a(Slope) b(Intercept) R P a(Slope) b(Intercept) R P

Huimin −0.0085 0.8565 −0.71 0.010 −0.0036 0.7562 −0.49 0.10
Feixian −0.0107 0.9757 −0.70 0.010 −0.0095 0.8852 −0.61 0.03
Fushan −0.0117 1.0125 −0.62 0.030 −0.0053 0.7861 −0.33 0.29
Jinan −0.0099 0.9531 −0.82 0.001 −0.0087 0.8996 −0.68 0.02

Dingtao −0.0063 0.8080 −0.73 0.006 −0.0048 0.6832 −0.49 0.11
Laiwu −0.0132 1.0307 −0.81 0.001 −0.0090 0.8695 −0.61 0.03
Zibo −0.0115 0.9663 −0.77 0.003 −0.0091 0.8711 −0.58 0.04

Weifang −0.0107 1.0049 −0.66 0.010 −0.0090 0.8924 −0.60 0.04
Yanzhou −0.0059 0.8291 −0.74 0.005 −0.0043 0.7289 −0.58 0.04
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Figure 3. Time series of the 0–10 cm GLDAS SM (kg/m2) and drought indices for nine stations in 2016.

4.2. Comparisons of Drought Indices and Meteorological Data

Drought often occurs in months with low precipitation and high temperatures [66]. In this study,
the monthly precipitation data from nine weather stations were used to verify the ability of the iTVMDI
to monitor meteorological drought. Figure 4 displays scatterplots of drought indices (iTVMDI and
TVMDI) and rainfall. The correlation between the iTVMDI and precipitation is higher than that of
the TVMDI, and the correlation coefficients R are 0.65 and 0.48 (P < 0.001), respectively. However,
the iTVMDI and TVMDI are not strongly correlated with precipitation. The reason may be that the
data selected in this study are on a monthly scale. After averaging different situations over a month,
some information would be lost.

Spring in Shandong usually lasts from March to May. Due to limited rainfall, drought often occurs
in spring. Summer is from June to August, which is the monsoon season, and most of the rainfall in
Shandong is concentrated in the summer monsoon period. Autumn starts in September and ends in
November, and rainfall during this period is similar to that in spring. December to February of the next
year is considered to be winter, with precipitation and temperature at their lowest levels in the whole
year. The seasonal difference in precipitation in Shandong Province is large. Taking Jinan in Shandong
Province as an example, the monthly cumulative precipitation, average temperature and iTVMDI were
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calculated (Figure 5). The drought index showed a downward trend from winter to summer, and
began to rise afterward. In summer, due to the high vegetation coverage, sufficient rainfall and the
increase in SM, iTVMDI reached the lowest value at the end of summer (Figure 5b). After summer,
the harvesting or withering of vegetation and the decrease in precipitation and SM led to the rapid
recovery of the drought index to a high value state.Water 2020, 12, x FOR PEER REVIEW 8 of 20 
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4.3. Comparisons of Drought Indices with Surface Water Supply

The limited precipitation and SM lead to insufficient runoff, which causes hydrological drought.
The increase in the surface water supply will increase the surface water. If the water supply is reduced,
the regional temperature will increase, the air will dry, and the evaporation of water will accelerate as
long as there is enough water in the soil, the ecological water demand will increase, and the water
resources will be reduced [67]. At the same time, the iTVMDI will be increased [68,69]. Therefore,
to evaluate the iTVMDI for hydrological drought monitoring, we selected the surface water supply per
unit area of nine cities in Shandong Province from the Shandong Statistical Yearbook as auxiliary data
and analyzed their correlation with the iTVMDI and TVMDI (Figure 6a). The results showed that the
iTVMDI had a significant negative correlation with the surface water (R = −0.81, P < 0.01). With the
increase in surface water, the iTVMDI will decrease. By comparing the correlation between TVMDI
and surface water (R = −0.63), it can be found that iTVMDI is more sensitive to changes in surface
water, which also means it is more accurate. Therefore, it can be concluded that iTVMDI is better than
TVMDI in hydrological drought monitoring.
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4.4. Drought Monitoring Results in Shandong Province

It has been shown, over one year, that the iTVMDI has a relatively accurate drought monitoring
capability, so the iTVMDI was used in this paper for drought monitoring in Shandong Province
(Figure 7). The iTVMDI range of Shandong Province in 2016 was 0.24–0.85. The higher the value is,
the drier the area is. By calculating the average iTVMDI value of each month in Shandong Province,
it can be found that the iTVMDI was generally high in January, February and March, and the average
iTVMDI of Shandong in those three months could reach 0.70. In particular, in March, the iTVMDI
in some areas can reach the highest value of 0.85 in the whole year. According to the meteorological
data, from February 14th to April 15th, the average precipitation across the whole province was only
5.0 mm, which was the lowest value in the same period since 1951. In addition, the water consumption
of plant growth was large, which led to a rapid decrease in SM. In March, April and May, the high
iTVMDI values were mainly distributed in the central and northern parts of Shandong Province, while
Dezhou, Liaocheng, Heze, central and eastern Jining, south-central Linyi, and southern Zaozhuang
were humid. In June, due to the harvest of winter wheat, the vegetation coverage decreased rapidly.
Simultaneously, the temperature rose rapidly. Therefore, the iTVMDI in the northwestern, western and
southwestern parts of Shandong Province, which are all plain areas, changed from humid to relatively
dry. In July, August and September, it was relatively humid compared with the previous months, likely
because of the abundant precipitation and the growth period of vegetation, and the average iTVMDI
values were 0.53, 0.47 and 0.55, respectively.
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In order to further analyze the drought situation of different land types, we calculated the monthly
change in the average iTVMDI of different land types over the whole year (Figure 8). For most of
the year, the iTVMDI of croplands was the lowest among all land types. In addition, the iTVMDI
of built-up lands and other lands was generally higher than that of other land types, which is also a
feature that cannot be clearly shown in the previous drought index maps, and with the increase in LST,
the difference observed with other land types was more obvious. This phenomenon mainly occurs
because, when the temperature rises, the decrease in surface water of built-up land and other land was
accelerated, so compared with other land types, there was less surface water.

Water 2020, 12, x FOR PEER REVIEW 12 of 20 

 

 

 
Figure 8. Monthly change in the average iTVMDI of different land covers in the whole year. 

5. Discussion 

Some studies have shown that an index that combines optical, infrared data with microwave 
data has a better drought monitoring capability [9,70]. Since the results of the TVMDI depend on the 
accuracy of the three indices, namely LST, VI and SM, we improved the TVMDI model using SM data 
derived from FY3B-MWRI to replace the MODIS SM. To further present differences between the 
iTVMDI and TVMDI, we used GLDAS SM to verify FY3B-MWRI SM and MODIS SM (Figure 9). It 
can be concluded that the correlation between FY3B-MWRI SM and GLDAS SM is higher than that 
between MODIS SM and GLDAS SM (p < 0.001), which also shows that the iTVMDI is better at 
drought monitoring in Shandong Province. The low correlation coefficient may be because the 
resolution of GLDAS SM (8 km) is inconsistent with the resolution of the two kinds of satellite data 
(1 km).  

  

Figure 8. Monthly change in the average iTVMDI of different land covers in the whole year.

5. Discussion

Some studies have shown that an index that combines optical, infrared data with microwave
data has a better drought monitoring capability [9,70]. Since the results of the TVMDI depend on
the accuracy of the three indices, namely LST, VI and SM, we improved the TVMDI model using SM
data derived from FY3B-MWRI to replace the MODIS SM. To further present differences between
the iTVMDI and TVMDI, we used GLDAS SM to verify FY3B-MWRI SM and MODIS SM (Figure 9).
It can be concluded that the correlation between FY3B-MWRI SM and GLDAS SM is higher than that
between MODIS SM and GLDAS SM (P < 0.001), which also shows that the iTVMDI is better at drought
monitoring in Shandong Province. The low correlation coefficient may be because the resolution of
GLDAS SM (8 km) is inconsistent with the resolution of the two kinds of satellite data (1 km).

Water 2020, 12, x FOR PEER REVIEW 13 of 20 

 

 

 
Figure 9. Scatterplot of GLDAS SM and two kinds of satellite SM products, (a) FengYun (FY) 3B-
Microwave Radiation Imager (MWRI) SM and (b) Moderate Resolution Imaging Spectroradiometer 
(MODIS) SM. 

Figure 10 shows the SM in January, calculated using the MODIS NIR-Red band (Figure 10a), the 
downscaled FY3B SM (Figure 10b), the TVMDI (Figure 10c) and the iTVMDI (Figure 10d). To facilitate 
a comparison of the differences between the SM calculated using the NIR-Red band feature space, 
downscaled SM, TVMDI and iTVMDI in Shandong Province, all the calculation results were 
normalized. There are many differences between the SM data calculated by the MODIS NIR and Red 
bands and the FY3B-downscaled SM in terms of representing the drought situation in Shandong 
Province, China (Figure 10a, b). Compared with MODIS SM, the FY3B-downscaled SM can show the 
differences across different land covers. The TVMDI and iTVMDI show the same drought situations 
in Shandong Province overall. However, when the iTVMDI shows drought, the land surface actually 
shows normal or wet conditions because drought conditions are very sensitive to many factors, 
including the time lag effect between the monthly average iTVMDI and rainfall or surface variables, 
such as the LST and VI [70]. 
  

Figure 9. Scatterplot of GLDAS SM and two kinds of satellite SM products, (a) FengYun (FY)
3B-Microwave Radiation Imager (MWRI) SM and (b) Moderate Resolution Imaging Spectroradiometer
(MODIS) SM.

Figure 10 shows the SM in January, calculated using the MODIS NIR-Red band (Figure 10a),
the downscaled FY3B SM (Figure 10b), the TVMDI (Figure 10c) and the iTVMDI (Figure 10d).
To facilitate a comparison of the differences between the SM calculated using the NIR-Red band feature
space, downscaled SM, TVMDI and iTVMDI in Shandong Province, all the calculation results were
normalized. There are many differences between the SM data calculated by the MODIS NIR and
Red bands and the FY3B-downscaled SM in terms of representing the drought situation in Shandong
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Province, China (Figure 10a,b). Compared with MODIS SM, the FY3B-downscaled SM can show the
differences across different land covers. The TVMDI and iTVMDI show the same drought situations in
Shandong Province overall. However, when the iTVMDI shows drought, the land surface actually
shows normal or wet conditions because drought conditions are very sensitive to many factors,
including the time lag effect between the monthly average iTVMDI and rainfall or surface variables,
such as the LST and VI [70].
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Figure 10. The results of drought monitoring in January in Shandong Province, China. All maps were
normalized, and the spatial resolution of these maps is 1 km. (a) SM calculated using the NIR-Red
spectral space, (b) downscaling results of FY3B SM, (c) TVMDI and (d) iTVMDI.

As a major province of grain production, most of Shandong is currently composed of croplands.
We calculated the effective irrigated area of each city, which is the total area of paddy fields and
irrigated land that are equipped with irrigation projects or equipment and can be irrigated normally,
and this is an important index reflecting the drought resistance of cultivated land in China. According
to the statistical yearbook data, the effective irrigated areas in Dezhou, Liaocheng, Heze and Jining
were 492, 473, 631 and 473 thousand hectares, accounting for 60%, 68%, 66% and 61% of the local
agricultural land area, respectively. The proportion of effective irrigated area in these four cities was
the highest in the province. Because these areas were also the main production areas of winter wheat,
the relatively complete irrigation facilities made the farmland water supply sufficient. The continuous
water supply and intensive land use made these areas have relatively high average annual vegetation
coverage (Figure 11a). However, it is still necessary to continue to build adequate irrigation measures
in farmland areas, especially in Heze, Weifang and Qingdao, where the temperature is higher than
in other areas (Figure 11b), in order to replenish groundwater and maintain SM in this area. Further
research will continue to focus on drought risks to determine the impact of drought on agricultural
productivity and livelihoods [20,71]. In combination with the variation relationship between drought
index and measured surface water supply data, the relationship between the available amount of and
demand for water resources is calculated in detail to improve the comprehensive utilization rate of
water resources, which requires further exploration [72].
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Figure 11. (a) A map of the annual average Modified Soil-Adjusted Vegetation Index (MSAVI) for
Shandong Province; and (b) the distribution map of the annual average land surface temperature (LST)
(k) in Shandong Province after reconstruction.

6. Conclusions

The TVMDI model is simple and efficient to calculate, but its results depend on SM, VI and LST
obtained by optical and infrared remote sensing. Optical remote sensing is susceptible to weather and
cannot obtain valid data in the presence of clouds. Microwave remote sensing is considered to be the
most promising method of land surface SM remote sensing detection at present, given its short return
period and high temporal resolution. In this paper, the original drought monitoring index TVMDI
was improved by FY3B microwave remote sensing of SM. A novel drought index, iTVMDI, based
on multi-satellite data fusion, was proposed in this study. Compared with the TVMDI model based
on optical and infrared data, the iTVMDI model can improve the ability of drought monitoring by
integrating optical/infrared data and microwave data. Furthermore, it also shows the potential of
multi-source remote sensing data fusion in remote sensing and drought monitoring. In this study,
iTVMDI was used to monitor the drought in Shandong Province in 2016, and GLDAS SM was used
to verify the monitoring results. In addition, precipitation and surface water were used to assess the
monitoring capacity of iTVMDI for meteorological and hydrological drought. The results proved that
the iTVMDI model based on microwave data is more accurate, and the iTVMDI is better than TVMDI in
meteorological drought and hydrological drought monitoring. Future research includes (1) improving
the iTVMDI by using higher resolution microwave remote sensing SM data and (2) evaluating the
ability of the iTVMDI for agricultural drought assessment.
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Appendix A

By increasing the SM, the vegetation coverage will increase. As a result, the VI value will rise,
and the drought value will usually decrease. Similarly, when SM decreases and LST rises, vegetation
will be affected by drought because there is not enough water in the soil. With the increase in LST
and the decrease in vegetation cover and SM, drought will be more serious and reach its maximum
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value of one. As shown in Figure A1, the line segment WD is the spatial representation line of TVMDI,
and the point W indicates that the temperature in the region where the pixel is located is the lowest,
the vegetation coverage is the highest, the SM content is the highest, and the drought value is the
lowest. Notably, the value of the SM axis gradually decreases, because the lower the SM value is,
the closer it is to the end with a TVMDI of one (Point D).
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Figure A1. The definition of the TVMDI. TVMDI is based on VI, LST, and SM as the axis of the
three-dimensional space. The TVMDI is defined as the square root of the square sum of VI, LST, and
SM [34].

The TVMDI is defined as follows:
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where SM is calculated as follows:
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RNIR +

RRed
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where RRed and RNIR are reflections in the red and NIR bands, respectively, after atmospheric correction,
and M and b are the slope and intercept of the linear-fitting formula of the soil line in the NIR-Red
feature space, respectively [24,73]. The PVI is defined as follows:

PVI =
RNIR − aRRed − b
√

1 + a2
(A3)

where RRed and RNIR are reflections in the red and NIR bands, respectively. a and b refer to the slope and
interception of the soil line equation, respectively. In this study, the values of each axis are normalized

to the range from zero to
√

3
3 so that the drought index is in the range from zero to one, and the

normalization formula is as follows:
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where P represents VI, SM or LST and P = (p1, p2, · · · , pn). The maximum temperature is 349 K, and
the minimum is 273 K because temperatures below 273 K are meaningless in drought research.



Water 2020, 12, 1504 14 of 17

References

1. Yang, X.; Zhang, L.; Wang, Y.; Singh, V.P.; Xu, C.-Y.; Ren, L.; Zhang, M.; Liu, Y.; Jiang, S.; Yuan, F. Spatial and
temporal characterization of drought events in china using the severity-area-duration method. Water 2020,
12, 230. [CrossRef]

2. Martínez-Fernández, J.; González-Zamora, A.; Sánchez, N.; Gumuzzio, A. A soil water based index as a
suitable agricultural drought indicator. J. Hydrol. 2015, 522, 265–273. [CrossRef]

3. Zhang, J.; Mu, Q.; Huang, J. Assessing the remotely sensed drought severity index for agricultural drought
monitoring and impact analysis in north china. Ecol. Indic. 2016, 63, 296–309. [CrossRef]

4. Tadesse, T.; Champagne, C.; Wardlow, B.D.; Hadwen, T.A.; Brown, J.F.; Demisse, G.B.; Bayissa, Y.A.;
Davidson, A.M. Building the vegetation drought response index for canada (vegdri-canada) to monitor
agricultural drought: First results. GIScience Remote Sens. 2017, 54, 230–257. [CrossRef]

5. Wang, X.; Hou, X.; Li, Z.; Wang, Y. Spatial and temporal characteristics of meteorological drought in shandong
province, china, from 1961 to 2008. Adv. Meteorol. 2014, 2014, 1–11. [CrossRef]

6. Tran, T.V.; Tran, D.X.; Myint, S.W.; Latorre-Carmona, P.; Ho, D.D.; Tran, P.H.; Dao, H.N. Assessing
spatiotemporal drought dynamics and its related environmental issues in the mekong river delta. Remote
Sens. 2019, 11, 2742. [CrossRef]

7. Sun, Z.; Zhu, X.; Pan, Y.; Zhang, J.; Liu, X. Drought evaluation using the grace terrestrial water storage deficit
over the yangtze river basin, china. Sci. Total Environ. 2018, 634, 727–738. [CrossRef] [PubMed]

8. Tuttle, S.E.; Salvucci, G.D. A new approach for validating satellite estimates of soil moisture using large-scale
precipitation: Comparing amsr-e products. Remote Sens. Environ. 2014, 142, 207–222. [CrossRef]

9. Zhang, A.; Jia, G. Monitoring meteorological drought in semiarid regions using multi-sensor microwave
remote sensing data. Remote Sens. Environ. 2013, 134, 12–23. [CrossRef]

10. Jiao, W.; Tian, C.; Chang, Q.; Novick, K.A.; Wang, L. A new multi-sensor integrated index for drought
monitoring. Agric. For. Meteorol. 2019, 268, 74–85. [CrossRef]

11. Zhang, J.; Zhang, Q.; Bao, A.; Wang, Y. A new remote sensing dryness index based on the near-infrared and
red spectral space. Remote Sens. 2019, 11, 456. [CrossRef]

12. Martínez-Fernández, J.; González-Zamora, A.; Sánchez, N.; Gumuzzio, A.; Herrero-Jiménez, C.M. Satellite
soil moisture for agricultural drought monitoring: Assessment of the smos derived soil water deficit index.
Remote Sens. Environ. 2016, 177, 277–286. [CrossRef]

13. Huete, A.; Justice, C.; Liu, H. Development of vegetation and soil indices for modis-eos. Remote Sens. Environ.
1994, 49, 224–234. [CrossRef]

14. Pei, F.; Wu, C.; Liu, X.; Li, X.; Yang, K.; Zhou, Y.; Wang, K.; Xu, L.; Xia, G. Monitoring the vegetation activity
in china using vegetation health indices. Agric. For. Meteorol. 2018, 248, 215–227. [CrossRef]

15. Yao, Y.; Liang, S.; Qin, Q.; Wang, K. Monitoring drought over the conterminous united states using modis
and ncep reanalysis-2 data. J. Appl. Meteorol. Climatol. 2010, 49, 1665–1680. [CrossRef]

16. Liu, Y.; Yue, H. The temperature vegetation dryness index (tvdi) based on bi-parabolic ndvi-ts space and
gradient-based structural similarity (gssim) for long-term drought assessment across Shaanxi province,
China (2000–2016). Remote Sens. 2018, 10, 959. [CrossRef]

17. Lambin, E.F.; Ehrlich, D. The surface temperature-vegetation index space for land cover and land-cover
change analysis. Int. J. Remote Sens. 2007, 17, 463–487. [CrossRef]

18. Zormand, S.; Jafari, R.; Koupaei, S.S. Assessment of pdi, mpdi and tvdi drought indices derived from modis
aqua/terra level 1b data in natural lands. Nat. Hazards 2016, 86, 757–777. [CrossRef]

19. Ghulam, A.; Qin, Q.; Teyip, T.; Li, Z.-L. Modified perpendicular drought index (mpdi): A real-time drought
monitoring method. ISPRS J. Photogramm. Remote Sens. 2007, 62, 150–164. [CrossRef]

20. Pandey, V.; Srivastava, P.K. Integration of microwave and optical/infrared derived datasets for a drought
hazard inventory in a sub-tropical region of india. Remote Sens. 2019, 11, 439. [CrossRef]

21. Peng, J.; Loew, A.; Zhang, S.; Wang, J.; Niesel, J. Spatial downscaling of satellite soil moisture data using a
vegetation temperature condition index. IEEE Trans. Geosci. Remote Sens. 2016, 54, 558–566. [CrossRef]

22. Piles, M.; Camps, A.; Vall-llossera, M.; Corbella, I.; Panciera, R.; Rudiger, C.; Kerr, Y.H.; Walker, J. Downscaling
smos-derived soil moisture using modis visible/infrared data. IEEE Trans. Geosci. Remote Sens. 2011, 49,
3156–3166. [CrossRef]

http://dx.doi.org/10.3390/w12010230
http://dx.doi.org/10.1016/j.jhydrol.2014.12.051
http://dx.doi.org/10.1016/j.ecolind.2015.11.062
http://dx.doi.org/10.1080/15481603.2017.1286728
http://dx.doi.org/10.1155/2014/873593
http://dx.doi.org/10.3390/rs11232742
http://dx.doi.org/10.1016/j.scitotenv.2018.03.292
http://www.ncbi.nlm.nih.gov/pubmed/29649717
http://dx.doi.org/10.1016/j.rse.2013.12.002
http://dx.doi.org/10.1016/j.rse.2013.02.023
http://dx.doi.org/10.1016/j.agrformet.2019.01.008
http://dx.doi.org/10.3390/rs11040456
http://dx.doi.org/10.1016/j.rse.2016.02.064
http://dx.doi.org/10.1016/0034-4257(94)90018-3
http://dx.doi.org/10.1016/j.agrformet.2017.10.001
http://dx.doi.org/10.1175/2010JAMC2328.1
http://dx.doi.org/10.3390/rs10060959
http://dx.doi.org/10.1080/01431169608949021
http://dx.doi.org/10.1007/s11069-016-2715-0
http://dx.doi.org/10.1016/j.isprsjprs.2007.03.002
http://dx.doi.org/10.3390/rs11040439
http://dx.doi.org/10.1109/TGRS.2015.2462074
http://dx.doi.org/10.1109/TGRS.2011.2120615


Water 2020, 12, 1504 15 of 17

23. Gruber, A.; Su, C.H.; Zwieback, S.; Crow, W.; Dorigo, W.; Wagner, W. Recent advances in (soil moisture)
triple collocation analysis. Int. J. Appl. Earth Obs. Geoinf. 2016, 45, 200–211. [CrossRef]

24. Amani, M.; Parsian, S.; MirMazloumi, S.M.; Aieneh, O. Two new soil moisture indices based on the nir-red
triangle space of landsat-8 data. Int. J. Appl. Earth Obs. Geoinf. 2016, 50, 176–186. [CrossRef]

25. Ghulam, A.; Qin, Q.; Zhan, Z. Designing of the perpendicular drought index. Environ. Geol. 2007, 52,
1045–1052. [CrossRef]

26. Sandholt, I.; Rasmussen, K.; Andersen, J. A simple interpretation of the surface temperature/vegetation index
space for assessment of surface moisture status. Remote Sens. Environ. 2002, 79, 213–224. [CrossRef]

27. Zhang, J.; Zhou, Z.; Yao, F.; Yang, L.; Hao, C. Validating the modified perpendicular drought index in the
north china region using in situ soil moisture measurement. IEEE Geosci. Remote Sens. Lett. 2015, 12, 542–546.
[CrossRef]

28. Li, Z.; Tan, D. The second modified perpendicular drought index (mpdi1): A combined drought monitoring
method with soil moisture and vegetation index. J. Indian Soc. Remote Sens. 2013, 41, 873–881. [CrossRef]

29. Pablos, M.; Piles, M.; Sánchez, N.; Vall-llossera, M.; Martínez-Fernández, J.; Camps, A. Impact of day/night
time land surface temperature in soil moisture disaggregation algorithms. Eur. J. Remote Sens. 2016, 49,
899–916. [CrossRef]

30. Zhu, X.; Pan, Y.; Wang, J.; Liu, Y. A cuboid model for assessing surface soil moisture. Remote Sens. 2019, 11,
3034. [CrossRef]

31. Holzman, M.E.; Rivas, R.; Bayala, M. Subsurface soil moisture estimation by vi–lst method. IEEE Geosci.
Remote Sens. Lett. 2014, 11, 1951–1955. [CrossRef]

32. Zhang, D.; Zhou, G. Estimation of soil moisture from optical and thermal remote sensing: A review. Sensors
2016, 16, 1308. [CrossRef] [PubMed]

33. Ford, T.W.; Quiring, S.M. Comparison of contemporary in situ, model, and satellite remote sensing soil
moisture with a focus on drought monitoring. Water Resour. Res. 2019, 55, 1565–1582. [CrossRef]

34. Amani, M.; Salehi, B.; Mahdavi, S.; Masjedi, A.; Dehnavi, S. Temperature-vegetation-soil moisture dryness
index (tvmdi). Remote Sens. Environ. 2017, 197, 1–14. [CrossRef]

35. Filippa, G.; Cremonese, E.; Migliavacca, M.; Galvagno, M.; Sonnentag, O.; Humphreys, E.; Hufkens, K.;
Ryu, Y.; Verfaillie, J.; Morra di Cella, U.; et al. Ndvi derived from near-infrared-enabled digital cameras:
Applicability across different plant functional types. Agric. For. Meteorol. 2018, 249, 275–285. [CrossRef]

36. Zhang, X.; Zhao, J.; Tian, J. A robust coinversion model for soil moisture retrieval from multisensor data.
IEEE Trans. Geosci. Remote Sens. 2014, 52, 5230–5237. [CrossRef]

37. Proud, S.R.; Rasmussen, M.O.; Fensholt, R.; Sandholt, I.; Shisanya, C.; Mutero, W.; Mbow, C.; Anyamba, A.
Improving the smac atmospheric correction code by analysis of meteosat second generation ndvi and surface
reflectance data. Remote Sens. Environ. 2010, 114, 1687–1698. [CrossRef]

38. Jiao, T.; Williams, C.A.; Rogan, J.; De Kauwe, M.G.; Medlyn, B.E. Drought impacts on australian vegetation
during the millennium drought measured with multisource spaceborne remote sensing. J. Geophys. Res.
Biogeosci. 2020, 125. [CrossRef]

39. Fan, L.; Wigneron, J.P.; Xiao, Q.; Al-Yaari, A.; Wen, J.; Martin-StPaul, N.; Dupuy, J.L.; Pimont, F.; Al Bitar, A.;
Fernandez-Moran, R.; et al. Evaluation of microwave remote sensing for monitoring live fuel moisture
content in the mediterranean region. Remote Sens. Environ. 2018, 205, 210–223. [CrossRef]

40. Guo, P.; Shi, J.; Liu, Q.; Du, J. A new algorithm for soil moisture retrieval with l-band radiometer. IEEE J. Sel.
Top. Appl. Earth Obs. Remote Sens. 2013, 6, 1147–1155. [CrossRef]

41. Mladenova, I.E.; Jackson, T.J.; Njoku, E.; Bindlish, R.; Chan, S.; Cosh, M.H.; Holmes, T.R.H.; de Jeu, R.A.M.;
Jones, L.; Kimball, J.; et al. Remote monitoring of soil moisture using passive microwave-based
techniques—Theoretical basis and overview of selected algorithms for amsr-e. Remote Sens. Environ.
2014, 144, 197–213. [CrossRef]

42. Wu, S.Y.; Zhou, Q.Y.; Wang, G.; Yang, L.; Ling, C.P. The relationship between electrical capacitance-based
dielectric constant and soil water content. Environ. Earth Sci. 2010, 62, 999–1011. [CrossRef]

43. Zuo, D.; Cai, S.; Xu, Z.; Li, F.; Sun, W.; Yang, X.; Kan, G.; Liu, P. Spatiotemporal patterns of drought at various
time scales in shandong province of eastern china. Theor. Appl. Climatol. 2016, 131, 271–284. [CrossRef]

44. Shao, Y.; Lunetta, R.S.; Wheeler, B.; Iiames, J.S.; Campbell, J.B. An evaluation of time-series smoothing
algorithms for land-cover classifications using modis-ndvi multi-temporal data. Remote Sens. Environ. 2016,
174, 258–265. [CrossRef]

http://dx.doi.org/10.1016/j.jag.2015.09.002
http://dx.doi.org/10.1016/j.jag.2016.03.018
http://dx.doi.org/10.1007/s00254-006-0544-2
http://dx.doi.org/10.1016/S0034-4257(01)00274-7
http://dx.doi.org/10.1109/LGRS.2014.2349957
http://dx.doi.org/10.1007/s12524-013-0264-5
http://dx.doi.org/10.5721/EuJRS20164947
http://dx.doi.org/10.3390/rs11243034
http://dx.doi.org/10.1109/LGRS.2014.2314617
http://dx.doi.org/10.3390/s16081308
http://www.ncbi.nlm.nih.gov/pubmed/27548168
http://dx.doi.org/10.1029/2018WR024039
http://dx.doi.org/10.1016/j.rse.2017.05.026
http://dx.doi.org/10.1016/j.agrformet.2017.11.003
http://dx.doi.org/10.1109/TGRS.2013.2287513
http://dx.doi.org/10.1016/j.rse.2010.02.020
http://dx.doi.org/10.1029/2019JG005145
http://dx.doi.org/10.1016/j.rse.2017.11.020
http://dx.doi.org/10.1109/JSTARS.2013.2244852
http://dx.doi.org/10.1016/j.rse.2014.01.013
http://dx.doi.org/10.1007/s12665-010-0585-4
http://dx.doi.org/10.1007/s00704-016-1969-5
http://dx.doi.org/10.1016/j.rse.2015.12.023


Water 2020, 12, 1504 16 of 17

45. Savitzky, A.; Golay, M.J.E. Smoothing and differentiation of data by simplified least squares procedures.
Anal. Chem. 1964, 36, 1627–1639. [CrossRef]

46. Jiang, L.; Wang, P.; Zhang, L.; Yang, H.; Yang, J. Improvement of snow depth retrieval for fy3b-mwri in china.
Sci. China Earth Sci. 2014, 57, 1278–1292. [CrossRef]

47. Wang, G.; Hagan, D.F.T.; Lou, D.; Chen, T. Evaluation of soil moisture derived from fy3b microwave
brightness temperature over the tibetan plateau. Remote Sens. Lett. 2016, 7, 817–826. [CrossRef]

48. Fu, H.; Zhou, T.; Sun, C. Evaluation and analysis of amsr2 and fy3b soil moisture products by an in situ
network in cropland on pixel scale in the northeast of china. Remote Sens. 2019, 11, 868. [CrossRef]

49. Liu, Q.; Zhang, S.; Zhang, H.; Bai, Y.; Zhang, J. Monitoring drought using composite drought indices based
on remote sensing. Sci. Total Environ. 2020, 711, 134585. [CrossRef]

50. Liu, Y.Y.; Dorigo, W.A.; Parinussa, R.M.; de Jeu, R.A.M.; Wagner, W.; McCabe, M.F.; Evans, J.P.; van
Dijk, A.I.J.M. Trend-preserving blending of passive and active microwave soil moisture retrievals. Remote
Sens. Environ. 2012, 123, 280–297. [CrossRef]

51. Kim, H.; Parinussa, R.; Konings, A.G.; Wagner, W.; Cosh, M.H.; Lakshmi, V.; Zohaib, M.; Choi, M. Global-scale
assessment and combination of smap with ascat (active) and amsr2 (passive) soil moisture products. Remote
Sens. Environ. 2018, 204, 260–275. [CrossRef]

52. Bai, J.; Cui, Q.; Chen, D.; Yu, H.; Mao, X.; Meng, L.; Cai, Y. Assessment of the smap-derived soil water deficit
index (swdi-smap) as an agricultural drought index in china. Remote Sens. 2018, 10, 1302. [CrossRef]

53. Dorigo, W.A.; Scipal, K.; Parinussa, R.M.; Liu, Y.Y.; Wagner, W.; de Jeu, R.A.M.; Naeimi, V. Error
characterisation of global active and passive microwave soil moisture datasets. Hydrol. Earth Syst. Sci. 2010,
14, 2605–2616. [CrossRef]

54. Sure, A.; Dikshit, O. Estimation of root zone soil moisture using passive microwave remote sensing: A case
study for rice and wheat crops for three states in the indo-gangetic basin. J. Environ. Manage. 2019, 234,
75–89. [CrossRef]

55. Liu, L.; Liao, J.; Chen, X.; Zhou, G.; Su, Y.; Xiang, Z.; Wang, Z.; Liu, X.; Li, Y.; Wu, J.; et al. The microwave
temperature vegetation drought index ( mtvdi ) based on amsr—E brightness temperatures for long-term
drought assessment across china (2003–2010). Remote Sens. Environ. 2017, 199, 302–320. [CrossRef]

56. Wigneron, J.P.; Laguerre, L.; Kerr, Y.H. A simple parameterization of the l-band microwave emission from
rough agricultural soils. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1697–1707. [CrossRef]

57. Shi, J.; Chen, K.S.; Li, Q.; Jackson, T.J.; O’Neill, P.E.; Tsang, L. A parameterized surface reflectivity model and
estimation of bare-surface soil moisture with l-band radiometer. IEEE Trans. Geosci. Remote Sens. 2002, 40,
2674–2686.

58. Park, S.; Im, J.; Park, S.; Rhee, J. Drought monitoring using high resolution soil moisture through multi-sensor
satellite data fusion over the korean peninsula. Agric. For. Meteorol. 2017, 237, 257–269. [CrossRef]

59. Zhong, A.; Wang, A.; Li, J.; Xu, T.; Meng, D.; Ke, Y.; Li, X.; Chen, Y. Downscaling of passive microwave soil
moisture retrievals based on spectral analysis. Int. J. Remote Sens. 2017, 39, 50–67. [CrossRef]

60. Chen, N.; He, Y.; Zhang, X. Nir-red spectra-based disaggregation of smap soil moisture to 250 m resolution
based on oznet in southeastern australia. Remote Sens. 2017, 9, 51. [CrossRef]

61. Wang, J.; Ling, Z.; Wang, Y.; Zeng, H. Improving spatial representation of soil moisture by integration of
microwave observations and the temperature—Vegetation—Drought index derived from modis products.
ISPRS J. Photogramm. Remote Sens. 2016, 113, 144–154. [CrossRef]

62. Fang, B.; Lakshmi, V.; Bindlish, R.; Jackson, T.J. Downscaling of smap soil moisture using land surface
temperature and vegetation data. Vadose Zone J. 2018, 17, 1–15. [CrossRef]

63. Chauhan, N.S.; Miller, S.; Ardanuy, P. Spaceborne soil moisture estimation at high resolution: A
microwave-optical/ir synergistic approach. Int. J. Remote Sens. 2010, 24, 4599–4622. [CrossRef]

64. Richardson, A.J.; Wiegand, C.L. Distinguishing vegetation from soil background information. Photogramm.
Eng. Remote Sens. 1977, 43, 1541–1552.

65. Qi, J.; Chehbouni, A.; Huete, A. A modified soil adjusted vegetation index. Remote Sens. Environ. 1994, 48,
119–126. [CrossRef]

66. West, H.; Quinn, N.; Horswell, M. Remote sensing for drought monitoring & impact assessment: Progress,
past challenges and future opportunities. Remote Sens. Environ. 2019, 232, 111291.

67. Zhao, G.; Gao, H.; Kao, S.-C.; Voisin, N.; Naz, B.S. A modeling framework for evaluating the drought
resilience of a surface water supply system under non-stationarity. J. Hydrol. 2018, 563, 22–32. [CrossRef]

http://dx.doi.org/10.1021/ac60214a047
http://dx.doi.org/10.1007/s11430-013-4798-8
http://dx.doi.org/10.1080/2150704X.2016.1192303
http://dx.doi.org/10.3390/rs11070868
http://dx.doi.org/10.1016/j.scitotenv.2019.134585
http://dx.doi.org/10.1016/j.rse.2012.03.014
http://dx.doi.org/10.1016/j.rse.2017.10.026
http://dx.doi.org/10.3390/rs10081302
http://dx.doi.org/10.5194/hess-14-2605-2010
http://dx.doi.org/10.1016/j.jenvman.2018.12.109
http://dx.doi.org/10.1016/j.rse.2017.07.012
http://dx.doi.org/10.1109/36.942548
http://dx.doi.org/10.1016/j.agrformet.2017.02.022
http://dx.doi.org/10.1080/01431161.2017.1378456
http://dx.doi.org/10.3390/rs9010051
http://dx.doi.org/10.1016/j.isprsjprs.2016.01.009
http://dx.doi.org/10.2136/vzj2017.11.0198
http://dx.doi.org/10.1080/0143116031000156837
http://dx.doi.org/10.1016/0034-4257(94)90134-1
http://dx.doi.org/10.1016/j.jhydrol.2018.05.037


Water 2020, 12, 1504 17 of 17

68. Tweed, S.; Leblanc, M.; Cartwright, I. Groundwater—Surface water interaction and the impact of a multi-year
drought on lakes conditions in south-east australia. J. Hydrol. 2009, 379, 41–53. [CrossRef]

69. Martins, V.S.; Kaleita, A.; Barbosa, C.C.F.; Fassoni-Andrade, A.C.; Lobo, F.d.L.; Novo, E.M.L.M. Remote
sensing of large reservoir in the drought years: Implications on surface water change and turbidity variability
of sobradinho reservoir (northeast brazil). Remote Sens. Appl. Soc. Environ. 2019, 13, 275–288. [CrossRef]

70. Cong, D.; Zhao, S.; Chen, C.; Duan, Z. Characterization of droughts during 2001–2014 based on remote
sensing: A case study of northeast china. Ecol. Inform. 2017, 39, 56–67. [CrossRef]

71. Alamgir, M.; Khan, N.; Shahid, S.; Yaseen, Z.M.; Dewan, A.; Hassan, Q.; Rasheed, B. Evaluating
severity—Area—Frequency (saf) of seasonal droughts in bangladesh under climate change scenarios.
Stoch. Environ. Res. Risk Assess. 2020, 34, 447–464. [CrossRef]

72. Leasor, Z.T.; Quiring, S.M.; Svoboda, M.D. Utilizing objective drought severity thresholds to improve drought
monitoring. J. Appl. Meteorol. Climatol. 2020, 59, 455–475. [CrossRef]

73. Amani, M.; Mobasheri, M.R. A parametric method for estimation of leaf area index using landsat etm + data.
GIScience Remote Sens. 2015, 52, 478–497. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jhydrol.2009.09.043
http://dx.doi.org/10.1016/j.rsase.2018.11.006
http://dx.doi.org/10.1016/j.ecoinf.2017.03.005
http://dx.doi.org/10.1007/s00477-020-01768-2
http://dx.doi.org/10.1175/JAMC-D-19-0217.1
http://dx.doi.org/10.1080/15481603.2015.1055540
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Study Area and Data 
	Study Area 
	Satellite Image Data and Data Preprocessing 
	MODIS Data 
	FY3B Soil Moisture Product 
	Meteorological Data and Agricultural Statistical Data 
	GLDAS SM 


	Methods 
	Technical Route 
	Improved Temperature–Vegetation–Soil Moisture Dryness Index (iTVMDI) 

	Results 
	Comparisons of Drought Indices and GLDAS SM 
	Comparisons of Drought Indices and Meteorological Data 
	Comparisons of Drought Indices with Surface Water Supply 
	Drought Monitoring Results in Shandong Province 

	Discussion 
	Conclusions 
	
	References

