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Abstract: The contamination of water sources with heavy metals is a serious challenge that humanity
is facing worldwide. The aim of this work was to evaluate and remediate the metal pollution in
groundwater and greywater resources from Riyadh, Saudi Arabia. In addition, we investigated
the application of ultrasonic power before adsorption to assess the dispersion of renewable carbon
from mixed-waste sources (RC-MWS) as an adsorbent and enhance the water purification process.
The renewable carbon adsorbent showed high ability to adsorb Pb(II), Zn(II), Cu(II), and Fe(II) from
samples of the actual water under study. The conditions for the remediation of water polluted with
heavy metals by adsorptive-separation were investigated, including the pH of the adsorption solution,
the concentration of the heavy metal(s) under study, and the competition at the adsorption sites.
The enhanced adsorption process exhibited the best performance at a pH of 6 and room temperature,
and with a contact time of 60 min. Kinetic studies showed that the pseudo-second-order kinetic model
was fitted with the adsorption of Pb(II), Zn(II), Cu(II), and Fe(II) onto the RC-MWS. The adsorption
data were well fitted by Langmuir isotherms. The Freundlich isotherm was slightly fitted in the cases
of Cu(II), Zn(II), and Fe(II), but not in the cases of Pb(II). The developed adsorption process was
successfully applied to actual water samples, including water samples from Deria and Mozahemia
and samples from clothes and car washing centers in Riyadh city.

Keywords: heavy metals determination; groundwater; greywater; adsorption; separation; inductively
coupled plasma mass spectroscopy

1. Introduction

Determining heavy metals contamination in water systems, including groundwater and greywater
systems, is a prerequisite for employing or treating them. Greywater includes water used by
clothes and car washing machines and basins in kitchens and bathrooms in houses and mosques.
However, the term ‘black water’ refers to the water used by toilets. The water from groundwater
or greywater resources is expected to be more suitable for economic wastewater treatment than
black water [1–5]. Groundwater may be contaminated with heavy metals; for example, a risk of
human exposure to heavy metals through groundwater used as a source of drinking water has been
reported [6,7]. Water resource shortages have forced countries to use different water supply sources,
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such as groundwater, seawater, rainwater, riverwater, and wastewater [8–10]. The availability and
purity of water have a direct impact on public health. The desalination and reuse of wastewater
have attracted interest in fields of applied science in some countries, including Saudi Arabia [8,11–15].
The most common permanent pollutants of water systems are heavy metals from natural or industrial
sources [16,17]. Heavy metals are characterized by having an atomic weight in the range of
63.5–200.6. The major industries that discharge heavy metals are the mining and metal plating
industries. The discharge from these industries has led to a large amount of heavy metals in the
water system [18,19]. The most damaging impact of heavy metals pollution is their accumulation
inside living beings, particularly fishes, in the marine environment. In addition, they accumulate in
plants and animals to reach higher levels in the food chain and become very dangerous to humans.
Moreover, it is very difficult to biodegrade heavy metals in the environment [20]. Many dangerous
and chronic diseases result from contamination with heavy metal cations, such as chromium, copper,
zinc, lead, iron, manganese, cadmium, and mercury cations. Municipal wastewater represents
another prominent source of metal pollution, which may include cadmium, arsenic, selenium, zinc,
and nickel [16,19,20]. The World Health Organization (WHO) reported that the serious toxicity of
heavy metals may have damaging health impacts on many human organs, such as the nervous
system and gastrointestinal (GI) systems. In addition to that, it may have harmful effects on the
lungs, the renal system, and the liver, and in some cases may lead to more complicated diseases,
including cancer [20]. The treatment of wastewater helps to protect the environment and solve
water shortage problems [21–25]. This trend has attracted increasing interest, especially for greywater,
which is produced by hand-washing basins and washing machines and is not allowed to come
into contact with toilet water at all [1–3]. There are many technologies for treating wastewater
containing heavy metals, such as membrane separation, chemical oxidation, and chemical reduction,
carbon adsorption, liquid extraction, electrolytic treatment, ion exchange, electro precipitation,
coagulation, evaporation, flotation, hydroxide and sulfide precipitation, ultrafiltration, crystallization,
and electro-dialysis [26–28]. The flotation process has successfully been applied for the separation of ions
with the assistance of surfactants or dispersant gases [29–34]. However, adsorption exhibits superior
efficiency in the removal of heavy metals from wastewater [35,36]. The main goal of the adsorption
process is to decrease the level of heavy metals pollution in wastewater; however, different adsorbents
have different efficiencies and the cost is highly variable [26,36–40]. Improvements in the adsorptive
treatment are usually based on the development of a highly porous or functionalized adsorbent [18,41].
Activated carbon is known to be a highly effective adsorbent for the removal of heavy metals from
wastewater, and it readily dissolves in an extreme pH medium, which facilitates its application
and makes the process more suitable for a large number of pollutants of organic and inorganic
species [35,42–44]. The main advantage of the application of activated carbon for controlling pollution
by adsorption is its low price compared with other materials as well as being easy to produce from
various waste sources [45–47]. In addition, activated carbon from waste sources is considered to be a
safe adsorbent for wastewater treatment [48–51]. Ultrasonic waves have recently been proposed and
used to enhance ion transfer, penetration, and separation. In addition, ultrasonic waves are applied in
liquid extraction to improve interactions and enhance the mass transfer [52,53]. This study aimed to
develop an improved separation process for removing metal pollutants from groundwater and grey
water, investigate the characteristics of adsorption with the help of ultrasonic waves, and evaluate the
competition in the adsorption process in the case of a mixed heavy metal solution system. We also
optimized the pH, contact time, and metal ion concentrations, in order to adjust the adsorption process.
The developed adsorptive separation process was employed to remove Pb(II), Zn(II), Cu(II), and Fe(II)
from groundwater and greywater to improve the overall water quality.
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2. Experimental

2.1. Water Samples from Different Regions of Riyadh City and Surrounding Cities

Water samples were collected from Riyadh city as well as from cities surrounding it, including Deria
and Mozahemia. The water samples included drinking water samples, groundwater samples, and samples
from a clothes washing center and a car washing center. The samples were acidified with nitric acid after
being put in polypropylene bottles, and then analyzed for the heavy metals Pb(II), Zn(II), Cu(II), and Fe(II).
In addition, the collected samples were applied in an adsorption process for the evaluation of the heavy
metal separation efficiency.

2.2. Determining Heavy Metals and Optimizing the Adsorptive Remediation Process

Nitric acid, hydrochloric acid, sodium hydroxide, lead nitrate, zinc nitrate, copper nitrate,
and ferrous nitrate were purchased from Sigma-Aldrich, St. Louis, MO, USA. All reagents were of
analytical grade. The renewable carbon from a mixed-waste source (RC-MWS) used in this study
is prepared in our laboratory and it was previously characterized [44]. The adsorptive remediation
process for adsorbing Pb(II), Zn(II), Cu(II), and Fe(II) from an aqueous solution onto renewable carbon
from a mixed-waste source (RC-MWS) was assessed by a group technique in which the primary
model metal solutions for Pb(II), Zn(II), Cu(II), and Fe(II) (500 parts per million, ppm) were made
in the laboratory by employing nitrate salts, and metal solutions (400, 300, 200, 100, and 50 ppm)
were prepared daily by dilution. A 50-mL metal cation solution was added to 0.03 g of RC-MWS.
Blank experiments were carried out without the addition of an adsorbent. The mixtures were exposed
to ultrasonic waves for 2 min, and then shacked for a certain period of time. Then, after filtration,
the decrease in the amount of the heavy metal in the solution was measured throughout the treatment
by inductively coupled plasma mass spectrometry (ICPMS) using Equation (1):

qe =
(C0 −Ce ) ∗ V

M
(1)

where C0 represents the initial concentration of metal ions in the solution, Ce is the equilibrium concentration
of metal ions in the solution, V is volume of the solution (L), and M is the mass of the adsorbent (g).

The adsorption procedure was optimized for heavy metals by determining the impact of pH in the
range from 2 to 7, contact time from 5–120 min, and metal cation concentration in the range 25–500 ppm on
the treatment procedure.

Finally, the collected water samples, including drinking water and groundwater samples and
samples from clothes and car washing centers, were used to evaluate the treatment’s efficiency,
which was calculated using Equation (2):

The removal efficiency % = (
(C0 −Ce)

C0
) ∗ 100 (2)

where C0 represents the initial concentration of metal ions in the solution, and Ce is the equilibrium
concentration of metal ions in the solution.

3. Results and Discussion

3.1. Evaluation of the Adsorptive Remediation Process for Separation of Pb(II), Zn(II), Cu(II), and Fe(II) from
an Aqueous Medium Using the Model Solutions

3.1.1. Effect of pH on the Metal Ion Solution Medium

Because the pH of an aqueous solution that contains metal ions is a crucial parameter that controls
an adsorption process, the role of the hydrogen ion concentration was determined by employing
solutions with pH values ranging from 2 to 7. As shown in Figure 1, the adsorption capacity, qe (mg/g),
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of RC-MWS for Pb(II), Zn(II), Cu(II), and Fe(II) became larger by increasing the pH value from 2 to 6.
Indeed, the maximum adsorption capacity of Pb(II), Zn(II), Cu(II), and Fe(II) was achieved at a pH
value of 6. Similar results were reported in studies adsorbing heavy metals in a less acidic medium
onto different biomass systems [39]. These results could be attributed to the chelation’s lower stability
in a highly acidic medium.Water 2020, 12, x FOR PEER REVIEW 4 of 14 
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Figure 1. Effect of pH on the adsorption of Pb(II), Zn(II), Cu(II), and Fe(II) onto 0.03 g of renewable
carbon from a mixed-waste source (RC-MWS) at room temperature and with a contact time of 60 min.

3.1.2. Competition for the Adsorption of Pb(II), Zn(II), Cu(II), and Fe(II) Onto RC-MWS

The application of RC-MWS for the adsorption of Pb(II), Zn(II), Cu(II), and Fe(II) was done and
the adsorption capacities are shown in Figure 2. The highest adsorption capacity was reached with
Fe(II), followed by Pb(II), Cu(II), and then Zn(II).
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Figure 2. The competition for the adsorption of Pb(II), Zn(II), Cu(II), and Fe(II) onto RC-MWS.

3.1.3. Kinetic Studies on the Adsorption of Pb(II), Zn(II), Cu(II), and Fe(II) Onto RC-MWS

The rate of adsorption of Pb(II), Zn(II), Cu(II), and Fe(II) onto RC-MWS with the assistance of
ultrasonic waves was determined by measuring the concentration of the remaining Pb(II), Zn(II), Cu(II),
and Fe(II) in the aqueous solution at different times. By testing the effect of different contact times
(from 5 to 120 min), it was discovered that the maximum adsorption capacity was achieved with a
contact time of 60 min (Figure 3). The adsorption capacity did not significantly change with further
increases in the contact time.
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Figure 3. The effect of contact time on the adsorption of Pb(II), Zn(II), Cu(II), and Fe(II) onto 0.05 g
of RC-MWS.

The pseudo-first-order equation, in its integrated form [54], is expressed as in Equation (3):

log(qe − qt) = −
k1

2.303
t + log(qe) (3)

where qe and qt are the amounts of adsorbate uptake per mass of adsorbent at equilibrium and at any
time t (min), respectively, and k1 (min−1) is the rate constant of the pseudo-first-order kinetic model.

The pseudo-first-order rate constant, k1, was obtained by plotting log(qe − qt) versus time t,
(Figure 4). It can be seen that the correlation coefficient value, R1

2, is weak. In addition, the calculated
adsorption capacity (Table 1) was different and far from the experimental qe, therefore, the adsorption
data for Pb(II), Zn(II), Cu(II), and Fe(II) onto RC-MWS is not fitted well with the pseudo-first-order
kinetic model. McKay et al. suggested that in some adsorption cases the pseudo-first-order kinetic
model is not suitable, due to the boundary layer which may control the adsorption at the beginning [55].

Water 2020, 12, x FOR PEER REVIEW 5 of 14 

 

 

Figure 3. The effect of contact time on the adsorption of Pb(II), Zn(II), Cu(II), and Fe(II) onto  

0.05 g of RC-MWS. 

The pseudo-first-order equation, in its integrated form [54], is expressed as:  

log(𝑞𝑒 − 𝑞𝑡) = − 
𝑘1

2.303
𝑡 + 𝑙𝑜𝑔(𝑞𝑒) (1) 

where qe and qt are the amounts of adsorbate uptake per mass of adsorbent at equilibrium and at any 

time t (min), respectively, and k1 (min−1) is the rate constant of the pseudo-first-order kinetic model. 

The pseudo-first-order rate constant, k1, was obtained by plotting log(qe-qt) versus time t, (Figure 

4). It can be seen that the correlation coefficient value, R12, is weak. In addition, the calculated 

adsorption capacity (Table 1) was different and far from the experimental qe, therefore, the adsorption 

data for Pb(II), Zn(II), Cu(II), and Fe(II) onto RC-MWS is not fitted well with the pseudo-first-order 

kinetic model. McKay et al. suggested that in some adsorption cases the pseudo-first-order kinetic 

model is not suitable, due to the boundary layer which may control the adsorption at the beginning 

[55]. 

 

Figure 4. The pseudo-first-order model of the adsorption of Pb(II), Zn(II), Cu(II), and Fe(II) onto RC-

MWS, (A) considering time from 0 to 40 min and (B) considering time from 0 to 90 min. 

The pseudo-second-order kinetic equation, in its integrated form, is expressed as [56]: 

Figure 4. The pseudo-first-order model of the adsorption of Pb(II), Zn(II), Cu(II), and Fe(II) onto
RC-MWS, (A) considering time from 0 to 40 min and (B) considering time from 0 to 90 min.
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Table 1. Parameters for the kinetics of the adsorption of Pb(II), Zn(II), Cu(II), and Fe(II) onto RC-MWS.

Pseudo First Order
R2 Pseudo Second Order

R2
qe, exp (mg/g) k1 (min−1) qe, cal (mg/g) k2 (g/mg·min) qe, cal (mg/g)

Pb(II) 99 0.041 104.5 0.59 9.2 × 10−4 66.6 0.92
Zn(II) 65 0.049 44.5 0.82 3.6 × 10−3 97 0.99
Cu(II) 97 0.028 40.3 0.46 2.9 × 10−4 116.2 0.85
Fe(II) 100 0.024 25.8 0.44 1.8 × 10−3 96.1 0.98

The pseudo-second-order kinetic equation, in its integrated form, is expressed as in Equation (4) [56]:

t
qe

=

(
1
qe

)
· t +

1
K2qe2 (4)

where qe and qt are the amounts of adsorbate uptake per mass of adsorbent at equilibrium and at any
time t (min), respectively, and k2 (g/mg.min) is the pseudo-second-order rate constant.

qe and k2 are calculated by plotting t/qt versus t from the slope and intercept (Figure 5). From the
data shown in Table 1, it can be seen that the data of the adsorption of Pb(II), Zn(II), Cu(II), and Fe(II)
onto the RC-MWS is fitted with the pseudo-second-order kinetic model, which suggest that the reaction
rate is primarily controlled by the movement of the metal ions from the solution to the surface of the
adsorbent [27].
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onto RC-MWS.

3.1.4. Isotherm Studies

The data for adsorption of Pb(II), Zn(II), Cu(II), and Fe(II) onto RC-MWS at equilibrium were
analyzed by using the Langmuir model [57] as expressed in Equation (5):

Ce

qe
= (

1
Q0

max
) Ce +

1
Q0

max KL
(5)

where Q0
max (mg/g) is the maximum saturated monolayer adsorption capacity of the RC-MWS, Ce (mg/L)

is the adsorbate concentration at equilibrium, qe (mg/g) is the amount of adsorbate uptake at equilibrium,
and KL (L/mg) is a constant related to the affinity between an adsorbent and adsorbate. The correlation
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coefficient, R2, for the adsorption of Pb(II), Zn(II), Cu(II), and Fe(II) onto RC-MWS showed that the
adsorption data was well fitted by the Langmuir isotherm (Figure 6) suggesting monolayer adsorption.
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onto RC-MWS.

The Freundlich isotherm [58] is expressed as in Equation (6):

log qe = n log Ce + log K f (6)

where qe (mg/g) is the amount of adsorbate uptake at equilibrium, Ce (mg/L) is the adsorbate
concentration at equilibrium, Kf (mg/g)/(mg/L)n is the Freundlich constant, and n (dimensionless) is
the Freundlich intensity parameter, which indicates the magnitude of the adsorption driving force or
the surface heterogeneity.

The Freundlich isotherm model is commonly used to describe the adsorption data characteristic
for heterogeneous surfaces at equilibrium [59–62]. The plots of log qe and log Ce (Figure 7) gave a
linear line, from which n and Kf were calculated (Table 2). The values of the Freundlich intensity
parameter (n) lower than 1 indicate favorable adsorption; however, the value of correlation coefficient,
R2 (Table 2), indicate that the adsorption of Pb(II), Zn(II), Cu(II), and Fe(II) onto RC-MWS tends to be
more comfortable with the Langmuir model rather than the Freundlich model.
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Table 2. Langmuir and Freundlich constants for the adsorption of Pb(II), Zn(II), Cu(II), and Fe(II)
onto RC-MWS.

Langmuir Constants
Correlation Coefficients R2 Freundlich Constants

Correlation Coefficients R2
KL (L/mg) Q0

max (mg/g) Kf (mg/g)/(mg/L)n n

Pb(II) 0.05 161.2 0.98 31.6 0.29 0.71
Zn(II) 0.01 285.7 0.98 12.3 0.47 0.84
Cu(II) 0.039 434.7 0.97 40.1 0.43 0.90
Fe(II) 0.049 434.7 0.86 43.2 0.47 0.94

The following Equation (7) is applied for the Freundlich isotherm:

qe = K f C
1
n
e (7)

where Kf and 1/n are Freundlich constants, related to the adsorption capacity and adsorption intensity
(heterogeneity factor), respectively. In this case, the n with a value in the range of 0 to 10 indicates the
favorable adsorption; however, this index has some applicable limitation practically due to the fact
that the n value should not exceed 10 [63].

The Application of the Adsorption Process to Actual Water Samples

The adsorption process was applied to remove Pb(II), Zn(II), Cu(II), and Fe(II) from actual water
samples. Water samples were collected from Deria, Mozahemia, and clothes and car washing centers
in different regions. The initial Pb(II), Zn(II), Cu(II), and Fe(II) concentrations in the samples were
determined by ICP-MS [64,65]. Then, the treatment by adsorption onto RC-MWS was applied under
the optimal conditions (a pH of 6, room temperature, and a contact time of 60 min). After the treatment,
the Pb(II), Zn(II), Cu(II), and Fe(II) concentrations were once again measured by ICP-MS. Then, we used
Equation (2) to calculate the removal efficiency percentage (%). The results are presented in Tables 3
and 4. All of the tested water samples were found to contain a very small amount of Pb(II), Cu(II),
and Fe(II), at values below the permitted concentrations, which demonstrates the high level of safety
of the tested water samples. However, the detected concentrations were further reduced after the
adsorption of Pb(II), Cu(II), and Fe(II) onto RC-MWS.

Table 3. Efficiency of the removal of Pb(II), Zn(II), Cu(II), and Fe(II) from different water samples from
Deria and Muzahemia.

Pb(II) Investigations Zn(II) Investigations Cu(II) Investigations Fe(II) Investigations

Water Sample

InitialC
oncentration

of
Pb(II)(ppm

)

FinalC
oncentration

of
Pb(II)(ppm

)

E
ffi

ciency
%

InitialC
oncentration

of
Z

n(II)(ppm
)

FinalC
oncentration

of
Z

n(II)(ppm
)

E
ffi

ciency
%

InitialC
oncentration

of
C

u(II)(ppm
)

FinalC
oncentration

of
C

u(II)(ppm
)

E
ffi

ciency
%

InitialC
oncentration

of
Fe(II)(ppm

)

FinalC
oncentration

of
Fe(II)(ppm

)

E
ffi

ciency
%

Deria-1 0.2151 0 100 1.3 0 100 1.26 0.00 100 3.54 1.17 97
Deria-2 0.1357 0 100 1.2 0.091 92 0.33 0.00 100 0.70 3.31 53
Deria-3 0.2313 0 100 2.1 0.064 97 0.11 0.00 100 2.42 8.71 64
Deria-4 0.0436 0 100 1.4 0.075 95 0.25 0.00 100 0.28 0.18 94
Deria-5 0.1305 0 100 1.6 0 100 0.16 0.00 100 0.22 0.66 70
Deria-6 0 0 - 1.8 0.019 99 0.46 0.00 100 0.36 0.05 99
Deria-7 0 0 - 1.4 0.063 96 0.00 0.00 - 1.23 1.90 85
Deria-8 0 0 - 1.4 0 100 1.10 0.00 100 5.42 2.89 95
Deria-9 0 0 - 1.2 0 100 0.22 0.00 100 4.47 2.23 95
Deria-10 0 0 - 1.1 0.08 93 0.24 0.29 88 1.94 2.31 88
Deria-11 0.0405 0 100 0.8 0.01 99 0.25 0.00 100 14.60 1.48 99

Mozahemia-1 0.0833 0 100 2.1 0.056 97 0.25 0.00 100 0.31 0.14 96
Mozahemia-2 0 0 - 1.2 0.038 97 0.00 0.00 - 0.17 0.00 100
Mozahemia-3 0 0 - 1.0 0.033 97 0.06 0.00 100 11.19 2.22 98
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Table 4. Efficiency of the removal of Pb(II), Zn(II), Cu(II), and Fe(II) from water samples from different
clothes and car washing centers in Riyadh city.

Pb(II) Investigations Zn(II) Investigations Cu(II) Investigations Fe(II) Investigations

Water Samples

InitialC
oncentration

of
Pb(II)(ppm

)

FinalC
oncentration

of
Pb(II)ppm

)

E
ffi

ciency
%

InitialC
oncentration

of
Z

n(II)(ppm
)

FinalC
oncentration

of
Z

n(II)(ppm
)

E
ffi

ciency
%

InitialC
oncentration

of
C

u(II)(ppm
)

FinalC
oncentration

of
C

u(II)(ppm
)

E
ffi

ciency
%

InitialC
oncentration

of
Fe(II)(ppm

)

FinalC
oncentration

of
Fe(II)(ppm

)

E
ffi

ciency
%

clothes-1 0 0 - 905.21 12.59 99 11.18 1.92 98 5.31 3.87 93
clothes-2 0 0 - 997.08 1.69 100 0.16 0.00 100 2.20 1.09 95
clothes-3 6.1151 0.215386 96.5 862.14 0.85 100 1.84 0.87 95 1.32 3.17 76
clothes-4 0.4854 0.003688 99.2 4600.01 1.09 100 1.86 1.16 94 4.21 9.25 78
clothes-5 5.039 0.025297 99.5 1019.94 0.87 100 0.39 0.00 100 2.15 3.42 84
clothes-6 0 0 - 638.83 0.35 100 0.53 0.00 100 4.48 3.09 93
clothes-7 0.0024 0 100 977.57 0.00 100 0.24 0.00 100 9.42 3.08 97
clothes-8 0.2102 0 100 904.20 1.56 100 0.71 0.62 91 4.56 5.68 88

cars-1 0 0 - 923.95 3.78 100 15.09 28.41 81 47.54 0.59 100
cars-2 0 0 - 1217.16 7.21 99 21.11 7.31 97 1.95 0.18 99
cars-3 1.787 0 100 842.75 14.36 98 39.94 73.41 82 15.87 6.13 96
cars-4 0 0 - 865.13 8.00 99 92.67 270.09 71 373.65 3.71 100
cars-5 0 0 - 1056.29 12.91 99 50.99 79.33 84 7.86 1.00 99
cars-6 0 0 - 1228.33 0.00 100 0.30 0.00 100 41.20 19.86 95
cars-7 0 0 - 956.51 0.25 100 0.11 0.00 100 9.18 0.36 100
cars-8 0 0 - 1174.11 10.11 99 30.34 27.44 91 81.47 2.91 100

4. Conclusions and Recommendations

The most important parameters for optimizing the adsorption of Pb(II), Zn(II), Cu(II), and Fe(II)
onto RC-MWS were investigated to enhance water purification. The optimized conditions were at
a pH of 6, a contact time of 60 min, an adsorbent dose of 0.03 g RC-MWS, and at room temperature.
Water samples, including groundwater and greywater samples, were collected from the Riyadh, Deria,
and Mozahemia regions, and analyzed for contamination with heavy metals and subjected to treatment
by adsorption of Pb(II), Zn(II), Cu(II), and Fe(II) onto RC-MWS. The trace amounts of Pb(II), Zn(II),
Cu(II), and Fe(II) that were detected by ICP-MS in water samples indicated the existence of low
concentrations of these heavy metals in some cases. However, by applying the adsorption procedure,
the heavy metals were successfully removed from all tested samples. The process for adsorbing Pb(II),
Zn(II), Cu(II), and Fe(II) onto RC-MWS is recommended for the optimization of water quality.
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