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Abstract: Cyanobacteria blooms occur frequently in freshwaters around the world. Some can
produce and release toxic compounds called cyanotoxins, which represent a danger to both the
environment and human health. Microcystin-LR (MC-LR) is the most toxic variant reported all over
the world. Conventional water treatment methods are expensive and require specialized personnel
and equipment. Recently, a multi-soil-layering (MSL) system, a natural and low-cost technology,
has been introduced as an attractive cost-effective, and environmentally friendly technology that
is likely to be an alternative to conventional wastewater treatment methods. This study aims to
evaluate, for the first time, the efficiency of MSL eco-technology to remove MC-LR on a laboratory
scale using local materials. To this end, an MSL pilot plant was designed to treat distilled water
contaminated with MC-LR. The pilot was composed of an alternation of permeable layers (pozzolan)
and soil mixture layers (local sandy soil, sawdust, charcoal, and metallic iron on a dry weight ratio of
70, 10, 10, and 10%, respectively) arranged in a brick-layer-like pattern. MSL pilot was continuously
fed with synthetic water containing distilled water contaminated with increasing concentrations
of MC-LR (0.18-10 pug/L) at a hydraulic loading rate (HLR) of 200 L m~2 day~!. The early results
showed MC-LR removal of above 99%. Based on these preliminary results, the multi-soil-layering
eco-technology could be considered as a promising solution to treat water contaminated by MC-LR
in order to produce quality water for irrigation or recreational activities.
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1. Introduction

Cyanobacteria, also known as blue-green algae, have existed since about 3500 Ma.
They are Gram-negative bacteria and are the source of life on earth through their pro-
duction of oxygen [1,2]. Cyanobacteria occur naturally in freshwater [3,4], brackish, and
marine water [5,6]. Due to anthropogenic activities and global warming, cyanobacteria
can rapidly increase and generate bloom. Olokotum et al. [7] in their review described
the multiple ways in which human growth, as well as human activities, is connected to
the increasing occurrence of cyanobacterial blooms in Lake Victoria. There have been
frequent reports on toxic cyanobacterial blooms in surface waters around the world [8-12].
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Cyanobacterial blooms can be harmful to the environment, animals, and human health.
Decrease in oxygen concentration, nauseating odors, water coloring, and toxicity are some
of the ecological disturbances caused by cyanobacterial blooms [13]. The environmental
problem of toxic cyanobacteria blooms lies in the fact that the resulting toxins, dissolved
in water, can accumulate in the tissues of fish and other aquatic biotas. These accumu-
lated toxins can be transferred to humans via the food chain [14]. Similarly, studies have
shown that these toxins can also accumulate in the edible parts of plants [15,16]. In doing
so, they become a health hazard for consumers of these unsafe products. Many genera
of cyanobacteria can produce toxic secondary metabolites called cyanotoxins [4,17,18].
Cyanotoxins are essentially endotoxins that can be released into the environment after
cell lysis. These toxins constitute a huge group of chemical compounds that differ in their
molecular structure and toxicological properties [19,20]. They can be classified according
to the lesions they cause in different organs of animals. This includes hepatotoxins or
liver toxins (microcystins, cylindrospermopsins, and nodularins), neurotoxins, or nervous
system toxins that target the neuromuscular junction (anatoxins and saxitoxins), dermato-
toxins or skin toxins (lyngbyatoxins), irritant toxins (lipopolysaccharides), and cytotoxins
(cell toxins). The presence of these toxins has been reported in waters around the world,
including Europe [21], England [22], Turkey [23], Canada [24], China [25], Tanzania [26],
Ethiopia [27], Tunisia [28], and Morocco [29].

The contamination of surface waters by cyanotoxins can lead to water quality problems
for fisheries, aquaculture, and livestock farming as well as health risks for humans and
animals [30]. Irrigation with water containing cyanobacterial toxins can inhibit plant
growth [13]. The number of publications concerning phytotoxic effects of cyanotoxins on
agricultural plants has increased [13,16,31,32]. Drinking water and recreational activities
are also other ways by which humans may be exposed to cyanotoxins [14,33].

In terms of global impact on health and water quality, microcystins are the most
indexed. Microcystins are cyclic heptapeptides. Around 250 variants have been identified
in waters around the world [34]. MC-LR is the most toxic variant reported worldwide.
MC-LR is the most abundant, exhibiting 46.0-99.8% of the total concentration of MCs in
natural blooms [35]. Because of its acute and chronic toxicity, the WHO has set a tolerance
margin for MC-LR of 1 pg/L in drinking water [36].

The occurrence of toxic cyanobacteria blooms has been confirmed in many water
bodies in Morocco. More than 18 out of 26 lake reservoirs used for recreational and
drinking water reservoirs in Morocco contained toxic cyanobacteria [37]. Toxicological
studies of 19 toxic cyanobacteria strains isolated from reservoirs and ponds in Morocco
showed concentration of MCs between 26.8 and 1884 pg/g dry weight [38]. Douma
et al. [19] carried out a toxicological assessment in Moroccan inland waters that confirmed
the presence of toxic strains and five MC variants (MC-RR, MC-LR, MC-YR, MC-WR, and
MC-FR). This contamination constitutes a real threat to human and environmental health.
In Dayet-Aoua lake, Morocco, the presence of various toxic MC congeners was confirmed
with high toxin concentration (185.56 pg g~! dry weight) [17]. Molecular analysis showed
Microcystis aeruginosa as the species responsible for most of the microcystins (3240 ug
g~ ! dry weight cyanobacterial biomass) that occur in the Moroccan Lalla Takerkoust
reservoir. In this reservoir, microcystins can persist throughout the year [39]. Beyond
planktonic cyanobacterial toxic blooms such as those caused by Microcystis aeruginosa, the
occurrence of toxic benthic Nostoc producing MC-LR and equivalent with an estimated
concentration of 139 ug.g~! dry weight has been reported in Moroccan freshwater [40].
Although both the Nostoc and Microcystis genera contain toxic species, the secreted toxins
are not always the same. Toxic species in the genus Microcystis secrete mainly MCs,
while toxic species in Nostocaceae, such as Nostoc punctiforme and Nostoc muscorum, can
produce both nodularins [41] and MCs [19]. In addition, Wannicke et al. [41] showed that
Nostocaceae, which are heterocystous filamentous cyanobacteria in contrast to Microcystis
genus, which are colonial species, produce more nodularins under nitrogen replete and
diazotrophic conditions.
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Cyanobacterial bloom is a major problem, especially in arid and semiarid countries
that have no alternative but to use surface water. Given the impact of this phenomenon on
a global scale, the need to treat water contaminated by cyanotoxins is obvious. A variety
of methods, such as adsorption [42,43], ultrasonic technology [44], electrocoagulation—
Fenton [45], osmose reversible and photocatalysis [46,47], ultraviolet radiation and oxida-
tion [48-52], and nanotechnology [53], are used to eliminate cyanobacteria and their toxins
in water. However, the conventional water treatment methods are expensive, consume a
lot of energy, and require specialized personnel and equipment. On the other hand, envi-
ronmental factors are critical in the choice of technology for the treatment of cyanobacterial
bloom. Naturally, bacteria such as Sphingomonas sp, Bacillus sp, Paucibacter toxinivorans,
Sphingosinicella microcystinivorans, and Pseudomonas aeruginosa can degrade cyanobacteria
and cyanotoxins by using them as a source of nutrients [54-59]. Regarding cyanobacterial
degradation, Ndlela et al. [60] established a chronology of reports dealing with this topic
from 2000 until 2017. The authors identified the main mechanisms used by bacteria to
degrade cyanobacteria through algicidal, lytic, or growth inhibitory activities. In another
study, Ndlela et al. [61] showed that the addition of isolate 3y to a Microcystis aeruginosa
culture caused the cells to be deflated compared to the uninoculated control. The authors
hypothesized that the decrease in cell number as well as the deflated form of Microcystis
aeruginosa cells was because the cells were stressed and dying due to the addition of the
bacterial isolate. In addition to bacteria, other biological agents attack cyanobacteria. Fungi
present themselves as good candidates. Phanerochaete chrysosporium, for example, can de-
stroy algal cells as well as reduce the expression of the Microcystis aeruginosa toxin gene [62].
Likewise, Han et al. [63] documented Microcystis aeruginosa membrane decomposition
abilities by endopeptidase enzymes and polysaccharide lyases from Bjerkandera adusta and
Trametes versicolor. Furthermore, the lytic role of cyanophages directed against Microcys-
tis aeruginosa has been demonstrated [64]. Biodegradation of MC-LR using biologically
active slow sand filter as a low-cost water treatment technology was experimented by
Bourne et al. [58]. Their result showed its effectiveness for the removal of MCs in water.
However, the large-scale application of this system needs more investigation. Moreover,
coagulation-flocculation technology using natural coagulants (Vicia faba seeds and Opuntia
ficus indica cladodes) was demonstrated to be an eco-friendly and low-cost technology to
reduce cyanobacterial toxic blooms. These two natural coagulants were able to reduce
the turbidity of water, chlorophyll a, and carotenoids by up to 85% [65]. In another study,
Alvarez et al. [66] performed coagulation-flocculation to freshwater algae using 10 mg/L
of Pinus pinaster bark, which resulted in removal efficiency of 68.10%. However, this tech-
nology has the disadvantage of releasing intratoxins that can pose problems for water use.
Bavithra et al. [67] evaluated the potential ability of constructed wetland (CWs) to remove
cyanobacteria and MC-LR from freshwater. The authors found that constructed wetland
can remove 94% of M. aeruginosa and around 99% of MC-LR in just a one-week treatment
cycle. Despite CWs having the capability to treat eutrophic waters, this system is known to
occupy considerable land space.

Recently, multi-soil-layering (MSL) system, a natural and low-cost technology, has
been introduced as an attractive cost-effective, and environmentally friendly technology
that can be an alternative to conventional water treatment methods [68,69]. The MSL
system has high hydraulic loading rates and small land space requirements, which are
ideal for application. The MSL system has shown good performance in the reduction of
organic matter, nutrients, and pathogens from wastewater [68,70]. In previous studies,
the MSL system has been successfully used for the treatment of domestic wastewater [71],
polluted river water [72], livestock wastewater [73], dairy effluent [74], leachate [75,76],
and olive mill wastewater [77].

However, to our knowledge, the MSL system has never been used to treat cyanobacte-
rial harmful algae bloom and microcystin-LR. Therefore, this study aimed to investigate,
for the first time, the removal of microcystin-LR by low-cost MSL eco-technology.
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2. Materials and Methods
2.1. MSL Pilot Description

The lab-scale MSL system made of a rectangular glass tank was designed with the
dimension of 60 x 10 x 70 cm (L x W x H). The MSL system pilot was composed of soil
mixture layers (SML) and permeable layers (PLs) that were arranged in a brick-layer-like
pattern. A pozzolan with a size of 3.5-5 mm was filled as PLs. The SML consisted of a
mixture of local sandy soil, iron metal, charcoal, and sawdust on a dry weight ratio of 70,
10, 10, and 10%, respectively, and was filled as anaerobic layers. A perforated aeration pipe
was installed in between the third and the fourth soil mixture layers, which was about the
middle of the MSL system, for uniform diffusion of air. An aeration pipe can control the
aerobic and anaerobic profile of the MSL by sending air from outside the system. A full
description of the MSL pilot is presented in Figure 1.

Storage tank

70 cm

Figure 1. Scheme of Multi-Soil-Layering (MSL) pilot plant.

2.2. MSL Experimental Conditions and Influent Water Quality

The MSL system was initiated in September 2019 and continuously operated for six
weeks. Acclimation of the MSL pilot system was done with pH 7 neutralized distilled
water for two weeks. The influent was synthetic water created by contaminating distilled
water with increasing concentrations of microcystin (MC-LR) over the weeks. The distilled
water was neutralized to pH 7. The extraction and purification of microcystin-LR from
the 2018 lyophilized cyanobacterial bloom was performed according to the method of
Fastner et al. [78]. The biological material used to prepare the microcystin concentrations
was a bloom collected at the Lalla Takerkoust dam, Marrakech (Morocco), in 2018 and
freeze-dried to powder form. This bloom, whose enzyme-linked immunosorbent assay
(ELISA) characterization shows a total microcystin concentration of 4147.8 ug/g of dry
matter, was supplied to us already characterized and ready for use by the Laboratory of
Water, Biodiversity, and Climate Change at the Faculty of Sciences Semlalia, Cadi Ayyad
University (Marrakech, Morocco).

Therefore, five different microcystin concentrations were prepared from the freeze-
dried 2018 bloom deriving from Lake Takerkoust. The various MC-LR equivalent con-
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centrations used were 0.18, 0.91, 2.5, and 5 pg/L. Feeding duration was one week per
concentration. Based on the hydraulic flow rate of 200 L m~2 day !, daily intake was esti-
mated to be approximately 12 L/day, equating to 84 L/week. The hydraulic flow rate was
adjusted by a Masterflex® L/S® series peristaltic pump. For the first three concentrations
(0.18,0.91, and 2.5 pg/L), the influent was prepared daily, while for the last concentration
(5 nug/L), the entire weekly effluent was prepared on the same day.

2.3. Samples Collection and Processing

Sampling of influent and effluent water of the MSL system was done three times a
day (9 am., 1 p.m., and 5 p.m.) for the first three concentrations of MC-LR (0.18, 0.91,
and 2.5 ug/L). Only an average sample of each day was submitted for quantification of
MC-LR in triplicate. For the last concentration (5 ug/L), samples were collected three times
aday (9 am., 1 p.m., and 5 p.m.) on the first and last days of feeding. Physicochemical
parameters such as pH, dissolved oxygen (DO), electrical conductivity (EC), and total
dissolved solids (TDS) were measured immediately on the samples using a Hanna HI 9829
multiparameter probe. Samples for the determination of microcystin were collected with
glass bottles, which were wrapped in aluminum foil and stored at —20 °C. These samples
were then filtered through Whatman microfiber glass filter paper GF/C, D = 47 mm, and
prepurified. Prepurification was performed according to Triantis et al. [79]. Briefly, 500 mL
of water filtered through the Whatman GF/C filter was passed through a C18 MERCK
LiChrolut® RP-18 column after being conditioned with 5 mL of 100% methanol and 5 mL of
ultrapure water. After passing the sample, the column was rinsed with 20% methanol, and
then elution was carried out with 5 mL of 100% methanol. Quantifications of MC-LR in all

samples were performed by high-performance liquid chromatography-mass spectrometer
(HPLC-MS).

2.4. Detection and Quantification of MC-LR by LC-ESI-MS

The LC-MS system used to quantify MC-LR was a liquid-phase chromatograph
Alliance €2695 HPLC system coupled with a triple quadrupole spectrometry detector
(Micromass® Quattro micro TM API) with electrospray (ESI) interface. Chromatographic
separation was achieved on C18 Hypersil Gold column (100 x 4.6 mm L.D., 5 um, Thermo-
Scientific, Waltham, MA, USA). The columns were kept at 35 °C during analysis. The in-
jected volume was 10 pL in loop partial mode. Samples were injected in positive polarity
mode in full scan (30-2000 /z) and SIR of 2 channels (135 and 995.5 m/z). The standards
and samples were injected in duplicate, and for each set of 10 samples, a blank and two
standards of different concentrations were introduced. The standard solution of MC-LR
was purchased from CIFGA S.A. (Spain, Batch n°® 15-001) with a concentration of 10 pug/mL.
The system was calibrated using 8 dilutions of the standard solution of MC-LR (between
0.01 and 2 pg/mL) diluted in 50% methanol (MeOH).

A gradient elution was used with ultrapure water (mobile phase A) and MeOH
(mobile phase B), both of which were acidified with 0.1% formic acid (30% A and 70% B at 0
min, 50% A and 50% B at 10 min, returning to initial conditions at 15 min and equilibrating
for 5 min). Under these conditions, the MC-LR retention time was 5.71 min. After the toxin
elution step on the SPE column, the limits of detection (LOD; S/N = 3) and quantification
(LOQ; S/N = 10) of MC-LR were 0.008 and 0.01 ug/mL, respectively.

Samples were quantified using SIR with 2 channels (135 and 995.5 m/z) and precursor
ion (m/z 995), and MC-LR reference fragment ions with m/z values of 375, 553, 599, 866,
and 977 were monitored in the full scan mode in order to validate the presence of the toxin.

2.5. Statistical Analysis

All measurements/analyses were conducted in triplicate. Means and standard devia-
tions were calculated. Similarly, the MSL removal rates of microcystin-LR were computed.
Finally, the significant differences (p < 0.05) of the parameters at the input and output of
the system were evaluated through a nonparametric Mann-Whitney test.
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3. Results
3.1. Physical and Chemical Characteristics of Influent and Effluent Waters

The average temperature during the whole study was 2 °C. The pH of distilled water
used as an influent in this experiment was adjusted to 7.35. The Mann—-Whitney comparison
between the pH at the inlet and outlet of the MSL pilot plant showed a significant difference
(p < 0.00001) at the 95% confidence interval. In fact, as shown in Figure 2, there was an
increase in pH from the inlet to the outlet (7.46 &= 0.13 to 8.31 & 0.07).
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Figure 2. pH at the influent and effluent of the MSL pilot plant during the experiment.

The highest values of dissolved oxygen were 4.31 £ 0.20 mg/L and 4.81 £+ 1.72 mg/L
at the inlet and outlet, respectively, and the lowest values were 2.11 £ 0.12 and 2.13
£ 1.37 mg/L at the inlet and outlet, respectively. As shown in Figure 3, the Mann-Whitney
test showed no significant difference between the input and output of the MSL system.
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Figure 3. Dissolved oxygen (DO) of the influent and effluent during the experiment.

The highest values of electrical conductivity were 135.67 £ 129.65 ps/Cm and 315.17
=+ 87.49 ps/Cm at the inlet and outlet of the MSL pilot, respectively, and the lowest values
were 17.69 + 7.47 us/Cm and 215.17 + 16.24 us/Cm at the inlet and outlet, respectively, of
the MSL (Figure 4).
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Figure 4. Electrical conductivity of the influent and effluent during the experiment.

The highest values of total dissolved solids (TDS) were 65.81 &+ 61.77 mg/L and 158.18
+ 43.70 mg/L at the inlet and outlet of the MSL pilot, respectively, and the lowest values
were 9.38 + 2.97 mg/L and 108.33 £ 11.17 mg/L at the inlet and outlet of the MSL pilot,
respectively. Furthermore, the Mann—-Whitney test found significant differences (Figure 5)
between the inlet and outlet of this parameter (p < 0.0001) at the 95% confidence interval.
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Figure 5. Total dissolved solids of the influent and effluent of the MSL pilot plant during the

experiment.

3.2. Quantification MC-LR
The results of the MC-LR quantification are shown in Figure 6.
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Figure 6. MC-LR removal rates by multi-soil-layering eco-technology during the experiment.

Because the bloom used was characterized by the ELISA method, we worked with
total microcystin concentrations. The analysis of water toxins was carried out at the
Interdisciplinary Center of Marine and Environmental Research (CIIMAR), Portugal, by
LC-ESI-MS using a single standard MC-LR. Thus, the concentrations of MC-LR at the inlet
and outlet were much lower than those of the microcystin equivalents used to prepare the
distilled water contamination solutions.

Across the experiment, regardless of the dose used in different weeks, the Mann—
Whitney input/output test showed a significant difference with p < 0.00001 at the 95%
confidence interval. In short, in all cases, the toxin concentration at the MSL outlet was
below detection (Table 1).

Table 1. MC-LR concentrations in the influent and effluent of the MSL system (mean and standard
deviation, n = 3) and removal rates.

Concentration

Concentration

of the Extract in of Extract in MC-LR. MC-LR
Week . Concentration Removal Rates
MC Equivalent MC-LR (ug/L) (1g/L) at Output %)
(ug/L) at Input at Input He P ?
1 0.18 nd * nd * -
2 0.91 0.0585 (0.0001) 0.0024 (0.0001) 95.83%
3 2.5 0.1248 (0.0001) 0.0024 (0.0001) 98.05%
4 5 0.1479 (0.0014) 0.0024 (0.0001) 98.35%
5, the first day of o
the week 10 0.3832 (0.014) 0.0024 (0.0001) 99.36%
5, the seventh o
day of the week 0.3765 (0.0012) 0.0024 (0.0001) 99.35%

nd: not detectable, * below limit of detection.

Gradually, different concentration of microcystin up to 10 pg/L was injected to influent
water for five weeks. The results of the microcystin quantification showed 95-99% removal
rates of MC-LR from week one to week five. The microcystin removal rate was more than
95% from the first week.

4. Discussion

The present study investigated, for the first time, the potential of multi-soil-layering
(MSL) eco-technology to remove MCs from surface water. Effluent water exhibits alkalinity.
The alkalinity of treated water can be due to hydroxylation during the degradation of MC
molecules. Indeed, the amino acids are detached from the adda part, making the medium
alkaline. Kumar et al. [80] in their review reported that the degradation rate of microcystin
increases in a medium of pH <8. In another study, Santos et al. [81] evaluated the influence
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of acidity on the adsorption/desorption of MC-LR on sediments. In their study, the authors
showed that at a temperature of 25 °C, pH 5 and 8 did not have a significant influence on
the adsorption/desorption processes. Similarly, Terin et al. [82] in their study on a domestic
slow sand filter obtained microcystin reduction to a concentration below 1.0 pg/L when the
pH was 6.7. This alkalinity could also be due, in part, to the leaching of minerals (ions and
solids) from the substrate of the MSL system. The increase in TDS and conductivity at the
outlet of the MSL would be evidence of this leaching.

The increase in dissolved oxygen at the exit of the system is a sign of oxygenation in
the MSL pilot system, the presence of microorganisms, biofilm formation, and therefore
proper system operation. Indeed, this is a sign of good system performance as long as the
system is ventilated. Thus, aerobic microorganisms can form a biofilm in all layers of the
pilot and carry out the degradation of MCs without any constraint as to the presence of
oxygen in the deep layers because there is always oxygenation.

The increase in electrical conductivity is contradictory to the results of other MSL
systems treating domestic wastewater and polluted river water [72,83]. This could be
explained by the fact that the MSL system only treated distilled water contaminated with
MCs. There was no pollutant load in the feed water, hence the low electrical conductivity
at the inlet of the MSL system. The leaching of soluble elements from the MSL substrate
by distilled water and degradation of microcystin-LR would be the reason for the high
electrical conductivity at the outlet of the pilot system.

On the other hand, the TDS values confirm electrical conductivity. Dissolution of inor-
ganic salt compounds and organic matter in the MSL filter materials resulted in increased
electrical conductivity and TDS. Nevertheless, these values still comply with the WHO
recommended standards for drinking water.

During the last week (week 5), samples were collected on days 1 and 7. A slight
decrease in the toxin concentration, from 0.3832 to 0.3765 pug/L, was noted. This decrease
in the feed tank during the same week could be related to the adaptation and development
during the five weeks of the bacteria capable of degrading MCs. If a bacterial community
capable of managing MCs begins to appear in the feed tank during the fifth week, this could
be an indication of a quasi-colonial presence of these microcystin-degrading bacteria in
the layers of the MSL. This is because the system is designed to contain the nutrients and
conditions favoring the formation of biofilm to accelerate treatment. This slight decrease in
microcystin concentration from the inlet to the storage tank could also be due to the fact
that PVC has the ability to adsorb MCs [84].

Adsorption, infiltration, and biodegradation are the major processes occurring in the
MSL system for pollutant removal [85].

The removal of MCs is therefore enhanced by adsorption onto the porous pozzolan
material. This is in agreement with several authors who have shown that filtration is one
of the processes for removing microcystin [82,86,87]. However, biodegradation has been
shown to be the major degradation process for MCs in slow sand filtration [56,82,88]. In the
present study, the increase in the concentration of MCs and equivalent had no impact on
the purification capacity of the MSL system. Several authors have shown that biofilm for-
mation requires 4-7 months on sterile material [82,86,89]. This leads us to believe that this
purification performance is also due to the formation and maturation of microorganisms
capable of degrading the toxin. The dissolved oxygen at the MSL pilot outlet gradually
increased, which is evidence of the aeration of the system and good microbial functioning,
leading to the maturation of the biofilm inside the MSL substrate. Maintaining the removal
rate above 99% throughout the experiment involves the combination of adsorption and
biodegradation. Filtration and biodegradation would therefore be effective in the MSL
system and are the major processes in the degradation of MCs.

5. Conclusions

The present work evaluated, for the first time, the efficiency of multi-soil-layering
eco-technology to remove cyanotoxins from distilled water contaminated by MC-LR. Pre-
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liminary results showed a very good capacity of the MSL system to eliminate MC-LR,
with the removal rate reaching above 99%. The main mechanisms involved in this removal
are probably infiltration, adsorption, and degradation. Therefore, the multi-soil-layering
eco-technology could be considered an efficient and promising nature-based solution for
the removal of cyanotoxins (MC-LR) from contaminated surface water. However, further
research regarding the long-term cyanotoxin removal capacity of the MSL eco-technology
and the mechanisms involved is needed before its potential application.
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