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Abstract: Accurate forecasting of annual runoff time series is of great significance for water resources
planning and management. However, considering that the number of forecasting factors is numerous,
a single forecasting model has certain limitations and a runoff time series consists of complex
nonlinear and nonstationary characteristics, which make the runoff forecasting difficult. Aimed at
improving the prediction accuracy of annual runoff time series, the principal components analysis
(PCA) method is adopted to reduce the complexity of forecasting factors, and a modified coupling
forecasting model based on multiple linear regression (MLR), back propagation neural network
(BPNN), Elman neural network (ENN), and particle swarm optimization-support vector machine
for regression (PSO-SVR) is proposed and applied in the Dongbei Hydrological Station in the
Ganjiang River Basin. Firstly, from two conventional factors (i.e., rainfall, runoff) and 130 atmospheric
circulation indexes (i.e., 88 atmospheric circulation indexes, 26 sea temperature indexes, 16 other
indexes), principal components generated by linear mapping are screened as forecasting factors.
Then, based on above forecasting factors, four forecasting models including MLR, BPNN, ENN,
and PSO-SVR are developed to predict annual runoff time series. Subsequently, a coupling model
composed of BPNN, ENN, and PSO-SVR is constructed by means of a multi-model information fusion
taking three hydrological years (i.e., wet year, normal year, dry year) into consideration. Finally,
according to residual error correction, a modified coupling forecasting model is introduced so as to
further improve the accuracy of the predicted annual runoff time series in the verification period.

Keywords: annual runoff forecasting; factor selection; teleconnection factor; multi-model information
fusion; residual error correction

1. Introduction

Hydrological forecasting, especially medium and long-term runoff forecasting, is an indispensable
part of water resources management and water conservancy projects’ operation [1–3]. Forecasting at
different time scales can provide valuable information for flood control, power generation, water supply,
and drought resistance [4–7]. Medium and long-term runoff forecasting, with a forecast period of
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more than three days and less than one year, refers to scientific predictions of the future runoff before
the occurrence of rainfall according to early hydrometeorological elements. In order to improve the
accuracy and reliability of a runoff forecasting model, scholars at home and abroad have carried out
massive application studies, in terms of selecting forecasting models and screening forecasting factors.

As far as forecasting models are concerned, cause analysis methods, mathematical statistics
methods, and artificial intelligence methods proposed for improving the runoff prediction accuracy
have received tremendous attention over the past decades [8,9]. Cause analysis methods pay attention
to the physical formation process of hydrological phenomena, which comprehensively consider the
influence of atmospheric circulation, meteorological factors, and the underlying surface physical
environment on runoff variation. It is demonstrated that key hydrometeorological events, such as
sunspot, EI Nino, ocean currents oscillation, and plateau snow, are closely related to runoff [10,11].
Nevertheless, cause analysis methods are mostly used for exploring the relationship between the
atmospheric circulation and the hydrological elements, which are highly dependent on meteorological
data and difficult to popularize. Time series methods and regression analysis methods are representative
mathematical statistics methods that have been extensively adopted in runoff forecasting [12,13].
The former methods focus on the single-factor forecasting, while the latter methods place more
emphasis on the multi-factor forecasting. Auto-regressive (AR), auto-regressive moving average
(ARMA), auto regressive integrated moving average (ARIMA), and Markov chain methods have been
general and popular time series models employed in hydrological forecasting [14,15]. Taking regression
analysis methods as an example, key forecasting factors are screened from multiple forecasting factors
that have a greater effect on the forecasting object on the basis of investigating the statistical rule
between the forecasting factors and the forecasting object. As a whole, mathematical statistics
methods avoid a mass of computation by taking some simple principles, but these methods have the
disadvantages of low reliability and poor accuracy. It is also worth pointing out that the integrity
and reliability of historical statistical data are equally important in mathematical statistics methods.
Artificial intelligence methods, such as fuzzy mathematics, grey system, artificial neural network
(ANN), and wavelet analysis, have the most applications in the current medium and long-term runoff

forecasting. Mahabir et al. (2003) researched whether the fuzzy expert system was an alternative
methodology for predicting the potential snowmelt runoff, and found that it was more reliable than
the regression models in spring runoff forecasts, especially in terms of identifying low or average
runoff years [16]. Trivedi et al. (2005) recommended that grey system theory may be a valuable tool for
those watersheds possessing scanty hydrological data due to its uncertain mechanisms and insufficient
information [17]. Compared to other intelligence methods, ANN has a wide application range in
the hydrological fields because of its good robustness, strong nonlinear mapping and self-learning
ability [18]. In spite of the good performance of these intelligence methods, there is still room to
improve its prediction accuracy. With regard to ANN, there are certain differences in the results with
each prediction for parameter uncertainty of neural network models. As a consequence, radial basis
function (RBF), Elman neural network (ENN), adaptive neuro-fuzzy inference system (ANIFS),
and long short-term memory (LSTM) are all alternative methods applied to predict runoff [19–22].
Moreover, in order to overcome the characteristics of complicated nonstationary runoff time series,
empirical mode decomposition (EMD) and ensemble empirical mode decomposition (EEMD) proposed
by Huang et al. (2003, 2008) have been new methods for nonstationary and nonlinear time series
analysis [23,24]. In addition, hybrid models have been performed in many studies, because these
models are capable of providing a high degree of accuracy and reliability compared to a single
forecasting model [25]. Zhao et al. (2015) introduced a novel hybrid model made up of EEMD and
AR for predicting nonstationary time series, and EEMD-AR was suitable for predicting the annual
runoff of four hydrologic stations in the upper reaches of the Fenhe River basin [26]. A hybrid support
vector machine–quantum behaved particle swarm optimization (SVM–QPSO) model was employed
in predicting monthly streamflows, and it was able to deal with complex and highly nonlinear data
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patterns. The prediction results indicated that the proposed hybrid model was a far better technique
compared to the original support vector machine (SVM) model [27].

Apart from selecting appropriate forecasting models, identifying key predictors driving runoff

variation is another step towards developing a reliable forecasting model [28]. Rough set (RS),
global sensitivity analysis (GSA), factor analysis (FA), principal component analysis (PCA), Gamma test
(GT), and forward selection (FS) techniques are used to reduce the number of input variables for
recognizing forecasting factors [29]. With the development of information theory, mutual information
(MI) as a measure representing information between two random variables provides optional means
for screening forecasting factors [30]. To tackle key problems of generating minimal inference rule
set and selecting complex factors, Zhu et al. (2009) proposed a forecasting model integrating the
rough set theory with the fuzzy inference technique to improve the medium and long-term forecast
precision [31]. Five principal impact factors were recognized by Li et al. (2012) by means of GSA
and the back-propagation arithmetic, and these were pivotal factors that make a great difference to
runoff during the flood season in the Nenjiang River Basin [29]. Some input selection techniques
(e.g., GT, FS) designed to reduce the number of input variables, were fed to an SVM model to predict the
monthly streamflow, and the developed GT-SVM model was superior to the original SVM model [32].
As a multivariate statistical technique used to identify important factors, PCA has been proposed to
reduce the number of variables by providing a better interpretation of variables involving large volumes
of information, as well as reducing the computational dimension [33,34]. Moreover, the information
from independent and linear compound input variables is capable of presenting us with the minimum
losses by employing this method [35]. Thus, PCA is acknowledged to be pivotal towards reducing the
complexity of input variables and has been widely adopted into simplifying forecasting factors.

Nevertheless, it is simply not stable to rely on a single forecasting model, such as multiple
linear regression (MLR), back propagation neural network (BPNN), Elman neural network (ENN),
and particle swarm optimization-support vector machine for regression (PSO-SVR), to predict annual
runoff, for runoff time series tending to be nonlinear, nonstationary and, even, chaotic. In view of
this, multi-model information fusion technology and residual error correction methods are introduced
to acquire more accurate annual runoff, taking the advantages of different forecasting methods into
account [36,37]. The main objective of this paper is to develop a modified coupling forecasting model
to predict annual runoff time series. Firstly, key forecasting factors are screened from two conventional
factors (i.e., rainfall and runoff) and 130 atmospheric circulation indexes, with the help of PCA. Then,
annual runoff time series are predicted by using the MLR model, the BPNN model, the ENN model,
and the PSO-SVR model, respectively. Subsequently, a coupling model is constructed to predict annual
runoff according to the multi-model information fusion technique. Finally, the residual error correction
method is employed to further modify annual runoff time series in the validation period.

2. Study Area and Data Series

2.1. Study Area

As the seventh largest branch of the Yangtze River and the longest river of the Poyang Lake
water system, the Ganjiang River Basin is located within 113◦42′–116◦38′ E and 24◦30′–28◦42′ N,
Jiangxi province, China, controlling a drainage area of 83,500 km2 and reaching a total length of
766 km [38]. With a subtropical humid monsoon climate, the Ganjiang River Basin has an annual
average temperature ranging from 17 to 20 ◦C, an annual rainfall ranging from 800 to 1700 mm,
and an annual mean inflow varying from 1300 to 3700 m3/s. The Wan’an reservoir is located in the
middle reaches of the Ganjiang River, 2 km upstream of the Wan’an County, with a drainage area of
36,900 km2. As the largest water conservancy project in the Jiangxi Province, the Wan’an Reservoir
plays a significant role in power generation, flood control, waterway transport, and irrigation.

However, since the water resources shortage, contradictions between water supply and demand
have become frequent in the dry season in the middle and lower reaches of the Ganjiang River Basin
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over the past years. Rational allocation of water resources is a key measure to solve above problems
and minimize its adverse impact. Annual streamflow prediction is equally important for reservoir
operation and water resource management in the Ganjiang River Basin, because it is the prerequisite
and foundation for compiling a water resource allocation plan and carrying out reservoir operation.
As an important control station in the upper reaches of the Ganjiang River Basin and a runoff monitoring
station at the dam site of the Wan’an Reservoir, the Dongbei Hydrological Station is the basin outlet of
the study area, controlling a drainage area of 40,231 km2 [39]. Influenced by the plum rain, rainfall of
the Dongbei Hydrological Station concentrates from March to June, accounting for about 54% of annual
rainfall. Rainfall from July to September also occupies a large proportion of annual rainfall, due to the
influence of the typhoon rain and the monsoon rain [40]. The location of the study area is shown in
Figure 1.

Water 2020, 12, x FOR PEER REVIEW  4 of 18 

 

However, since the water resources shortage, contradictions between water supply and demand 

have become frequent in the dry season in the middle and lower reaches of the Ganjiang River Basin 

over the past years. Rational allocation of water resources is a key measure to solve above problems 

and minimize its adverse impact. Annual streamflow prediction is equally important for reservoir 

operation and water resource management in the Ganjiang River Basin, because it is the prerequisite 

and foundation for compiling a water resource allocation plan and carrying out reservoir operation. 

As an important control station in the upper reaches of the Ganjiang River Basin and a runoff 

monitoring station at the dam site of the Wan’an Reservoir, the Dongbei Hydrological Station is the 

basin outlet of the study area, controlling a drainage area of 40,231 km2 [39]. Influenced by the plum 

rain, rainfall of the Dongbei Hydrological Station concentrates from March to June, accounting for 

about 54% of annual rainfall. Rainfall from July to September also occupies a large proportion of 

annual rainfall, due to the influence of the typhoon rain and the monsoon rain [40]. The location of 

the study area is shown in Figure 1. 

 

Figure 1. A brief description of the study area. 

2.2. Data Series 

Runoff and rainfall data of the Dongbei Hydrological Station covering 1964 to 2015 were 

obtained from the government hydrologic database. 130 atmospheric circulation indexes including 

88 atmospheric circulation indexes, 26 sea temperature indexes, and 16 other indexes were provided 

by the National Climate Center of China Meteorological Administration (https://cmdp.ncc-

cma.net/Monitoring/cn_index_130.php). Runoff data from 1964 to 2002 were used to confirm the 

forecasting model, while those from 2003 to 2015 were used to verify the forecasting model. 

3. Research Methods 

3.1. Implementation of the Annual Runoff Forecasting 

The annual runoff forecasting model presented in this paper consists of four parts: extraction of 

key forecasting factors based on the principal component analysis (PCA) method; comparison of the 

predicted runoff time series of four forecasting models, including the multiple linear regression (MLR) 

model, the back propagation neural network (BPNN) model, the Elman neural network (ENN) model, 

and the particle swarm optimization-regression support vector machine (PSO-SVR) model; coupling 

three forecasting models (i.e., BPNN, ENN, PSO-SVR) by means of multi-model information fusion 

from the aspects of wet year, normal year, and dry year, respectively; modification of annual runoff 

time series predicted by the coupling model based on the residual error correction technique. In the 
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2.2. Data Series

Runoff and rainfall data of the Dongbei Hydrological Station covering 1964 to 2015 were
obtained from the government hydrologic database. 130 atmospheric circulation indexes including
88 atmospheric circulation indexes, 26 sea temperature indexes, and 16 other indexes were provided
by the National Climate Center of China Meteorological Administration (https://cmdp.ncc-cma.net/
Monitoring/cn_index_130.php). Runoff data from 1964 to 2002 were used to confirm the forecasting
model, while those from 2003 to 2015 were used to verify the forecasting model.

3. Research Methods

3.1. Implementation of the Annual Runoff Forecasting

The annual runoff forecasting model presented in this paper consists of four parts: extraction of
key forecasting factors based on the principal component analysis (PCA) method; comparison of the
predicted runoff time series of four forecasting models, including the multiple linear regression (MLR)
model, the back propagation neural network (BPNN) model, the Elman neural network (ENN) model,
and the particle swarm optimization-regression support vector machine (PSO-SVR) model; coupling
three forecasting models (i.e., BPNN, ENN, PSO-SVR) by means of multi-model information fusion
from the aspects of wet year, normal year, and dry year, respectively; modification of annual runoff

time series predicted by the coupling model based on the residual error correction technique. In the
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following sections, these parts will be elaborated upon in detail. The detailed technique flow chart is
introduced in Figure 2.
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3.2. Principal component analysis (PCA)

Principal component analysis (PCA) is a statistical technique aiming at reducing the dimensionality
of a dataset with a large number of interrelated variables, while retaining most of the variability of
the original datasets [41]. By calculating the cumulative contribution rate, PCA is applied to screen
principal forecasting factors with an objective of losing as little information as possible. Given the initial
forecasting factors x1, x2, · · · , xn and the final forecasting factors z1, z2, · · · , zm(m ≤ n), the equation of
extracting forecasting factors using PCA can be defined as follows:

z1 = l11x1 + l12x2 + · · ·+ l1nxn

z2 = l21x1 + l22x2 + · · ·+ l2nxn

· · ·

zm = lm1x1 + lm2x2 + · · ·+ lmnxn

(1)

where L is the load matrix composed of coefficient l. If i , j, zi has nothing to do with z j. z1 is the
linear combination of x1, x2, · · · , xn, the variance of which is the largest among all linear combinations.
In a similar way, z2 is the linear combination of x1, x2, · · · , xn that is not related to z1, the variance of
which is the second largest among all linear combinations. And so on.

3.3. Multi-Model Information Fusion

3.3.1. Multiple Linear Regression (MLR)

Multiple linear regression (MLR) is a classical statistical tool to describe the complex input-output
relationship [42]. The key goal of MLR is to find out an approximation linear function between a set of
independent variables and the dependent variable. Without a loss of generality, the regression line of
MLR can be described as follows:

yi = ŷi + εi = β0 + β1x1i + β2x2i + · · ·+ βkxki + εi(i = 1, 2, · · · , n) (2)
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where k is the number of independent variables, β j( j = 1, 2, · · · , k) is the partial regression coefficient,
xi is the i th independent variable, y is the dependent variable, and εi is the error term corresponding
to yi.

Then, the equation for a set of samples mentioned above can be rewritten in a compact matrix
form, which can be expressed as follows:

Y = Xβ+ ε (3)

where Y =


y1

y2

y3

· · ·

yn


n×1

, X =


1 x11 x21 · · · xk1
1 x12 x22 · · · xk2
...

...
...

...
1 x1n x2n · · · xkn


n×(k+1)

, β =



β0

β1

β2
...
βk


(k+1)×1

, ε =


ε1

ε2

· · ·

εn


n×1

.

According to the classical matrix calculation theory, the least-square method can be adopted to
calculate the coefficient vector β, and the coefficient vector can be described as follows:

β = (XTX)
−1

XTY. (4)

In such a way, the coefficient vector β is known, and the obtained MLR model can be used to
predict the possible dependent variable related to the newly input vector.

3.3.2. Back Propagation Neural Network (BPNN)

The back propagation neural network (BPNN) is one of the most widely used neural network
models, and it is a multi-layer feedforward network trained based on the error back propagation
algorithm. BPNN can learn and store a large number of input–output mode mapping relations,
and users can obtain relatively satisfactory prediction results without having to understand the
mathematical equations of this mapping relation in advance [8]. BPNN continuously adjusts the
weights and thresholds of the network through back propagation to achieve the least sum of square
error. BPNN consists of three parts, namely an input layer, a hidden layer and an output layer, and its
structure is drawn in Figure 3:
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where X = (x1, x2, · · · , xi, · · · , xn), HI = (hi1, hi2, · · · , hi j, · · · , hip) and YI = (yi1, yi2, · · · , yik, · · · , hiq)
are the input vector in the input layer, hidden layer, and output layer, respectively. n, p and
q are the number of neurons in the input layer, hidden layer and output layer, respectively.
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HO = (ho1, ho2, · · · , ho j, · · · , hop) and YO = (yo1, yo2, · · · , yok, · · · , hoq) are the output vector in the
hidden layer and output layer, respectively. DO = (do1, do2, · · · , dok, · · · , doq) is the expected output
vector in the output layer. wi, j and w j,k are the input layer–hidden layer connection weight and
the hidden layer–output layer connection weight, respectively. BH = (bh1, bh2, · · · , bh j, · · · , bhp) and
BO = (bo1, bo2, · · · , bok, · · · , boq) are the threshold values corresponding to each neuron in the hidden
layer and output layer, respectively. Given the number of samples and the activation function, the error
function e can be expressed as follows:

e =
1
2

q∑
k=1

(dok − yok)
2. (5)

When BPNN is applied for predicting annual runoff time series, the corresponding output value
is the prediction result on the premise of the specific input factors being transferred to the model.
The learning procedures of the BPNN model are summarized as follows:

Step 1. Assign a random number to the connection weights between the layers, and determine the error
function, as well as the given calculation error accuracy value and the maximum training time.

Step 2. Randomly select a sample as the input value and determine the expected output value.
Step 3. Calculate the input value and the output value of each neuron in the hidden layer.
Step 4. Calculate the partial derivative of the error function to each neuron in the output layer.
Step 5. Calculate the partial derivative of the error function to each neuron in the hidden layer.
Step 6. Correct the hidden layer–output layer connection weight.
Step 7. Correct the input layer–hidden layer connection weight.
Step 8. Calculate the global error and judge whether the model error meets the demand.

3.3.3. Elman Neural Network (ENN)

The Elman neural network (ENN) was firstly proposed by Elman (1990) to address the voice
processing problem, and it is a typical dynamic recursive neural network. Based on the basic structure
of BPNN, a context layer is added from the hidden layer to the input layer in the structure of ENN,
and this context layer is taken as a one-step delay operator to record information from the last network
iteration as input to the current iteration [43]. In addition, ENN enables the system to adapt to
time-varying characteristics, as it enhances the global stability and has stronger computing power.
A standard structure of ENN is drawn in Figure 4:
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where u is the input vector, y is the output vector, x is the output vector in the hidden layer, xc is the
output vector in the context layer. w1, w2 and w3 denote the context layer–hidden layer connection
weight, the input layer–hidden layer connection weight, and the hidden layer–output layer connection
weight, respectively.

The state space of the ENN model can be expressed as follows:
y(k) = g(w3x(k))
x(k) = f (w1xc(k) + w2u(k− 1))
xc(k) = x(k− 1)

(6)

where g(·) is the transfer function of the neurons in the output layer, which is the linear combination of
the hidden–layer output value. f (·) is the transfer function of the neurons in the hidden layer, which is
commonly expressed by S function.

To achieve the minimum mean square deviation between the actual output value and the expected
output value, the least-square algorithm and the gradient search technique are adopted in the ENN
model. Then, the learning procedures of the ENN model are summarized as follows:

Step 1. Normalize the original sample data. Set the maximum training time, the minimum expected
error, the learning efficiency, and the sample number. The mean square error (MSE) function,
is taken as the error function to describe the relation between the expected output value and
the actual output value, and its equation can be expressed as follows:

MSE =
1
N

k∑
t=1

(Ot
ex −Ot

ac)
2 (7)

where Ot
ex is the t th expected output value. Ot

ac is the t th actual output value, and that is the
observed value of the runoff.

Step 2. Initialize the connection weights including w1, w2 and w3. Train the ENN model for the first
time when t = 1.

Step 3. Calculate each input sample to find the output value in the hidden layer, the output value in
the output layer, the sample error value, and the sample weight correction value. Calculate the
global error value based on the sample error value.

Step 4. Judge whether the global error is less than the specified accuracy. If it is, the ENN model ends
its iteration and saves the current connection weight.

Step 5. Judge whether the iteration time t is less than the maximum iteration time. If not, the ENN
model ends its iteration and saves the final connection weight.

Step 6. Sum the sample weight correction value obtained in Step 3.
Step 7. Correct the connection weight to obtain a new connection weight, taking the sample weight

correction value obtained in Step 6 mentioned above into account. Turn to Step 3 mentioned
above to continue to iterate.

3.3.4. Particle Swarm Optimization-Regression Support Vector Machine (PSO-SVR)

Support vector machine for regression (SVR) is a regression algorithm based on the support
vector machine (SVM), and this technique has gradually become a new research hotspot in the
fields of water resources engineering and hydrology [44,45]. The basic idea of the SVR model is to
represent the entire sample set through a small number of support vectors and to map the training
set to another high-dimensional feature space by means of nonlinear mapping. Then, the nonlinear
function estimation problem in the input space can be transformed into a linear function estimation
problem in the high-dimensional feature space. In spite of the efficiency of SVR for modeling
nonlinear and complicated runoff time series, it still suffers from drawbacks, such as the selection
of the parameters C, ε, and σ making a great difference to the forecasting accuracy of an SVR
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model [46]. Considering that the particle swarm optimization (PSO) algorithm has the advantages of
easy implementation, fast convergence speed, and strong global search ability, the PSO algorithm is
employed to optimize the free parameters of SVR. Moreover, applying the PSO algorithm into the
parameter optimization of the SVR model has certain advantages compared to the traditional grid
search methods [47]. The forecasting process of the PSO-SVR model is shown in Figure 5.
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3.4. Residual Error Correction

Due to the high complexity and nonlinearity of runoff time series, as well as the instability of
the forecasting model, it is not always ideal for the runoff forecasting results directly obtained by the
forecasting model. Therefore, revising the forecasting results and improving the prediction accuracy is
of necessity in the annual runoff forecasting. The simplest way to modify annual runoff sequences is
to establish a regression error correction equation [36]. The specific steps of establishing a residual
correction equation are as follows:

Step 1. This correction equation is established based on the predicted value and the corresponding
residual value, and the residual sequences can be expressed as follows:

xi = yi − qi (8)

where yi, qi and xi are the measured sequences, the predicted sequences, and the residual
sequences, respectively.

Step 2. A residual equation between the predicted sequences and the residual sequences can be
established as follows:

xi = ayi + b + εi(i = 1, 2, · · · , n) (9)

where a, b are the regression coefficients, and n is the number of sequences. εi is the random
error, and it obeys normal distribution N ∼ (0, σ2).
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Step 3. Regression coefficients a, b are estimated by the least-square method, and the sum of the
deviation square is calculated as follows:

S(a, b) =
n∑

i=1

(xi − b− ayi)
2. (10)

In order to obtain the minimum S(a, b), take the derivations of S(a, b) to a, b, respectively,
and define the derivative values as 0. The equations of the derivation process can be obtained
as follows: 

nb + a
n∑

i=1
yi =

n∑
i=1

xi

b
n∑

i=1
yi + a

n∑
i=1

yi
2 =

n∑
i=1

xiyi

. (11)

The equations mentioned above are normal equations, and the solution is not the true values of
the regression coefficients a, b but the estimated values. Then, replace the true values a, b with
the estimated values â, b̂, and above equations can be rewritten as follows:

nb̂ + â
n∑

i=1
yi =

n∑
i=1

xi

b̂
n∑

i=1
yi + â

n∑
i=1

yi
2 =

n∑
i=1

xiyi

. (12)

In this case, the regression coefficients have a unique solution:
â =

n∑
i=1

(xi−x)(yi−y)

n∑
i=1

(yi−y)2

b̂ = x− ay

. (13)

Calculate the regression equation between y and x:

xi = âyi + b̂(i = 1, 2, · · · , n). (14)

Step 4. Calculate the residual values corresponding to the predicted sequences.
Step 5. Calculate the modified prediction values by the predicted residual values:

ŷi = yi − xi. (15)

3.5. Evaluation Index

In order to evaluate the performance of the annual runoff forecasting model, three main criteria
including mean absolute relative error (MARE), absolute relative error (ARE), root mean squared error
(RMSE), qualification rate (QR) and Nash–Sutcliffe efficiency coefficient (NS) are taken as evaluation
indexes, and these criteria are suitable to describe the prediction accuracy [19]. MARE and ARE are
employed for examining the error between the predicted data and the observed data [48]. RMSE is
chosen as an evaluation index to test the differences between the predicted data and the observed
data [49]. In the standard for hydrological information and hydrological forecasting, QR is an important
index to distinguish the accuracy grade of runoff projects [50]. NS is a popular evaluation index for
evaluating the performance of forecasting models [51].
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(1) The equation of mean absolute relative error (MARE) and absolute relative error (ARE) can be
expressed as follows:

MAPE =
1
k

k∑
i=1

∣∣∣∣∣∣Qsim,i −Qobs,i

Qobs,i

∣∣∣∣∣∣, ARE =

∣∣∣∣∣∣Qsim,i −Qobs,i

Qobs,i

∣∣∣∣∣∣ (16)

where Qsim,i is the predicted value of the i th sample, Qobs,i is the observed value of the i th sample,
and k is the number of samples.

(2) The equation of root mean squared error (RMSE) can be expressed as follows:

RMSE =

√√√
1
k

k∑
i=1

(Qsim,i −Qobs,i)
2. (17)

(3) The equation of qualified rate (QR) can be expressed as follows:

QR =
m
n
× 100% (18)

where m is the time of the qualified forecasts, and n is the time of the total forecasts. If the absolute
value of the relative error between the predicted value and the measured value is within 20% the
forecast is qualified.

(4) The equation of Nash–Sutcliffe efficiency coefficient (NS) can be expressed as follows:

NS = 1−

k∑
i=1

(Qobs,i −Qsim,i)
2

k∑
i=1

(Qobs,i −Qobs)
2

(19)

where Qobs denotes the average value of the observed annual runoff time series.

4. Results

4.1. Determining Forecasting Factors

Based on annual runoff time series from 1964 to 2015 of the Dongbei Hydrological Station,
annual rainfall time series from 1963 to 2015, and 130 monitoring indexes (i.e., 88 atmospheric
circulation indexes, 26 sea temperature indexes, 16 other indexes) from 1963 to 2014, the forecasting
factors are screened according to the principle of selecting principal components whose cumulative
contribution rate is greater than 85%. When analyzing the correlation between the forecasting factors
of the year before the forecast year and the runoff sequence of the forecast year, the cumulative rainfall
of the year before the forecast year is also added as the forecasting factor by the PCA method for
dimensionality reduction, considering rainfall sequence is a key factor affecting annual runoff variation.
The variance contribution-rate ranking of components is shown in Table 1.
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Table 1. Variance contribution-rate ranking of components (note: units of the variance contribution
rate and the cumulative variance contribution rate are %).

Component
Initial Eigenvalue Extraction Sum of Squared Loading

Total Variance Cumulative Variance Total Variance Cumulative Variance

1 4.02 30.93 30.93 4.02 30.93 30.93
2 1.87 14.42 45.35 1.87 14.42 45.35
3 1.46 11.22 56.57 1.46 11.22 56.57
4 1.31 10.04 66.61 1.31 10.04 66.61
5 1.05 8.07 74.67 1.05 8.07 74.67
6 0.85 6.54 81.21 0.85 6.54 81.21
7 0.72 5.53 86.74 0.72 5.53 86.74
8 0.67 5.12 91.86
9 0.45 3.42 95.29
10 0.1 2.34 99.63
11 0.03 0.25 100

As can be seen in Table 1, the variance contribution rate of the first principal component can
reach 30.93%, indicating that it contains most of the information of the selected factors. The variance
contribution rate of other principal components is getting smaller, which means that the information
of the selected factors is less and fewer. The first seven principal components are determined as the
forecasting factors, the cumulative variance contribution rate of which can reach 86.74%. According to
equation (1), these seven principal components are the linear combinations of eleven initial forecasting
factors, including the Eastern Pacific Subtropical High Northern Boundary Position Index (in June last
year), the Pacific Subtropical High Northern Boundary Position Index (in June last year), the Atlantic
Meridional Mode SST Index (in July last year), etc. Then, the score coefficient matrix of principal
components is shown in Table 2.

Table 2. Score coefficient matrix of principal components.

Factor Type
Component

1 2 3 4 5 6 7

Eastern Pacific Subtropical High
Northern Boundary Position Index
(Last June)

0.569 −0.048 0.046 0.019 −0.101 −0.054 0.189

Pacific Subtropical High Northern
Boundary Position Index (Last June) 0.496 0.001 −0.003 0.045 0.112 −0.105 −0.137

Atlantic Meridional Mode Sea Surface
Temperature Index (Last July) −0.039 −0.034 0.15 −0.028 0.13 0.92 0.14

Cold-Tongue EI Nino-Southern
Oscillation Index (Last August) 0.013 0.089 0.024 −0.019 −0.09 0.137 0.926

Pacific Polar Vortex Intensity Index
(Last September) −0.267 0.551 −0.004 0.276 −0.158 0.27 −0.299

Northern Hemisphere Polar Vortex
Central Longitude Index
(Last September)

−0.015 −0.083 −0.031 −0.13 0.93 0.135 −0.086

Eurasian Meridional Circulation Index
(Last September) 0.059 0.129 0.431 0.298 0.195 −0.203 0.006

Atlantic-European Polar Vortex Intensity
Index (Last October) 0.159 0.686 −0.002 −0.26 0.035 −0.226 0.314

NINO C Sea Surface Temperature
Anomaly Index (Last September) 0.007 −0.046 0.823 −0.12 −0.058 0.186 0.031

Pacific Subtropical High Northern
Boundary Position Index (Last August) 0.034 −0.061 −0.088 0.848 −0.133 0.005 −0.044

Rainfall (Last year) 0.06 0.13 0.301 −0.103 −0.468 0.635 0.121
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4.2. Four Annual Runoff Forecasting Models

Seven forecasting factors determined by the PCA method are taken as input conditions of the MLR
model, BPNN model, ENN model, and PSO-SVR model, respectively. In this paper, the trial and error
method is adopted to compare the prediction results of different forecasting models and determine the
optimal parameters used in the models. Taking the ENN model as an example, different combinations
of the node number in the input layer and hidden layer are proposed to determine the optimal
combination. As a result, the optimal node number of the input layer is seven, while the optimal that
of the hidden layer is eight. Thus, the combination of node numbers in the ENN model is (seven, eight,
one). Then, major structures of four forecasting models are listed in Table 3, such as the regression
equation of the MLR model, as well as other parameter settings of the BPNN model (e.g., node number,
maximum training time, learning rate), the ENN model (e.g., node number, maximum training
time, learning rate), and the PSO-SVR model (e.g., population size, maximum iteration time, C, ε,
σ), respectively.

Table 3. Major structures of four forecasting models.

Model Model Structure

MLR
Regression Equation
y = 0.9402x + 236.98

BPNN
Node Number Maximum Training Time Learning Rate

(7, 8, 1) 5000 0.75

ENN
Node Number Maximum Training Time Learning Rate

(7, 8, 1) 3000 0.95

PSO-SVR
Population Size Maximum Iteration Time (C, ε, σ)

200 2000 (5.6, 0.0003, 3.4)

In order to compare the performances of the proposed MLR model, BPNN model, ENN model,
and PSO-SVR model of the Dongbei Hydrological Station in the Ganjiang River Basin, the annual
runoff time series predicted by four forecasting models are shown in Figure 6, and the comparison
results of three evaluation indexes are illustrated in Table 4.
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Figure 6. Annual runoff time series predicted by four forecasting models (note: OBS represents the
observed value. MLR, BPNN, ENN, and PSO-SVR represent the predicted value of the MLR model,
the BPNN model, the ENN model and the PSO-SVR model, respectively).
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Table 4. Evaluation indexes of four runoff forecasting models (note: MARE, RMSE and QR represent
mean absolute relative error, root mean squared error, and qualified rate, respectively).

Model
Calibration Period Validation Period

MARE RMSE QR NS MARE RMSE QR NS

MLR 15.72% 170.96 82.05% 0.682 32.08% 357.17 69.23% −0.832
BPNN 10.55% 127.93 94.87% 0.822 19.60% 256.07 69.23% 0.058
ENN 4.63% 73.64 97.44% 0.941 17.81% 282.32 76.92% −0.144

PSO-SVR 15.99% 165.03 82.05% 0.704 15.73% 202.50 84.62% 0.411

As shown in the figure above, it is evident that the MLR model has the worst prediction performance
whether runoff time series is in the calibration period or in the validation period, except that MARE
of the PSO-SVR model is larger than that of the MLR model in the calibration period. By contrast,
the ENN model has the best prediction performance in the calibration period, because this model has
the smallest MARE, the smallest RMSE, the largest QR, and the largest NS, in terms of evaluation
indexes. Likewise, the PSO-SVR model with the best prediction performance is glaringly obvious
in the validation period, MARE, RMSE, QR, and NS of which are 15.73%, 202.50, 84.62%, and 0.411,
respectively. In addition to these, it is obvious that the prediction performance of the BPNN model is
superior to that of the MLR model, expect that QR values of both models are 69.23%.

4.3. Coupling Annual Runoff Forecasting Model

Aimed at proposing a coupling forecasting model by considering three forecasting models
(i.e., BPNN model, ENN model, PSO-SVR model) that have different prediction performances,
the historical annual runoff time series are divided into three hydrological years (i.e., wet year, normal
year, dry year), and three coupling multi-model parameter equations based on the least-square method
are introduced to train annual runoff time series in the calibration period from the aspect of hydrological
years. Then, these coupling multi-model parameter equations are adopted to verify the annual runoff

time series in the validation period. Coupling multi-model parameter equations are shown in Table 5.

Table 5. Coupling multi-model parameter equations corresponding to different hydrological years
(note: y means the annual runoff predicted by the coupling model. x1, x2, x3 mean the annual runoff

predicted by the BPNN model, the ENN model, and the PSO-SVR model, respectively).

Hydrological Year Coupling Multi-Model Parameter Equation

Wet Year y = 0.0253x1 + 0.7938x2 − 0.3046x3 + 765.3838
Normal Year y = 0.0382x1 + 0.4586x2 + 0.303x3 + 155.1607

Dry Year y = 0.1577x1 − 0.0369x2 + 0.6629x3 + 49.6414

Based on these coupling equations, the annual runoff time series predicted by the coupling model
is shown in Figure 7, and the comparison results of three evaluation indexes are illustrated in Table 6.
It is demonstrated that the prediction performance of annual runoff time series in the calibration period
is better than that in the validation period, and the former predicted value is closer to the observed
value than the latter one. As far as the calibration period is concerned, MARE, RMSE QR, and NS of
the coupling model are 2.92%, 42.13, 100%, and 0.980, respectively, while that of the ENN model are
4.63%, 73.64, 97.44%, and 0.941, respectively. When it comes to the validation period, MARE, RMSE,
QR, and NS of the coupling model are 8.06%, 157.90, 84.62%, and 0.642, respectively, while that of the
PSO-SVR model are 15.73%, 202.50, 84.62%, and 0.411, respectively. Thus, it is concluded that this
coupling model has better model performances than any single forecasting model (i.e., BPNN model,
ENN model, PSO-SVR model) mentioned above, because this coupling model has the smaller MARE,
the smaller RMSE, the larger QR, and the larger NS, in terms of evaluation indexes. However, it can be
clearly seen that the least-square method is greatly affected by the disturbance of the outlier (the highest
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blue peak in the validation period in Figure 7) when modifying the predicted values, which is closely
related to its correction strategy. The least-square method takes the distance as the measure, and the
parameters of the fitting function are obtained by the least-square sum of errors, which will enlarge the
influence of the large error to this method.

Water 2020, 12, x FOR PEER REVIEW  14 of 18 

 

Table 5. Coupling multi-model parameter equations corresponding to different hydrological years 

(note: y  means the annual runoff predicted by the coupling model. 
1 2 3
, ,x x x  mean the annual 

runoff predicted by the BPNN model, the ENN model, and the PSO-SVR model, respectively). 

Hydrological Year Coupling Multi-Model Parameter Equation 

Wet Year 1 2 3
0.0253 0.7938 0.3046 765.3838y x x x     

Normal Year 1 2 3
0.0382 0.4586 0.303 155.1607y x x x     

Dry Year 1 2 3
0.1577 0.0369 0.6629 49.6414y x x x     

Based on these coupling equations, the annual runoff time series predicted by the coupling 

model is shown in Figure 7, and the comparison results of three evaluation indexes are illustrated in 

Table 6. It is demonstrated that the prediction performance of annual runoff time series in the 

calibration period is better than that in the validation period, and the former predicted value is closer 

to the observed value than the latter one. As far as the calibration period is concerned, MARE, RMSE 

QR, and NS of the coupling model are 2.92%, 42.13, 100%, and 0.980, respectively, while that of the 

ENN model are 4.63%, 73.64, 97.44%, and 0.941, respectively. When it comes to the validation period, 

MARE, RMSE, QR, and NS of the coupling model are 8.06%, 157.90, 84.62%, and 0.642, respectively, 

while that of the PSO-SVR model are 15.73%, 202.50, 84.62%, and 0.411, respectively. Thus, it is 

concluded that this coupling model has better model performances than any single forecasting model 

(i.e., BPNN model, ENN model, PSO-SVR model) mentioned above, because this coupling model has 

the smaller MARE, the smaller RMSE, the larger QR, and the larger NS, in terms of evaluation indexes. 

However, it can be clearly seen that the least-square method is greatly affected by the disturbance of 

the outlier (the highest blue peak in the validation period in Figure 7) when modifying the predicted 

values, which is closely related to its correction strategy. The least-square method takes the distance 

as the measure, and the parameters of the fitting function are obtained by the least-square sum of 

errors, which will enlarge the influence of the large error to this method. 

 

Figure 7. Prediction results of the coupling model (note: OBS represents the observed value, CM 

represents the predicted value of the coupling model). 

Table 6. Evaluation indexes of the coupling model. 

Model 
Calibration Period Validation Period 

MARE RMSE QR NS MARE RMSE QR NS 

Coupling model 2.92% 42.13 100% 0.980 8.06% 157.90 84.62% 0.642 

  

Figure 7. Prediction results of the coupling model (note: OBS represents the observed value,
CM represents the predicted value of the coupling model).

Table 6. Evaluation indexes of the coupling model.

Model
Calibration Period Validation Period

MARE RMSE QR NS MARE RMSE QR NS

Coupling model 2.92% 42.13 100% 0.980 8.06% 157.90 84.62% 0.642

4.4. Modified Coupling Annual Runoff Forecasting Model

Based on the observed values and the predicted values of the coupling model from 1964 to 2002,
a modified function is proposed by means of residual error correction, and the residual correction
function equation can be expressed as follows:

xi = −0.0014yi − 5.6197. (20)

Then, the prediction sequences of the coupling model yi are taken into the model correction
function, and the residual error sequences xi can be obtained. Subsequently, modified annual runoff

sequences from 2003 to 2015 can be calculated, and comparisons of annual runoff sequences predicted
by the coupling forecasting model and the modified coupling forecasting model are illustrated in
Table 7.

As shown in the table above, MARE of the coupling model is 8.06%, while that of the modified
coupling model is 7.99%. RMSE of the coupling model is 157.90, while that of the modified coupling
model is 156.69. Moreover, QR of the coupling model is 0.642, while that of the modified coupling model
is 0.647. Therefore, the modified coupling model can further improve the prediction performance of
annual runoff time series in the validation period, with the help of the residual error correction technique.
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Table 7. Comparisons of annual runoff sequences predicted by the coupling model and the modified
coupling model (note: units of the observed value and the predicted value are m3/s).

Year Observed Value
Coupling Model Modified Coupling Model

Predicted Value ARE Qualified Predicted Value ARE Qualified

2003 831.37 825.93 0.65% Yes 832.71 0.16% Yes
2004 571.85 559.44 2.17% Yes 565.84 1.05% Yes
2005 992.82 1003.93 1.12% Yes 1010.95 1.83% Yes
2006 1287.04 1229.97 4.43% Yes 1237.31 3.86% Yes
2007 972.21 958.45 1.42% Yes 965.41 0.70% Yes
2008 986.38 977.66 0.88% Yes 984.64 0.18% Yes
2009 621.56 793.89 27.73% No 800.62 28.81% No
2010 1292.61 1462.52 13.14% Yes 1470.18 13.74% Yes
2011 674.28 644.03 4.49% Yes 650.55 3.52% Yes
2012 1491.01 993.14 33.39% No 1000.15 32.92% No
2013 949.76 948.97 0.08% Yes 955.91 0.65% Yes
2014 859.82 749.95 12.78% Yes 756.62 12.00% Yes
2015 1142.31 1113.25 2.54% Yes 1120.43 1.92% Yes

5. Conclusions and Discussions

For the sake of improving the forecasting accuracy of annual runoff time series, the principal
component analysis (PCA) method is adopted to screen forecasting factors from rainfall, runoff,
and 130 monitoring indexes. A modified coupling runoff forecasting model is proposed based on
multiple linear regression (MLR), back propagation neural network (BPNN), Elman neural network
(ENN), and particle swarm optimization-regression support vector machine (PSO-SVR), by means of
multi-model information fusion and residual error correction in this paper. The main conclusions of
this study are as follows:

Firstly, seven principal components are screened as key forecasting factors from the Eastern Pacific
Subtropical High Northern Boundary Position Index (in June last year), the Pacific Subtropical High
Northern Boundary Position Index (in June last year), the Atlantic Meridional Mode SST Index (in July
last year), and other monitoring indexes, as well as annual rainfall.

Then, compared to the MLR model, the BPNN model, the ENN model, and the PSO-SVR model
provide better prediction performances involving predicting annual runoff. In terms of a single
forecasting model, the PSO-SVR model has the best prediction performances in the validation period,
while the ENN model has the best prediction performances in the calibration period.

Subsequently, from the point of hydrological years (i.e., wet year, normal year, dry year), a coupling
model is proposed by means of multi-model parameter equations by taking the advantages of three
forecasting models (i.e., BPNN, ENN, PSO-SVR) into account. MARE, RMSE, QR, and NS of the
coupling model are 2.92%, 42.13, 100%, and 0.980, while that of the ENN model are 4.63%, 73.64,
97.44%, and 0.941 in the calibration period. MARE, RMSE, QR, and NS of the coupling model are
8.06%, 157.90, 84.62%, and 0.642, while that of the PSO-SVR model are 15.73%, 202.50, 84.62%, and 0.411
in the validation period.

Finally, the residual error correction technique is referenced to modify runoff sequences predicted
by the coupling model in the validation period. Compared to the coupling model, the modified
coupling model has the smaller MARE, the smaller RMSE, and the larger NS.

In conclusion, the modified coupling method proposed in this paper can be applied to the
Ganjiang River Basin to improve prediction performances of annual runoff sequences. It would also
play an important role in providing a significant improvement of runoff forecasting in other similar river
basins, especially by means of multi-model information fusion techniques to combine the advantages
of different forecasting models, which is an important innovation in this paper. Besides, the residual
error correction method in the modified coupling model is another feature in this study that would
further improve the performance of the predicted annual runoff in the validation period, based on
the least-square sum of errors. Nevertheless, there is still some room for perfection in this study,
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for example the number of nodes in the input layer and the hidden layer is determined by the trial
and error method, rather than the optimization method, which may reduce the calculation efficiency.
Using optimization algorithms to determine the number of nodes and weights of neural networks
may be the trend of future development. The least-square method is not always a good correction
strategy when there are outliers in the predicted results, that is, the error between the predicted value
and the observed value is large in the coupled model. Mean absolute error method and smoothed
mean absolute error method might be alternative options for data fitting. Therefore, making full use of
the advantages of different models to achieve the optimality of the coupled model remains a challenge
in the forecasting runoff model, which will also be the focus of future research.
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