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Abstract: The last few decades have witnessed a tremendous increase in nutrient levels (phosphorus
and nitrogen) in coastal water leading to excessive algal growth (Eutrophication). The presence
of large amounts of algae turns the water’s color into green or red, in the case of algal blooms.
Chlorophyll-a is often used as an indicator of algal biomass. Due to increased human activities
surrounding Dubai creek, there have been eutrophication concerns given the levels of nutrients in
that creek. This study aims to map chlorophyll-a in Dubai Creek from WorldView-2 imagery and
explore the relationship between chlorophyll-a and other eutrophication indicators. A geometrically-
and atmospherically-corrected WorldView-2 image and in-situ data have been utilized to map
chlorophyll-a in the creek. A spectral model, developed from the WorldView-2 multispectral image
to monitor Chlorophyll-a concentration, yielded 0.82 R2 with interpolated in-situ chlorophyll-a data.
To address the time lag between the in-situ data and the image, Landsat 7 Enhanced Thematic
Mapper Plus (ETM+) images were used to demonstrate the accuracy of the WorldView-2 model.
The images, acquired on 20 May and 23 July 2012, were processed to extract chlorophyll-a band
ratios (Band 4/Band 3) following the standard approach. Based on the availability, the 20 May image
acquisition date is the closest to the middle of Quarter 2 (Q2) of the in-situ data (15 May). The 23 July
2012 image acquisition date is the closest to the WorldView-2 image date (24 July). Another model
developed to highlight the relationship between spectral chlorophyll-a levels, and total nitrogen and
orthophosphate levels, yielded 0.97 R2, which indicates high agreement. Furthermore, the generated
models were found to be useful in mapping chlorophyll-a, total nitrogen, and orthophosphate,
without the need for costly in-situ data acquisition efforts.
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1. Introduction

Anthropogenic activities have a direct and indirect impact on the environment [1]. One such type
of water pollution is eutrophication, a case of algal bloom caused by increasing levels of nutrients [2,3].
As part of the water pollution management, it is important to detect and manage pollution sources [4,5].
Traditional means of monitoring nutrients and algal growth monitoring are often point based, requiring
large amounts of effort in the laboratory analysis, in addition to a mathematical approach in analyzing
the data [4,6]. This study examines the role of nutrient pollution on algal growth in a coastal lagoon.

Water 2020, 12, 1954; doi:10.3390/w12071954 www.mdpi.com/journal/water

http://www.mdpi.com/journal/water
http://www.mdpi.com
https://orcid.org/0000-0001-5884-7464
http://dx.doi.org/10.3390/w12071954
http://www.mdpi.com/journal/water
https://www.mdpi.com/2073-4441/12/7/1954?type=check_update&version=2


Water 2020, 12, 1954 2 of 15

However, these methods are costly and do not provide a real spatial and temporal coverage [7]. Satellite
remote sensing methods provide a cost-effective means for the robust estimation of algal growth in
large areas, providing significant advantages in terms of spatial and temporal coverage.

Remote sensing has been used to monitor algal bloom and selected water quality parameters in
water bodies [8–12]. However, these methods heavily rely on changes in color for the detection of
chlorophyll-a. The traditional remote sensing approach is not suitable for the detection of nutrients,
as they do not have spectral signatures. Chlorophyll-a, which indicates the presence of algae, can
optically turn watercolor into green or reddish green. Sunlight and temperature, along with the
increase in nutrient concentrations, influence algal growth in water bodies [13]. Coastal lagoons are
often home to many touristic attractions, which lead to increased anthropogenic activities (i.e., storm
water originating from green spaces, wastewater disposal, cruise ships, beach activities) with nutrient
pollution, leading to eutrophication.

A related study utilized the combination of the in-situ data and remote sensing images to map
chlorophyll-a concentration along the Dubai Creek [14]. Another study presented an empirical model
for chlorophyll-a prediction utilizing satellite imagery and a hybrid coordinate ocean numerical
model [15]. The study developed a unique method that none of the studies had used for mapping
chlorophyll-a using high-resolution images. Matthews (2011) provided a review of different empirical
procedures based on remote sensing technologies for accurate algal growth extraction in water
bodies [16]. There are different publicly available satellite sensors, including MODIS, MERIS, SeaWiFS,
AVHRR and Landsat, for chlorophyll-a detection [17]. MERIS and SeaWiFS are outdated and no
longer operational. ESA Sentials and LandSat 8 are now active. However, the spatial and/or temporal
resolutions of these sensors make them unsuitable for small size study areas requiring high precision.
In recent years, there has been a significant number of studies aimed at developing remote sensing
models using Landsat images [18–21], also in combination with other satellite images [22–27]. Even
though Landsat-based models are popular, their accuracy is limited due to having a resolution of 30 m.
This can be limiting for water bodies with a small surface area and limited water quality monitoring.
Even though models related to the prediction of chlorophyll-a are common, the prediction of nutrients
in water bodies in the literature is limited. The relationship between nutrient loads and river water
quality was explored using Quick Bird imagery [28]. There are other studies that investigated the
use of remote sensing to map nutrients in lakes [16,29]. Remote sensing and geographic information
systems (GIS) were used to evaluate nonpoint source pollution and were used for the monitoring of
water quality [30,31]. Unlike chlorophyll-a-based models, nutrient prediction models are not common
and limited in terms of their accuracy for monitoring across the entire area with appropriate spatial and
temporal resolution. This is also critical for water bodies with a small number of monitoring locations.

The Dubai Creek in the UAE is a popular tourist destination. It has been affected by a few Algal
Blooms (ABs) events, which are believed to have occurred due to anthropogenic activities and poor
circulation in the lagoon part of the Creek [32]. Hussein et al. (2017) developed a water quality model
in Dubai Creek to investigate the cause of frequent events of ABs [33]. Ali et al. (2016), developed a
GIS-based model to evaluate the susceptibility of the creek to eutrophication and, further, to evaluate
the variability of water quality in Dubai Creek [34]. The goal of this study is to monitor chlorophyll-a
and nutrients in the Dubai Creek. The paper presents a possible new approach using a limited dataset
to validate the method. Two models were developed using a Worldview-2 image and in-situ data;
one relates spectral-based to in-situ-based chlorophyll-a measurements in the creek, and the second
model correlates nutrients (mainly nitrogen and phosphorus) to the spectral-based chlorophyll-a
measurements. WorldView-2 images have a high resolution (1.84 m). As a result, the study provides
reasonable accuracy for the area. Overall, the study provides a common remote sensing-based model
for the prediction of nutrients.
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2. Data and Methodology

2.1. Study Area

The study area is the Dubai Creek, which is a tidal saltwater marine intrusion located in the heart
of Dubai, separating it into two areas, Deira and Bur Dubai. The Dubai Creek is a 5–8 m deep, 14 km
long water body, which has a width that varies from 0.1 km at the mouth to 1.2 km at the lagoon
section. The creek is surrounded by urban landscapes and residential areas. The rapid urbanization
along the Dubai Creek is believed to be the main cause of organic pollution and eutrophication [32].

2.2. Data

2.2.1. Data Preparation

Two types of data were used in this study; a high resolution WorldView-2 satellite image that
was obtained on 24 July 2012, as shown in Figure 1, and water quality quarterly in-situ measurements
provided by the Dubai Municipality. Figure 1A shows the location of Dubai within the UAE. Figure 1B
shows the location of the Dubai Creek in Dubai, and Figure 1C displays the Dubai Creek on the
georeferenced WorldView-2 image used in the study as well as the locations of the water quality
monitoring stations. Figure 1D shows the location and the names of the monitoring stations. Water
quality data were collected using multi-parameter sondes and grab samples at a depth of approximately
1 m. The chlorophyll-a was measured based on fluorometric methods using sonde (Method 100,200 H)
once every 30 min (Standard Method). Grab samples were used to test orthophosphate (Method
4500 P), nitrate (Method 4500 NO3

−) and total nitrogen (Method 4500 N) on a quarterly basis [35].
WorldView-2 imagery consists of one panchromatic and eight multispectral bands, which are used for
enhanced spectral analysis. Table 1 shows the characteristics of the eight bands of WorldView-2 satellite
imagery. The chlorophyll-a quarterly in-situ measurements were interpolated in order to estimate
chlorophyll-a values in the creek at the image acquisition time, due to unavailability of chlorophyll-a
data at that time.

Table 1. Characteristics of the bands of WorldView-2 satellite imagery.

Band: Center Wavelength (Width) Description

Coastal Blue (CB): 427 nm (400–450 nm) Absorbed by chlorophyll in healthy plants, it therefore aids in
vegetation analysis

Near Infrared 1 (NIR1): 831 nm (770–895 nm) Useful in separating water from vegetation
Near Infrared 2 (NIR2): 908 nm (860–1040 nm) Aids in vegetation analysis and biomass studies
Blue (B): 478 nm (450–510 nm) It gets absorbed by chlorophyll in plants
Green (G): 546 nm (510–580 nm) Characterized by high reflectance in healthy plants
Yellow (Y): 608 nm (585–625 nm) Detects the degree of yellow color of vegetation
Red edge (RED): 724 nm (705–745 nm) Targeted at the high reflectivity portion of vegetation response
Red (R): 659 nm (630–690 nm) Highly absorbed by healthy plants

2.2.2. In-Situ Data

The Dubai Municipality collects water quality data regularly at ten monitoring/sampling stations
along the Dubai Creek (Figure 1). The in-situ measurements include chlorophyll-a, in addition to
nitrates, orthophosphates, oxygen, turbidity, pH, and salinity, which are considered the critical factors
affecting the growth of algae. Two monitoring stations (out of the ten) were excluded because one was
located outside the image and the other was located under a bridge.
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Figure 1. Study Area and Monitoring Stations: (A) location of Dubai within the UAE, (B) location of
the Dubai Creek in Dubai, (C) displays the Dubai Creek on the georeferenced WorldView-2 image used
in the study as well as the locations of the water quality monitoring stations, and (D) location and the
names of the monitoring stations.

2.2.3. Landsat ETM+ Images

The limited access to in-situ water quality data (collected by the municipality) resulted in the
unavailability of chlorophyll-a data at the WorldView-2 image acquisition date, which is 24 July 2012.
In order to address this field data limitation, standard Landsat image based models demonstrated
a similarity with chlorophyll-a acquired from WorldView-2 images. Landsat 7 Enhanced Thematic
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Mapper Plus (ETM+) images acquired for the study area on 20 May and 23 July 2012 were obtained
from the Nasa Landsat Science website. Since Landsat-7 was launched, it has been used to extract
water parameters for inland water bodies through band combinations [23,25–27].

The 20 May 2012 image acquisition date is the closest to the Middle of Quarter 2 (Q2) of the
field data, which is 15 May. The 23 July 2012 image acquisition date is the closest to the WorldView-2
image date, which is 24 July. The ETM+ imagery, which was launched by NASA in 1999, has seven
spectral bands with 30-m resolution. The seven wavelength range of each band is as follows: Band 1:
450–520 nm, Band 2: 520–600 nm, Band 3: 630–690 nm, Band 4: 770–900 nm, Band 5: 1550–1750 nm,
Band 6: 10,400–12,500 nm, and Band 7: 2080–2350 nm.

2.3. Methodology

A Band Ratio model was developed to estimate the concentration of chlorophyll-a from the
WorldView-2 image, with the intension of validating the model by the interpolated in-situ data
and simultaneously correlating it with the eutrophication indicators. As the initial phase of the
preprocessing, the image was projected into the Dubai Local Transverse Mercator (DLTM). Then, the
radiance values were obtained from the Digital Numbers (DN) values and were further processed for
atmospheric correction using the Cosine of the Sun Zenith Angle (COST) algorithm. Figure 2 displays
the workflow of the methodology used in this study to produce the eutrophication indicators model.
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Figure 2. Main steps of the methodology.

2.3.1. Preprocessing of WorldView-2 Image and In Situ Data

Before extracting the data from the satellite image, it is essential to apply geometric, radiometric
and atmospheric corrections. This ensures the conversion of the pixel values to radiometrically
calibrated radiance. A pre-launch radiometric calibration was performed in the sensor to correct the
WorldView-2 image since it can be directly converted from DN to Top of Atmosphere (TOA) spectral
radiance. In addition, recorded in-situ chlorophyll-a data was interpolated to obtain the values at the
image acquisition time, assuming that the mean quarterly value is the best-fit radial point value.
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The DN values were derived using the algorithm provided by Digital Globe [36], as shown in
Equation (1) below,

Lλpixel,band = (Kband × qpixel,band)/∆λband (1)

where Lλpixel,band is the top of atmosphere spectral radiance for a band, Kband is the absolute radiometric
calibration factor, qpixel,band is the radiometrically corrected image pixels, and ∆λband is the effective
bandwidth for a band.

The atmospheric correction is implemented using the COST method [37]. The mathematical
expression of this method is as shown below:

ρλpixel,band =
((

Lλpixel,band − Lλhaze,band
)
× d2

ES ×π
)
/(Esunλ, band× cos(θs)) + 0.01 (2)

whereρλpixel,band is the atmospherically corrected reflectance, Lλpixel,band is the top of atmosphere spectral
radiance, d2

ES is the earth–sun distance, and Esunλ, band is the band-averaged solar spectral irradiance.

2.3.2. Model Based on Chlorophyll-a Spectral Value from WorldView-2 Image

The eight bands of the WorldView-2 image were used to develop various combinations of band
ratios including two, three, and four band ratios for the spectral reflectance and these were assessed
with respect to the in-situ measurements of chlorophyll-a data. The correlation between the spectral
model and the in-situ measurements were evaluated using the R-squared values.

2.3.3. Preprocessing of Landsat ETM+ Images

To process the 20 May 2012 ETM+ image, a band ratio of Band 4/Band 3 was used to derive
chlorophyll-a following Tebbs et al. (2013) using the Top of Atmosphere (TOA) reflectance of the two
bands [25] (Figure 3A). The empirical relationship between the spectrally derived chlorophyll-a values
and the field chlorophyll-a values of Quarter 2 produced an R2 value of 0.78 and standard error of
11.6 µg/L. Note that the authors assumed the field chlorophyll-a values of Quarter 2 are the values at
the 5 monitoring stations on 15 May 2012; the middle of Quarter 2. Then, a chlorophyll-a map was
derived from the 23 July ETM+ image using the same band ratio method stated above by applying the
TOA reflectance values (Figure 3B).

A residual map (Figure 4) was created by subtracting the chlorophyll-a map derived from the
WorldView-2 image of 24 July (to be presented in the results) from the one created from the ETM+

image of 23 July. The residual map chlorophyll-a values ranged from −3.75 µg/L to 8.33 µg/L, which
is acceptable given the value of the standard error (11.6 µg/L) of the empirical relationship between
the spectrally derived chlorophyll-a values (ETM+ image of 20 May) and the field chlorophyll-a
values of Quarter 2. The results indicate that the approach used for chlorophyll-a estimation using the
WorldView-2 image can be reliable.

2.3.4. Modelling the Field Chlorophyll-a against Nutrients

Eutrophication parameters including the concentration of the total nitrogen, orthophosphates,
oxygen and salinity were used in relation to the developed regression model. The resulting model
was investigated with respect to one, or a ratio of two, of the above parameters against chlorophyll-a.
Interpolated in-situ chlorophyll-a data was used in contrast to the indicators of eutrophication,
incorporating salinity, dissolved oxygen, total nitrogen, orthophosphates or any developed ratio among
two parameters in Quarter 2, 2012. The obtained results were assessed and the one with the highest
R-squared value was chosen to correlate with the derived spectral chlorophyll-a model.
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3. Results and Discussion

Based on the obtained R-squared values shown in Table 2, the developed spectral chlorophyll-a
model with three-band ratios; (Coastal blue + Near infrared 1)/Near infrared 2 was found to be most
accurate. Table 2 and Figure 5 show the different band combinations investigated in this study and
the R-squared values of the models of these band combinations and the in-situ chlorophyll-a data.
The model with the highest R-squared value (0.83) combines the Coastal Blue band and the two near
infrared bands of the Worldview-2 image. The R-squared value obtained in this study is comparable to
that obtained in previous studies [36,37]. In addition, the selected model also demonstrated the lowest
Root Mean Square Error (RMSE) value among all the models. Table 3 shows the spectral chlorophyll-a
values obtained with the model above, the in-situ values, and the percentage residual considering all
eight monitoring stations in the study area.

Table 2. Developed models with different band ratios and the corresponding R-squared values.

WorldView-2 Band Combinations R2 RMSE Confidence Interval
(CI) (95%)

(Coastal blue + Near infrared 1)/Near infrared 2 (CB + NIR1)/NIR2 0.83 6.839 0.0551
(Blue + Near infrared 1)/Near infrared 2 (B + NIR1)/NIR2 0.63 10.07 0.0668

(Green + Near infrared 1)/Near infrared 2 (G + NIR1)/NIR2 0.56 10.95 0.0717
(Yellow + Near infrared 1)/Near infrared 2 (Y + NIR1)/NIR2 0.54 11.15 0.0772

(Red edge + Near infrared 2)/Near infrared 1 (RED + NIR2)/NIR1 0.53 11.29 0.0765
(Blue + Near infrared 1)/Red edge (B + NIR1)/RED 0.51 11.50 0.0980

(Yellow + Red)/Red edge (Y + R)/RED 0.46 12.07 0.0018
Near infrared 1/Near infrared 2 NIR1/NIR2 0.43 12.40 0.0491

Red edge/Near infrared 1 RED/NIR1 0.41 12.63 0.0560
Yellow/Red edge Y/RED 0.32 13.71 0.0514

Table 3. Comparison of the in-situ and spectral chlorophyll-a concentrations computed by “(CB +

NIR1)/NIR2” model.

Sampling
Station

In-Situ Chlorophyll-a
(µg/L)

Spectral Chlorophyll-a
(µg/L) % Residual

Creek Mouth 2.130 2.24 5.16
Abra 32.98 22.61 31.44

Dhow Wharfage 4.750 13.4 182.10
Floating Bridge 28.48 34.65 21.66

Dubai Festival City (DFC) 43.25 36.6 15.38
Sewage Treatment Plant (STP) 44.93 38.01 15.4

Al Jaddaf 47.13 48.48 2.86
Ras Al Khor Wildlife Sanctuary 37.25 44.98 20.75

The lowest percent errors were obtained at the Jaddaf and the Creek Mouth stations (Table 3).
Abra station showed the highest difference, of 10.37 µg/L, among all the stations. It is evident that this
location had low chlorophyll-a concentration (less than 20 µg/L) in the creek, while the anthropogenic
activities along this segment of the creek caused a high concentration value for chlorophyll-a (in the
range of 20–40 µg/L). In fact, the lagoon area of the creek that showed the highest concentration with
the range of 30–50 µg/L due to the poor circulation and flushing of water, was mostly influenced by the
effluents from the nearby waste water treatment plant. However, the recent modifications in the Dubai
Creek geometry may help in improving the quality of the water.

The minimum mean threshold value for chlorophyll-a stated by the Organization of Economic
Operation and Development (OECD) is 8 µg/L [38–40]. As shown in Table 4, the average concentration
of chlorophyll-a in 2010 is below the OECD threshold [40]. However, the average values in both
2011 and 2012 exceeded the minimum threshold value and reached 20.86 and 17.64 µg/L, respectively.
Moreover, it is evident that the changing pattern in 2011 has increased significantly by 200%, proceeded
by a slight fluctuation of about 15% in 2012. Figure 6 shows the spectral chlorophyll-a map of the Dubai
Creek. The model has indicated low chlorophyll-a values for Creek Mouth station, consistent with the
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in situ data. In addition, consistent with the in situ data, spectral chlorophyll-a levels were high in
all the stations around the lagoon area. However, spectral chlorophyll-a values were underestimated
around Floating Bridge station.
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Table 4. The in-situ chlorophyll-a concentration in the second quarter of 2010, 2011 and 2012, in selected
stations in the Dubai Creek.

Sampling Station Q2, 2010
(µg/L)

Q2, 2011
(µg/L)

Q2, 2012
(µg/L)

Creek Mouth 0.1 8.1 4.6
Hyatt Regency Dubai 10.8 11.2 15.6

Abra 6.4 29.8 5.9
Dhow Wharfage 9.2 32.8 4.6
Floating Bridge 7.7 22.4 57.5

Average 6.84 20.86 17.64
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Figure 6. (A) Chlorophyll-a map extracted from WorldView-2 image of 24 July 2012, (B) TN/P
(mass/mass) Ratio.

3.1. Relationship between In-Situ Chlorophyll-a and the Eutrophication Indicators

The spectral chlorophyll-a model of the band combination (CB + NIR1)/NIR2, which gave
the highest R-squared value (0.83), was used to compute chlorophyll-a values at the locations of
the monitoring stations. The spectral chlorophyll-a values estimated with this model were plotted
versus TN/P, P/Salinity, Salinity, Orthophosphates, and TN/salinity and linear regression models were
developed as shown in Figure 7. Note that the model for the log (total nitrogen/orthophosphates)
presented high correlation with the in-situ chlorophyll-a measurement as shown in Figure 7A, which
illustrates the relationship between the level of total nitrogen and the orthophosphate. Further, this
represents the fluctuation of the levels of orthophosphate and total nitrogen that would not influence
the proliferation of chlorophyll-a. Therefore, high amounts of total nitrogen or orthophosphates will
not necessarily increase algal growth, which depends on both parameters as limiting nutrients [41].

The pollution of water bodies with orthophosphate occurs mainly due to anthropogenic activities,
whereas nitrogen pollution occurs due to additional factors, including nearby vegetation. Al Awir
wastewater treatment plant, which is located near the lagoon part, discharges part of its treated
wastewater (nitrogen rich) into the creek, since this plant does not treat nitrogen, as the treated
wastewater is used for growing landscapes in Dubai. In addition, nitrogen-rich fertilizers are used
in the nearby green areas, which are believed to cause nitrogen pollution in the creek through the
storm water runoff. Figure 7B demonstrates the impact of salinity on algal growth. Hakanson and
Eklund [42] found a similar relationship between salinity, phosphate and chlorophyll-a as shown in
Figure 7C. Figure 7D illustrates the relationship between orthophosphates and chlorophyll-a, which
suggests that orthophosphate is the limiting nutrient in this case. This explains the weak correlation
between total nitrogen and chlorophyll-a in the Creek. Notably, the relationship between the in-situ
and modelled TN-P ratio (Figure 8) seems to be weak, which is in agreement with others [42].
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The following model, which provided the highest R-squared value, was further analyzed,

Log (TN/P) = −0.388 × log (chl-a) + 1.6982 (3)

where TN is the Total Nitrogen (mg/L), P is the Orthophosphate (mg/L), and chl-a is the
Chlorophyll-a (µg/L).

The in-situ measurements and modelled values of total nitrogen and phosphorus ratios for each
monitoring station were estimated and tabulated as shown in Table 5, and their relationships are
outlined in Figure 8. This model produced an R-squared value of 0.80.
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Table 5. Comparison of field and modelled TN/P.

Sampling
Station

In-Situ Chl-a
(µg/L)

LOG (TN/P)
(Modelled)

TN/P
(Modelled)

LOG (TN/P)
(In-Situ)

TN/P
(In-Situ) % Error

Creek Mouth 2.13 1.57 37.22 1.72 52 28.42
Abra 32.98 1.11 12.86 1.21 16.1 20.15

Dhow Wharfage 4.75 1.44 27.27 1.24 17.4 56.71
Floating Bridge 28.48 1.13 13.61 1.05 11.15 22.02

Dubai Festival City (DFC) 43.25 1.06 11.57 1.06 11.57 0.01
Sewage Treatment Plant (STP) 44.93 1.06 11.40 1.05 11.28 1.11

Al Jaddaf 47.13 1.05 11.19 1.06 11.56 3.13
Ras Al Khor Wildlife Sanctuary 37.25 1.09 12.26 1.12 13.13 6.57

3.2. Relationship between Spectral Chlorophyll-a and the Eutrophication Indicators

Equation (3) was applied to the spectral chlorophyll-a map presented in Figure 4, which was
developed according to Equation (4),

Spectral Chlorophyll-a = 243.06 × ((CB + NIR1)/NIR2) - 429.6 (4)

where CB is the reflectance of Coastal Blue, and NIR1 and NIR2 are the Near Infra-Red spectral bands 1
and 2 of the WorldView-2 image.

The following observations can be made from the map in Figure 6 (A) Chlorophyll-a values less
than 10 µg/L are noticed in the same part of the creek mentioned above. (B) The TN/P ratio in the
northern part of the creek is mostly in the range of 15–40, which matches the chlorophyll-a values.
These correspond to the high TN/P values at the edges of the creek as illustrated in Figure 6B. The
TN/P values in the creek’s lagoon section are mostly in the range of 11–15, while they are smaller
around some of the edges of the creek’s lagoon part. This matches the chlorophyll-a levels in that
part of the creek, which are generally higher than 30 µg/L. At the edges of the lagoon part, the TN/P
values are lower than the middle of the lagoon, which illustrates high chlorophyll-a levels due to the
effluent from the Al Awir sewage treatment plant at that location. In addition, this part of the creek is
characterized by poor flushing. The log of spectral chlorophyll-a against the log of the in-situ TN/P
model shown in Figure 9 produced a 0.95 R-squared value, which indicates high correlation compared
to that of the log of in-situ chlorophyll-a, which produced 78%. The big difference in correlation could
be due to the in-situ chlorophyll-a values at the Creek Mouth and Dhow Wharfage stations, which are
considered outliers, as shown in Figure 7A. Due to the difference between the values of the spectral
and in-situ chlorophyll-a values at the monitoring stations, these two outliers happened to be closer to
the regression line in Figure 9.Water 2020, 12, x FOR PEER REVIEW 14 of 17 
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4. Conclusions

In this research, a WorldView-2 satellite image was used to derive chlorophyll-a values in the Dubai
Creek, in Dubai, UAE. Due to the time lag between in-situ data and satellite images, standard Landsat
image-based models were used to demonstrate the accuracy of the proposed WorldView-2-based
model. The authors were able to estimate chlorophyll-a concentration with an R-squared value of 0.82
through a model developed by combining two Near Infrared bands in the satellite image. It was found
that the estimated chlorophyll-a values exceed the limits set by local authorities, especially in the
lagoon part. The observed algal growth is believed to be the result of anthropogenic activities in the
area and the discharge from a nearby sewage treatment plant. Moreover, a model was developed using
regression analysis to study the relationships between eutrophication indicators and chlorophyll-a.
The relationship between total nitrogen–phosphorus ratio and chlorophyll-a illustrated the vital role of
nutrients in the eutrophication process. This was evident because of the high correlation (R-squared
value of 0.79) between TN/P and chlorophyll-a. The TN/P values for each pixel in the area of interest
were acquired by the spectral chlorophyll-a values of this model. The TN/P ratios map for the creek
significantly correlated with the chlorophyll-a distribution. Anthropogenic activities and poor flushing
resulted in lower TN/P ratios and higher chlorophyll-a concentration in the lagoon part compared to the
upper part of the creek. The two models developed in this study showed strong correlation between
the spectral characteristics of the water column used to estimate chlorophyll-a and the corresponding
nutrient contents.
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