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Abstract: This paper presents the application of a graph-based methodology for the assessment
of flood impacts in an urban context. In this methodology, exposed elements are organized as
nodes on a graph, which is used to propagate impacts from directly affected nodes to other nodes
across graph links. Compared to traditional approaches, the main advantage of the adopted
methodology lies in the possibility of identifying and understanding indirect impacts and cascading
effects. The application case concerns floods numerically reconstructed in Mexico City in response to
rainfall events of increasing return periods. The hazard reconstruction was carried out by using a
simplified hydrological/hydraulic model of the urban drainage system, implemented in EPASWMM,
the Storm Water Management Model developed by the United States Environmental Protection
Agency. The paper shows how the impacts are propagated along different orders of the impact chain
for each return period and compares the risk curves between direct and indirect impact. It also
highlights the extent to which the reduction in demand of services from consumers and the loss of
services from suppliers are respectively contributing to the final indirect impacts. Finally, it illustrates
how different impact mitigation measures can be formulated based on systemic information provided
by the analysis of graph properties and taking into account indirect impacts.

Keywords: pluvial flood; indirect impacts; risk assessment; graph analysis; flood mitigation;
Mexico City

1. Introduction

Floods have become one of the most dangerous and costly natural hazards in recent decades.
Economic damage reported worldwide from 2000 to 2006 add up to more than 422 billion dollars,
accompanied by more than 290,000 fatalities and over 1.5 billion affected people [1]. The most
dangerous flood events usually take place in urban areas, where the highest number of inhabitants and
the most valuable exposed assets are located today, due to current urbanization trends [2]. Another
factor contributing to the negative effects of floods is climate change, which appears to be concentrating
the total yearly rainfall volume in increasingly sporadic and intense rain events [3]. As a result,
rainwater discharges have been growing significantly in urban catchments [4], causing the occurrence
of increasingly frequent flood event [5–7]. Due to the rapidity of the governing processes, mainly
related to short concentration times, flood events in urban areas typically occur with little to no early
warning, thus being commonly referred to as flash floods.
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The implementation of effective strategies to manage urban flood risk requires support from risk
assessment studies quantifying the impacts of hazardous events on the built environment, economy,
and society [8]. The research community concerned with disaster risk reduction (DRR), particularly
in the fields of physical and environmental science, has generally agreed on a common approach for
the quantification of risk as a function of hazard, exposure, and vulnerability [9]. Hazard defines the
potentially damaging events and their probabilities of occurrence, exposure represents the population
or assets located in hazard zones that are therefore subject to potential losses, and vulnerability links
the intensity of a hazard to potential losses at exposed elements.

When the pluvial flood hazard component of risk is represented using numerical modelling, it is
generally assumed to include the ponding prior to the ingress of direct runoff into the underground
drainage system (e.g., [10–12]). In terms of floodwater, other contributions come from surcharged
sewers and/or from urban minor watercourses, the flow capacity of which has been exceeded as a
result of heavy rainfall [13,14]. In most applications, flood hazard (flood extension, water levels,
and velocities) is assessed by making use of suitable software (e.g., [15–17]) aiming to reproduce the
response of the urban drainage system to intense rain events of prefixed return period (e.g., [18–20]).
In addition to rainfall, the presence of close rivers and water courses may be an additional potential
driving force for the system [21].

Combining the flood hazard component with exposure and vulnerability data and models enables
the computation of flood risk. Methodologies for risk assessment may differ according to the typology
of losses considered, which can be divided into direct and indirect, and tangible and intangible [22,23].
Models for the assessment of direct loss and risk are the most widely used, and the ones which have
received the most scientific attention in recent decades (e.g., [24,25]). The situation is different regarding
indirect losses. In fact, the application of models that take into indirect impacts and cascading effects is
much less frequent [26], and the selection and implementation of a model type for estimating indirect
economic losses for a given application case is not straightforward [27].

The Economic Global Forum Report (2018) highlights the importance to understand the risk due to
the new complexity of our society, and to improve the capacity to model and manage this risk, “When
a risk cascades through a complex system, the danger is not of incremental damage but of ‘runaway
collapse’—or, alternatively, a transition to a new, suboptimal status quo that becomes difficult to
escape.” Pescaroli and Alexander (2016) [28] showed how the complex socio-technological networks of
present-day society, especially in strong urbanized areas, increase the impact of local events on broader
crises. These potential evolution processes require a system thinking and perspective that considers all
the behaviours of a system as a whole in the context of its environment. The systems perspective uses
a non-reductionist approach aiming to describe the properties of the entire system itself. Furthermore,
any description of the whole system must include an explanation of the relationships between the
parts. Arosio et al. (2020) [29] demonstrate the advantages of representing a complex system, such as
an urban settlement, by means of a graph, and using the techniques made available by the branch of
mathematics called graph theory. In fact, it is possible to establish analogies between certain graph
metrics and the risk variables and to use the graph as a tool to propagate the damage into the system.
This approach aims to understand certain risk mechanisms, such as how the impacts of a hazard
are propagated. Therefore, the disaster risk of the system as a whole can be assessed, including
higher-order impacts and cascading effects.

An outstanding example of drainage system that has been put to a severe test by changes in
the last decades is Mexico City (MC). In addition to the effects of climate change and urbanization
on flood risk, an extremely high subsidence rate of about 30 centimetres per year [30] is threatening
the hydraulic functionality of this drainage system. On top of that, the city has been experiencing
significant population growth in the recent decades; thus, making flood management an urgent issue.
Given this context, this paper first provides a simplified model that explicitly integrates the drainage
system and surface runoff for the estimation of pluvial flood hazard, and then estimates direct and
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indirect impacts in terms of number of affected graph nodes and links. In particular, the aims of this
paper are:

• to set up of a simplified hydrological and hydraulic model of the main urban drainage system to
estimate the hazard in terms of flood area extension and water levels;

• to use the graph representation of a system as the basis for assessing higher-order impacts and
cascading effects for different return periods (T), based on the propagation of impacts along graph
links; and

• to illustrate how different impact mitigation measures can be formulated based on systemic
information provided the analysis of graph properties, taking into account indirect impacts.

2. Methodology

2.1. Hazard Modelling

Hazard identification and assessment are carried out by using the Storm Water Management
Model developed by the United States Environmental Protection Agency (EPASWMM) [31], which
has been adopted in many works in the scientific literature (e.g., [32–35]). This software can model
the response of an urban catchment to rain events, while representing the external urban surfaces as
planes featuring pre-assigned values of area, width, and slope. The runoff leaving the planes enters
the underground system through the junctions present at channel ends and is then routed inside
the channels up to the outlet(s) using De Saint Venant equations [36]. At each junction, the mass
conservation equation is applied to balance entering and outgoing flows. In correspondence to intense
rain events, backwater effects can take place, causing junctions to get surcharged. As a result, water goes
out of the underground system, causing floods in the urban environment. The thorough assessment of
flood extension and levels would require 2D flood propagation models to be used. However, if an
urban territory is inside a basin, the propagation effects can be neglected, and flood extension and
levels can be simply assessed by distributing flood volumes over territory, starting from the lowest
ground elevations. This can be accomplished by using simple Geographic Information System (GIS)
procedures [37].

In EPASWMM, the structure of the urban drainage networks needs to be defined in terms of
channel paths, lengths, shapes, and sizes. Then, each junction, which can be a node in common between
two adjacent channels, the starting node of a channel, or the final outlet of the system, can be connected
to an external catchment. Catchments must be associated with a rain gauge, in which hyetographs can
be implemented as time series to represent synthetic rain events of different return periods.

2.2. Graph Construction

This work demonstrates an approach to assess impacts beyond direct tangible damage, integrating
the hazard analysis with a graph representation of a complex system. While the traditional reductionist
risk assessment framework considers each exposed element individually, a graph representation is able
to account for interactions between exposed elements at risk, which is key to a more comprehensive
understanding of risk.

Graphs can be used to represent physical elements in the Euclidean space (e.g., electric power
grids and highways) or entities defined in an intangible space (e.g., collaborations between individuals).
Formally, a graph G consists of a finite set of elements V(G) called vertices (or nodes), and a set E(G)
of pairs of elements of V(G) called edges (or links) [38]. The mathematical properties of a graph can
be studied using graph theory [39,40]. Such properties, e.g., degree, hub and authority, are useful
metrics for analysing the graph structure (i.e., network topology, and arrangement of a network) and
in the present context may be used to characterize a collection of exposed elements from a systemic
viewpoint (e.g., [41]).

The complete procedure to construct a graph representing a system of exposed assets is presented
in Arosio et al. (2020) [29] and its two main steps are summarized here. First, the conceptual network
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is defined by means of two types of network objects, nodes (vertices) and links (edges), and by
specifying their characteristics. Nodes can theoretically represent all the entities to be analysed:
physical elements like single buildings, fire stations, and electric towers; supply of services such as
those provided by schools, hospitals, and fire stations; or even beneficiaries such as population in
general, or students, or elderly people more specifically. Links can be of different types according to
the nature of the connection: physical, geographical, cyber, or logical [42]. Second, once the network
has been conceptually defined, it is necessary to construct the actual connections between all elements.
In fact, the conceptual network determines only the existence of connections between categories of
elements, it does not define which specific node of one typology is linked to a specific node of another
typology. Therefore, it is necessary to define rules that establish connections between single nodes.
These connections can be represented either by a list of pairs of nodes or by an adjacency matrix.

2.3. Impact Assessment

Arosio et al. (2020) [29] propose analysing the properties of both the entire graph and single
nodes. The global properties show how the whole system is vulnerable to an external perturbation,
while the properties of single nodes underline which parts of the system are more critical for the
entire system. The analysis of properties provides valuable information on the system. However, in
order to assess risk and realize a proper DRR strategy, this information needs to be integrated and
overlapped with hazard information (e.g., intensity, extension, and probability of occurrence). In the
present work, the impact is computed by integrating the hazard for different return periods with the
exposed network. The total impact considers both direct impact (D) and indirect impact (I).

For the direct impact, recent literature considers the overall amount of physical damage to assets
(D) equal to the cost to repair and/or replace them, i.e., the sum of the cost to restore the damage (Cn)
of all the nodes N that are hit by the hazard [43]. Under this condition, the direct physical impact is
a function of the number of hit nodes (N), the hazard intensity (Hn) at each node n, and its physical
vulnerability (Vn):

D =
N∑

n=1

Cn(Hn, Vn) (1)

The indirect impact (I) considers the overall amount of tangible losses generated by cascading
effects due to the direct damage (D), i.e., the sum of the economic loss (LS) of all the services S that are
interrupted. In this specific definition, the indirect impact is a function of the number of services lost
(S), the typologies of services (Ts), and economic values (Vs) associated to each typology value.

I =
S∑

s=1

Ls(Ts, Vs) (2)

3. Application: Mexico City

Mexico City is one of the most hazard-prone cities in the world, due to the frequent occurrence
of floods, landslides, subsidence, volcanism, and earthquakes. The Mexico City Metropolitan Area
(MCMA), situated in a high mountain valley (approximately 2200 m a.s.l.), is one of the largest
urban agglomerations in the world. Located in a closed basin of 9600 km2, MCMA spreads over a
surface of 4250 km2. The MCMA has an estimated metropolitan population of about 21.2 million
people, equal to 18% of the country’s population, and generates 35% of Mexico’s gross domestic
product [44]. This application study focusses on Mexico City (also called the Federal District—MCFD),
where approximately 8.8 million people live. The choice of MCFD as a pilot case allows showing
the importance of interdependencies in assessing the total impact in a complex urban environment.
Tellman et al. (2018) [45] show how the risk in Mexico City’s history has become interconnected
and reinforced. In fact, as cities expand spatially and become more interconnected, risk becomes
endogenous. Urbanization, driven by population growth, increases the demand for water and land in
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many parts of the world [46], which is well represented by the choice of Mexico City as case study.
Furthermore, the impact estimated in the present work is expected to worsen in the future, due to the
soil subsidence phenomenon in progress, which is expected to deteriorate the hydraulic capacity of the
drainage system.

3.1. Description of the Application

3.1.1. Hazard Simulation

Rainfall patterns associated with different return periods were obtained through the uniform
depth duration frequency curve (DDF) for the entire MCFD [47]. In particular, Chicago hyetographs
with a duration of 6 h [48] and with peak located at 2.1 h were constructed starting from the DDF
curve [49]. Figure 1 presents the DDF curves computed for different return periods, which were used
in the analysis.
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Figure 1. Depth duration frequency (DDF) curves for Mexico City.

The EPASWMM model of the main urban drainage system, serving a total area of 1586 km2, was
constructed starting from data made available by the Engineering Institute of the National Autonomus
University of (UNAM) México D.F. The model has 109 junctions (one for each catchment), and 98
underground channels with Strickler roughness set at 52 m1/3/s, the typical value for masonry walls [48]
and consider the condition of possible failure of the pumping system (see Figure 2 for the layout of
the channels).

The model was used to simulate hydrology and hydraulics in Mexico City, i.e., runoff formation
from external catchments and flow-routing in underground channels, respectively, as a result of the
rainfall patterns described above. Water volumes going out from each surcharged node of the model
were lain on its associated urban catchment, starting from the lowest areas close to the node itself.
Incidentally, the neglection of flood propagation over the territory can be considered an acceptable
assumption, due to the basin-shaped orography.

By applying the mass conservation equation to balance entering and outgoing flows at each
junction, EPASWMM estimates the hydrograph of water that comes out when the piezometric curve
exceeds the surface level. Furthermore, in a GIS environment, the volume-depth and depth-area
functions for each basin were computed using a five-meter resolution digital terrain model (DTM).
Knowing the volume from the outgoing hydrographs and using the functions mentioned above,
the flood extension was evaluated independently for each basin at different return periods.
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3.1.2. Network Conceptualization and Graph Construction

The six following critical typologies were selected to for this illustrative pilot study: fire stations,
fuel stations, hospitals, schools, crossroads, and blocks [29]. These six typologies do not intend
to cover all possible typologies of elements in the city, but rather to illustrate the methodology by
representing different types of both tangible and intangible services. The simulation uses blocks instead
of population, as this enables a reduction in computational demand by lowering the number of nodes
from 8 million to a few tens of thousands. Furthermore, the analysis considers a limited number of
central nodes of the city’s transportation network (i.e., crossroads) as providers of the transportation
service to other elements. This approach does not aim to be representative of the complete behaviour
of the road network system (e.g., [50]), but it does allow considering the transportation network in the
analysis in a simplified manner. All the typologies, numbers of elements and the connections between
them are presented in Table 1. The data utilized to build the network were provided by the Engineer
Institute UNAM México D.F.

Table 1. List of nodes adopted in the network conceptualization [29].

Network
Conceptualization Type of Nodes Number of

Elements Service Provided Destination of the Service
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The mathematical graph, built from the list of nodes and links considered, was obtained using the
open source igraph package for network analysis of R environment (http://igraph.org/r/), while the full
library of functions adopted are made available by Nepusz and Csard (2018) [51].

3.1.3. Impact Analysis

For the estimation of the direct impact of the nodes, simplified binary vulnerability functions
were adopted, consisting of zero damage for the nodes outside of the flooded area, and full damage
and loss of functionality for the nodes inside the flooded area. This means that directly impacted
nodes are assumed to lose their capacity to provide services, and also their demand for such services.
Admittedly, this simple assumption does not realistically represent the estimation of direct damage.
However, it is considered acceptable in light of the main focus of this work, which is to investigate and
demonstrate the potential of a graph in representing and exploring indirect impacts.

The analysis of the indirect impact refers number of services, as opposed to number of nodes in
the direct impact analysis. In fact, indirect impacts are represented here by the difference between
the number of the services, i.e., links, existing before the hazardous event and the number of services
at the final state, after the cascading effects

(
Sinitial − S f inal

)
. This analysis could be enhanced with

estimates of economic losses corresponding to disrupted services (e.g., related to the fuel sector [52]
or the education sector [53]) and/or with economic models to estimate overall economic impacts at a
regional scale (e.g., [26]), although these are not carried out here as they are outside the scope of the
present article.

The nodes directly impacted by the flood generate a cascading effect into the graph, whereby the
propagation of the impact follows the nodes that have lost at least one service from their providers.
This propagation process is modelled by creating a new graph (G1) where nodes directly affected by
the hazard (i.e., flooded nodes) are removed from the original graph (G0). After that, the degree-in,
representative of the number of received services, of each node in G1 is compared with the corresponding
degree-in in G0. By deleting all nodes experiencing a degree-in reduction from G0 to G1, graph G2 is
obtained. This process is iterated until there are only unaffected nodes in the graph to produce the
final graph Gfinal, which corresponds, to the final state of the affected system.

In this application, two different indirect impacts (i.e., here measured in term of services lost)
are investigated: loss of service providers (SP, i.e., suppliers) and loss of service receivers (SR i.e.,
consumers). In fact, after a hazardous event, nodes that provide services can experience a loss of
demand (LD) from their receivers (R) that are affected by the event. Conversely, the receivers can
observe a loss of services (LS) from their providers (P) after the hazardous event. The loss of provider
services (SP) and of receiver services (SR) can be computed as

SP =
M∑

i=1

N∑
j=1

ωi, j (3)

and

SR =
M∑

i=1

N∑
j=1

ϕi, j, (4)

where ϕ and ω are respectively the degree-in and degree-out of the jth node that at the ith order has
been deleted; N is the number of deleted nodes at step i and M is the last order of loss propagation (i.e.,
4 orders in this application). The loss of demand is computed by summing the degree-in of the deleted
nodes, while the loss of services is computed by summing the degree-out of the deleted nodes.

3.2. Flood Hazard and Impact Results

This section shows the results obtained from the hydrological and hydraulic simulations, followed
by the estimation of direct and indirect impacts. The impacts are previously presented in terms of

http://igraph.org/r/
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cascading evolution of affected nodes and later in term of lost connections. It is also presented for each
typology of service whether the impact is due to the loss of service provider or of receiver demand and
illustrates how different flood mitigation measures can be formulated based on systemic information
provided the analysis of graph properties.

The hazard analysis provided the pluvial flood areas associated with the precipitation at each
specific return period. As expected, Figure 3 shows that the total flood area increases with growing
return period: from 20 km2 at the 2-year return period up to 55 km2 at the 500-year return period.
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Figure 3. Flooded areas for different return periods.

For illustration, Figure 4 presents the areas associated with a flood with the 2- and 500-year return
periods, respectively the minimum and maximum considered in this study. In both cases, most water
depth values are within realistic ranges (e.g., up to 1.20 m for the 500-year return period flood), with
only a limited number of outliers located mostly at the borders of the considered basins. While a more
comprehensive flood hazard assessment would be possible by using 2D flood propagation models,
these results are considered suitable for the specific scope of this work, which focuses on demonstrating
a graph-based approach for higher-order impact assessment and risk mitigation.
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Traditional approaches estimate the direct impacts considering only the exposed elements hit
by the flood. Instead, the proposed approach can simulate the evolution of cascading effects after
some elements are directly hit. Figure 5 shows the evolution of cascading effects of affected nodes at
different orders. At each order, the graph was obtained by removing the nodes that were affected in the
previous order. Order 0 is the original graph, order 1 is reduced by the nodes that were affected directly
by the flood, and from orders 2 to 4 the graphs were obtained by removing indirectly affected nodes,
as explained previously. The number of nodes impacted by the event increases when moving from
order 1, which represents the directly affected nodes, to order 3, which is associated with the maximum
number of nodes affected by the event. The cascading effects stop at order 3 because there are no new
nodes affected by parent nodes after that point. Figure 5 shows less than 5000 nodes directly affected
for each return period, specifically 3% of the nodes (1818 nodes) and 8% of the nodes (4904 nodes) are
flooded for the return periods of 2 years and 500 years, respectively. Instead, the total number of nodes
affected at the end of the cascading effects ranges from 23% to 43% of the entire graph, at the 2- and
500-year return periods, respectively.
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Comparing the shape of the curves in Figure 5, a particular behaviour is remarked between the
2- and 10-year return periods when moving from order 1 to 2. In fact, the difference in number of
affected nodes between the two return periods is much higher at order 2. The increment of nodes
affected at each order, after the direct impact (above order 1), is not proportional with the increment of
flooded extension associated with different return period. This is a peculiar aspect of complex systems,
in which large-scale secondary events play a not-negligible role.

An explanation for this can be found in Figure 6, which shows the propagation of the effects not
only inside the flooded areas, but also outside and potentially over the entire network. Figure 6 shows
in red the nodes that are directly impacted (i.e., inside the flood area), in orange the nodes that are
indirectly impacted due to the absence of service from the provider nodes inside the flood area (black
stars at order 1), and in yellow the nodes at order 3 that are indirectly impacted due to the absence
of service from the provider nodes affected at order 2 (grey stars). Since at order 3 there are no new
affected providers, the propagation effects stop and the number of impacted nodes at order 4 do not
increase. In comparison with the 2-year return period, there is a larger number of nodes affected at
order 2 in the 10-year-return period. This happens because the flood directly impacts a hospital, which
is not reached by the flood at the 2-year return period. This hospital is an important central node of the
graph, which has the capability of influencing many other nodes due to its role of hub. In fact, this
node provides the healthcare service to many other nodes, and as shown by the hub analysis carried
out in Arosio et al. (2020) [29], it has the highest hub value of the entire system. Figure 6 shows, for the
larger return period, more numerous orange nodes (i.e., nodes indirectly impacted at order 2) in the
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south-east part of the city. This large area, characterized by blocks with higher authority values [29],
gets affected due to the absence of service provided by the hospital mentioned above. According
to these results, the blocks with higher authority are the ones that depend on the services from the
providers with higher values of hubs. For this reason, the floods that hit such hubs undermine a
considerable part of the network as is evident for floods with T above 2 years. The strong correlation
between hubs and authority explains these results. However, it is necessary to underline that these
outputs also reflect the assumption of the rules of proximity adopted in this model, where the network
has no redundancy by construction [29]. The redundancy can change the values of hub and authority
of the nodes and can therefore influence the magnitude of cascading impacts that are presented in the
next section.
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Beyond the evolution of the cascading effects, the comparison between the direct and total impact
associated with the flooded areas at different return periods has been investigated and is presented in
Figure 7. This figure confirms that while the number of directly impacted nodes is proportional to
the flooded area, this is not the case for the total number of impacted nodes, which also considers the
indirect impact. As emphasised before, the non-proportional increment is more evident when moving
beyond the 10-year return period flood, past which the node with the highest hub value is flooded.
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The proposed methodology offers the possibility to investigate not only the nodes but also the
connections that are affected during the evolution of the event. This innovative perspective is presented
in Figure 8, which shows the probability of observing the loss of services for both direct and indirect
impact. In both cases, the curves present the typical shape of risk exceedance probability curves.
This figure highlights the much larger numbers of lost services for the indirect impact relative to the
direct one, especially for rarer events, where direct impact is only a minor part of the total impact.
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A more exhaustive explanation of the service lost is provided by the analysis of the causes that
generate the lack of services. Figure 9 shows the extent to which the lost services (∆S) is due to the
absence of receivers’ demand (LD on the left) and the absence of offer from providers (LO on the right).
The high values of total demand loss at each return period are mainly driven by the impact on the
population; in particular, for the return period of 2 years, the total loss of demand is below 80,000 in
comparison with the highest return period featuring a loss of demand above 120,000. The total losses
of offers are due to the impacts on the providers and the values are about one third of the total loss
of demands. The plot for 10-year return period highlights that the loss of services is mainly due to
the absence of service provided by the hospital, which is confirmed by the hub analysis mentioned
previously [29]. Conversely, education is the sector across providers that generates more losses,
followed by power and healthcare, whereas crossroads and fire stations do not cause loss of demand.
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3.3. Mitigation Scenarios

The previous analysis highlights that indirect impacts must not be overlooked when assessing
risk. Accordingly, such impacts should be taken into account for the implementation of effective
risk mitigation measures, which traditionally tend to be based on the analysis of direct impacts only.
The approach used here is able to characterize the system through various graph measures, which can
then be used as a starting point for the identification of efficient solutions to mitigate risk, arising not
only from direct impacts but also from higher-order effects. To illustrate this, three possible mitigation
scenarios (M1, M2, and M3) are proposed. The definition of these hypothetical scenarios was based
on information provided by certain graph properties, in particular, hub and authority values, as
described next.

Scenario M1—Hazard mitigation: One of the most traditional approaches for mitigating flood risk
is to implement measures that reduce the hazard intensity. Therefore, for scenario M1, we consider a
hypothetical intervention in the Au De Uarez basin to increase its permeability and thus to reduce the
volume of flooding from the drainage system in this specific basin. In the Au De Uarez basin, highlighted
in blue in Figure 10, the hospital with the highest value of hub is located. We have considered an
intervention that can reduce the waterproof area by up to 60%. As a result, by using equation

Ψ = ΨP
(
1−Aimp

)
+ Ψimp ×Aimp (5)

where Ψ is the weighted flow coefficient, ΨP and Ψimp are the flow coefficients respectively for
permeable and impermeable area (Aimp) [54], the reduced flooded volume was calculated. Given the
mitigated volume, using the volume–height curve characteristic of the basin, the post-intervention
flood heights and extents were obtained. In this new configuration, the hospital is not flooded for any
return period.

Scenario M2—Mitigation of the physical vulnerability: Another option to reduce risk is to
intervene on the physical vulnerability of the exposed elements. In this alternative, we have chosen
three elements that are within the flooded area and have the highest hub values as provided by the
graph analysis: a hospital, a school, and a petrol station (highlighted in green in Figure 10). Considering
the binary vulnerability functions adopted in this work, reducing the vulnerability means making the
three elements waterproof without the loss of functionality. Note that this assumption does not intend
to realistically represent the reduction in vulnerability provided by actual waterproofing measures
(e.g., [55–57]), but rather to illustrate methodology for this specific scenario.

Scenario M3—Mitigation of the systemic vulnerability: The last scenario is aimed at mitigating the
systemic vulnerability associated with the dependency of a large number of nodes on the three service
providers identified in the previous scenario (i.e., the nods with the highest hub values). To achieve
this, three new providers were added to the network: one hospital, one school, and one petrol station,
highlighted in yellow in Figure 10. The choice of location was made considering the area outside the
flood extents where nodes present the highest authority values [29].

Figure 11 shows the annual exceedance probability curved (i.e., risk curves), expressed in terms of
number of indirectly impacted nodes, for the baseline and the three mitigation scenarios. Regarding
scenario M1, the considered mitigation measure is effective for floods with return periods of 10 years
and higher because the only benefitted provider is not affected by the 2-year return period flood
(i.e., the hospital with hub value equal to 1). Scenario M2 returns the greatest reduction for any return
period, which is reasonable given that waterproofing measures were considered for the three elements
with the highest hub values. However, in practice, a complete mitigation of physical vulnerability is
not attainable, and thus it is likely that flood above a certain return period would affect these elements
to some extent. Scenario M3 also leads to an impact reduction for all return periods, although it is not
as effective as M2 as implemented in this illustrative analysis. Nevertheless, risk is mitigated to some
extent through a redistribution of services provided.
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In order analyse the effectiveness of each mitigation scenario, we adopt the most widely-used
metric to express risk, which corresponds to the integral of the annual exceedance probability curves
shown in Figure 11. This approach may be employed even when losses are not expressed in economic
terms [58], as is the case in this study, where our analysis is based on the number of indirectly affected
nodes as a proxy for indirect impacts, for the purpose of illustration. For each scenario, we first
compute a risk index R as the trapezoidal approximation of the area under the risk curve given by

R =
H−1∑
i=1

(Pi+1 − Pi)
Ni+1 −Ni

2
(6)

where H is the number of adopted hazard scenarios, Pi is the annual probability of occurrence of the ith
hazard scenario (which is assumed to be equal to the inverse of its return period), and Ni corresponds
to the number of impacted nodes. We then compute the effectiveness of the different mitigation actions
as the reduction of the risk index in relative terms, given by

RM[%] =
RB −R j

RB
∗ 100 (7)

where RB is the risk index for the baseline scenario and Rj is the risk index for the jth mitigation
scenario. Table 2 shows the results for each mitigation scenario considered both individually and
in combination, confirming the previously discussed results of Figure 11. In fact, it shows that M2,
and any combination that includes it, are the most effective solutions at mitigating the indirect impacts.

Table 2. Impact mitigation of the indirect consequences for each scenario.

Scenario RM [%]

M2 + M1 77.93
M2 + M3 74.74

M2 53.75
M1 + M3 45.16

M1 24.18
M3 20.99
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4. Concluding Remarks

This work focussed on the analysis of the direct and indirect impacts of flood in a complex urban
environment that is Mexico City. To this end, we first presented and applied methods for flood hazard
assessment at different return periods, due to the spillage of rainwater discharges from surcharged
underground drainage channels, under the assumption of pumping systems being out of service.
Second, we proposed and applied a graph-based methodology to estimate the total impact of the
reconstructed floods and illustrated how graph properties may be used to support the design of
mitigation measures.

The results of the work pointed out that, consistently with engineering judgement, flood extensions
and levels increase as the return period used for modelling the rainfall grows. Naturally, these are
accompanied by the increase of the number of nodes directly affected by the flood. The use of a
graph representation of the system then enables the assessment of indirect impacts associated with
the flood. The results pointed out that, differently from the direct damage, indirect impacts—and
consequently, total impacts—are the result of the number of nodes incrementally affected at each order,
which are not proportional to the growth of the flooded area associated with different return periods.
This behaviour can be ascribed in this case study to the flooding of an important hub of the graph;
thus, generating large cascading effects. Similar situations are expected to occur in other comparable
urban environments.

Furthermore, the study showed how the network experiences loss of services at providers (SP)
and receivers (SR) for each specific typology of nodes at different orders and return periods. The total
losses of service are due to the impacts on the providers and the values are about one third of the total
loss of demands, which are mainly driven by the impact on the population. The highest loss of offer is
mainly due to the interruption of services provided by the healthcare sector. Conversely, education is
the sector that has the highest loss of demand. The impact curves of the lost services in the network
showed the extent to which the total impact is larger than the direct impact. In fact, the results of this
work confirmed that, especially for extreme rain events, considering only the direct impact leads to a
significant underestimation of the total consequences. Furthermore, the last part of the work proved
the graph representation of the impacts to be a useful tool for driving decision makers in the choice
of the interventions to carry out in the territory, which can include the mitigation of hazard and of
physical and systemic vulnerability.

Due to the complexity of the case study and to the unavailability of some data, simplifying
assumptions were made along the way, as far as the assessment of hazard, vulnerability, and exposure.
In terms of the hazard component, flood extension and levels were assessed by distributing flood
volumes over the territory, while neglecting the 2D propagation. Regarding the vulnerability, flood
impact was assumed to reduce the services supplied by the directly and indirectly affected nodes
immediately to zero through a binary vulnerability function, whereas common sense suggests the loss
of functionality to be a growing function of the hazard intensity. Finally, for the exposure component,
the risk mitigation measurements adopted are based on the number of nodes and services impacted
and not on economic values of the assets and services.

The dynamic evolution from direct to indirect impacts is analysed in this paper by the
transformation of the graph at different orders. A more comprehensive analysis should consider the
time evolution of the phenomena and not only a progressive order of states. The introduction of the
time-element would also allow considering the economic consequences of service interruptions. As an
example, regarding the education sector, Sadique et al. [59] investigate the costs of work absenteeism,
in terms of paid productivity loss, of care givers who must stay at home during periods of school
closure; analogous economic considerations can be done for other sectors. This is outside the scope
of the present study, which in this context provides a framework on top of which further economic
analyses may be carried out. Future work will be dedicated to incorporating such analyses within the
proposed framework, in order to obtain more accurate estimates of the overall impacts of floods in
interconnected urban systems.
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