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Abstract: With the rapid development of economy and society, China’s demand for water resources
and energy is increasing, and the supply situation is becoming increasingly severe. The correlation
and binding characteristics between the two have become increasingly prominent, which will become
bottlenecks in sustainable economic and social development in the future. In this paper, the Liang–
Kleeman method was used to screen the risk factors of water resources and energy security, and
then four major risk factors were selected. Based on the cloud model, the water resource and
energy security risk assessment models were constructed combined with the predicted values
using GM (1,1) and Pearson III curve methods, and the water resource and energy security risks of
30 provinces (cities) in 2020 were quantitatively assessed. The risk assessment results showed that
the risk level zoning of water resource shortage with different guarantee rates in most regions has
undergone little change, but the spatial distribution was quite different, showing the characteristics
of “low in the South and high in the North”. When the guarantee rate changed from P = 25% to
P = 95%, the risk level of water shortage in Sichuan, Jiangxi, Hunan, Hainan, Jilin, Ningxia and
Nei Monggol significantly increased, and the spatial distribution of energy security risk and water
resource shortage risk was obviously inconsistent.

Keywords: water resources–energy security; cloud model; Liang–Kleeman information flow; risk
assessment; GM (1,1); Pearson III curve

1. Introduction

The resources available to human beings on the earth are limited. With the develop-
ment of economy and society, human demand for resources has also further increased.
When the demand cannot be met, human beings may have to face the challenge brought
by “risk”. Therefore, many scholars are paying more and more attention to the research
on risk assessment [1]. Under this background, the relationship between water, energy
and food has become one of the research hotspots [2,3]. Among them, the security risk of
water resources and energy plays an important role. Water and energy are two kinds of
indispensable resources in the process of human survival and development [4]. The theme
of 2014 World Water Day was determined as “water and energy”, reflecting that water and
energy issues have attracted global attention, and people have fully recognized the threats
and challenges that water and energy shortage may bring [5–7].

China’s total freshwater resources are 2800 billion m3, but the population is huge,
equivalent to feeding 21% of the world’s population with 6% of the world’s water resources.
In 2016, China’s energy consumption accounted for 23%, ranking first in the world. At
present, China’s consumption demand for water resources and energy is on the rise, and
water resources and energy will be in short supply in the future. Therefore, it is of great
theoretical significance and practical value, for the coordinated security of water resources

Water 2021, 13, 1823. https://doi.org/10.3390/w13131823 https://www.mdpi.com/journal/water

https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0001-6197-3170
https://orcid.org/0000-0002-4801-2786
https://doi.org/10.3390/w13131823
https://doi.org/10.3390/w13131823
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/w13131823
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w13131823?type=check_update&version=1


Water 2021, 13, 1823 2 of 14

and energy in China and even in the world, to carry out an integrated assessment of water
resource shortage and energy security risks in China.

As for risk, many scholars have provided different definitions and interpretations
according to the characteristics of different disciplines [8–10]. A widely accepted view is
that the risk is usually understood as a combination of the probability level of a threat
activation and the level of its effects [11,12]. The main phase of risk response consists of
dealing with risk and risk monitoring. In addition, risk communication is required from
beginning to end. In this study, risk identification and risk evaluation are considered the
premise of a scientific response to risk. In the aspect of risk assessment of water shortage,
many scholars have provided relevant definitions of the water shortage risk, among which
the widely accepted definition is the loss caused by the impact of human life and industrial
and agricultural development due to the failure of the water supply system to meet the
water demand [13]. Due to the characteristics of openness, randomness and chaos, the
water resources system is a complex giant system. To make the assessment results more
integrative and accurate, it should include the identification and screening of risk factors,
risk analysis, risk assessment, risk control and risk decision-making.

In most areas of China, the development and utilization of water resources has reached
or exceeded the international early-warning level, especially in the arid and semi-arid
areas in the north of China. The serious water resources pressure has aroused widespread
concern of all countries in the world. The water resources system is affected by many factors,
especially human activities. Therefore, in recent years, research on the risk assessment of
water shortage has become increasingly extensive and in-depth. For instance, Liu et al.
assessed the actual water use of human beings from the perspective of consumption based
on water footprint and other indicators [14]. Dong and Liu defined the drought risk
index (DRI) by a linear combination of reliability, recoverability and vulnerability indices
and introduced the Dempster–Shafer (D-S) evidence theory and reasoning algorithm
considering the uncertainty of drought events [15]. Gain and Giupponi selected the water
shortage index (WSI), population density and rice planting area as assessment indexes to
assess the risk of water shortage in the Yarlung Zangbo River Basin [16]. The results show
that the risk of water shortage has been increasing since 2000, and put forward some risk
management and control measures in view of the grim situation that water shortage would
still be on the rise for a period of time in the future.

Energy is a strategic resource to support the development of a country and a region. It
is an important basis for resource and economic management to make a scientific assess-
ment of the energy security situation in time. Energy security is the assessment, planning
and development of the energy system from the perspective of technology, economy, so-
ciety, environment and politics. In recent years, many scholars have tried to analyze the
energy security risk from different angles and obtained some research results, such as
energy production and consumption, energy supply and demand forecast, energy security
strategy and other related explorations. At present, most of the research studies are based
on the Shannon–Wiener index (SWI) and the Hirschman–Herfindahl indicator (HHI) to
establish energy security models [17] and to identify the state of energy security of coun-
tries or regions. For example, Chalvatzis and Ioannidis used SWI, HHI and the net import
dependence index to assess the energy supply security of all EU countries [18]. The results
show that the diversity of energy security in EU countries has increased significantly since
1990. The SWI index has increased by 14.2%, and the HHI index has increased by 22.6%.
Meanwhile, the relationship between net import dependence and energy diversity has
been demonstrated. The development and utilization of renewable energy can not only
reduce energy import dependence but also reduce energy security risk.

At present, there is no authoritative organization or institution to track or warn China’s
energy security on a regular basis. However, as great importance has been attached to
the issue of energy security by the relevant government departments and society, many
scholars have carried out relevant research from the perspective of energy production,
supply, transportation, consumption and policies to explore the factors affecting energy
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security [19]. For example, Zhang et al. constructed an indicator system from the five
aspects of energy availability and diversity, affordability and substitutability, technology
and efficiency, and policy, and divided the 30 provinces in China into 8 regions to conduct
energy security risk assessment [20]. The results show that the middle reaches of the Yellow
River and Northwest China have the lowest energy security risk; Zhou et al. quantitatively
assessed the medium- and short-term supply risks of 12 mineral elements used in clean
energy technology through their own reserves, import dependence and substitutability
and concluded that tin, cobalt, chromium and nickel are at high risk [21]. The above
research results have played a certain reference and support role in the formulation and
implementation of energy security strategies, but throughout the results of energy security
assessment research, the time and space scales are generally large and most of them focus
on long-term and country-based unit analysis, while there are few studies on short-term
energy risk identification and national internal regional energy security assessment.

In addition, in the general assessment, the classification criteria of indicators are
mostly determined by experience, which has certain subjective arbitrariness. Li et al. put
forward the cloud model, which has the advantage of weakening the influence of the
interval threshold [22]. The membership function of the cloud model is assumed to be
a normal distribution, which is closer to the actual situation. The cloud model has been
successfully applied to the calculation of water resource carrying capacity [23] and to water
environment quality assessment [24]. Water and energy, as natural resources with strategic
significance, play a very important role in ties [25]. Therefore, in the risk assessment of
water and energy, it is necessary to fully consider the degree of interaction between the
two.

In this paper, the Liang–Kleeman information flow method is used to screen the risk
factors of water resource shortage and energy security, and the cloud model method is
introduced to quantitatively express and objectively assess the qualitative risk factors. A
risk assessment model is constructed to quantitatively assess the risk of water resources
and energy security in China in 2020.

2. Methods
2.1. Overview of the Study Area and Data Preparation

In recent years, China’s economy has grown steadily and rapidly, and its contribution
to the world economy is also rising step by step. However, this rapid development is often
accompanied by excessive consumption of natural resources and energy. Water resources
and energy have become the main obstacles to regional economic development.

Overview of water resources: China’s annual renewable freshwater resources are
about 2.81 trillion m3, ranking the fifth in the world, second only to Brazil, Russia, Canada
and Indonesia. However, the per capita freshwater share is very low, only about 34% of
the world average [26]. There is a mismatch between the existing water resources and
water resource demand in many areas of northern and eastern China, which leads to
excessive extraction of surface water and groundwater. The excessive development of
water resources has seriously damaged the development of the ecological environment,
such as land subsidence and saltwater intrusion [27]. With the rapid growth of population
and urbanization, the situation is still deteriorating. Especially in the northern arid areas, it
is equivalent to using 19.1% of the national water resources to meet the water demand of
nearly half of China’s population [28], so the water shortage is more serious. To alleviate
this situation, the Chinese government has established more than 20 water diversion
projects, such as the South to North Water Diversion Project. In a normal year, nearly 400
of China’s more than 660 cities face water shortage, 110 cities are seriously short of water,
and 30 of the 32 large cities with a population of more than 1 million cannot meet their
water demand. In terms of the current water supply gap of 30~40 billion m3 per year,
the water supply gap is larger in China. In terms of water quality, due to the extensive
development model adopted by China in the early and middle stages of industrialization,
water resources have been seriously polluted. By 2016, the total amount of waste water
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discharged in China was 76.5 billion tons, accounting for more than 70% of the total amount
of wastewater discharged in 1990. However, the proportion of wastewater treatment in
China has only increased by 20–66%. Water environmental pollution makes the already
tense water use situation more serious.

Overview of energy consumption: According to the statistical results of the China En-
ergy Statistical Yearbook 2016 [29], China’s total energy consumption in 2016 was
436 million tons of standard coal, an increase of 665% compared with 1978, accounting for
23% of the world’s total energy consumption. In 2009, China’s total energy consumption
surpassed that of the United States, and it became the largest energy consumption country
in the world. According to the current situation of China’s economic development entering
a new era and the development momentum of a new round of industrial reform, China’s
energy consumption demand will increase further in the future, and the world’s share may
reach 60% by 2050 [30]. For a long time, China’s energy development has been facing the
situation of an unreasonable structure. With coal, oil, natural gas and other primary energy
sources as the leading energy sources, the total consumption of these three kinds of energy
accounted for 87.2% in 2016, far higher than the world average level. At present, China is
facing not only the severe situation of insufficient energy supply but also the pressure of
energy conservation and emission reduction. Improving energy efficiency can effectively
alleviate this situation. However, China’s energy efficiency is not high at present. The
energy consumption per unit GDP is about 1.75 times the world average level, which is
2.25, 3.63 and 4.18 times that of the United States, Germany and Japan, respectively [31],
and there is a big gap compared with the developed countries. To alleviate the energy crisis,
China has been emphasizing the development of renewable energy in recent years, but the
consumption pattern relying on fossil energy will not change significantly in a short time.
It is still an important part of China’s energy structure adjustment to develop renewable
energy, promote renewable energy utilization technology and increase the proportion of
renewable energy utilization and consumption.

2.2. The Liang–Kleeman Information Flow Method

Information flow is a basic concept in physics. Liang and Richard Kleeman established
a strict system based on the concept of information, which can be accurately calculated by
using simple formulas [32,33].

For time series X1 and X2, the maximum likelihood estimation of the causal quantity
from X2 to X1 is

|T2→1| =
C11C12C2,d1 − C2

12C1,d1

C2
11C22 − C11C2

12
(1)

where Cij(i, j = 1, 2) refers to the sample covariance between Xi and Xj, Ci,dj refers to the
covariance of Xi and ∆Xj/∆t is the covariance of the sequence obtained by the difference
separation of dXj/dt with Euler’s front difference.

X·j,n =
Xj,n+1 − Xj,n

∆t
(2)

If |T2→1| > 0, then in the causal relationship, X2 is the cause and X1 is the effect.
The above equation can be expressed by correlation coefficient as follows:

|T2→1| =
r

1− r2

(
r′2,d1 − r′1,d1

)
(3)

where r is the correlation coefficient, and r = C12√
C11C22

, r′ i,dj =
Ci,dj√
CiiCjj

.

When r = 0, T2→1 = 0. However, when T2→1 = 0, r is not necessarily equal to 0. This
also shows that causality and correlation are not completely equivalent. If there is a causal
relationship between two sequences, they must be related, but the correlation between
them does not mean that they are causal.
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Here, the Liang–Kleeman information flow method is used to analyze the causality
degree between the risk factors and risk, so as to realize the preliminary screening of risk
factors, which not only ensures the reliability of the assessment results but also reduces the
computational complexity.

2.3. Assessment Method Based on the Normal Cloud Model

The cloud model is based on probability theory and fuzzy mathematics theory. It
can be used to process qualitative concepts expressed in language description, convert
them into corresponding quantitative language values, or convert quantitative values into
qualitative expressions [22].

The three numerical characteristics of clouds are expected Ex, entropy En and hyper
entropy He. Among them, Ex is the central value of the domain, En represents the mea-
surable range of a qualitative concept and He is the entropy’s entropy, which is used to
represent the uncertainty of entropy. The horizontal axis represents the range of uncertainty
measurements of a concept, and the vertical axis represents the membership degree.

On the basis of the level standard, the calculation formula is as follows [34,35]:

x = (Bmax + Bmin)/2 (4)

En = (Bmax − Bmin)/6 (5)

He = k (6)

where Bmin and Bmax represent the minimum and maximum critical values of the indicator.
k is generally taken as 0.01. If the level standard of the indicator’s membership degree is an
infinite interval, such as [Bmin,+∞] or [−∞, Bmax], the expected value or default boundary
parameters can be determined according to the upper and lower limits of the indicator
value, and then the three parameters can be calculated.

Suppose x ∈ X is the assessment object. c refers to the qualitative description concept
(i.e., level set) on X. Then there is µx ∼ N

(
Ex, En′2

)
, where En′2 ∼ N

(
En, He2). The

distribution on X is called a normal cloud if the membership function µ(x) of c is

µc(x) = e
− (x−Ex)2

2En′2 . (7)

Here, the normal cloud model is used to measure the randomness and fuzziness in
the risk assessment of water resource shortage and energy security, and the membership
degree of each assessment indicator is calculated using a normal generator to assess the
risk of water resources and energy security.

3. Results

This section applies the methods of the previous section to the assessment of water
resources and energy security risks in China. Water resource shortage and energy security
risks are sensitive to temporal aggregation, so, if computed on different period bases,
different pictures will be provided. Due to the limitation of research period selection and
data sources, this study carried out related research on a yearly basis and assessed the risk
of water resource shortage and energy security in 30 provinces (cities) of China.

3.1. Data Sources and Analysis

Considering that Beijing is representative in terms of water shortage, the relevant
data are relatively complete. Therefore, taking Beijing as the sample, the main risk factors
of water resource shortage are screened. Because of the large regional differences in
energy production and consumption in China, energy production space and consumption
space are highly separate, so we use national scale data to screen the main risk factors of
energy security. The total amount of water resources, water consumption, precipitation
and GDP from 1980 to 2016 were calculated by consulting the statistical yearbook, water
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resources bulletin, water conservancy statistical yearbook, and national economic and social
development statistical bulletin of Beijing. Due to the incompleteness of data statistics,
the four indicators of surface water resources, groundwater resources, inflow water, and
10,000-yuan GDP water consumption are the data from 2000 to 2016.

Similarly, by referring to China’s statistical yearbook, energy statistical yearbook,
environmental yearbook, environmental statistical annual report and the statistical annual
report of national economic and social development, the data of energy production, energy
consumption, energy reserve rate and SO2 emission reduction rate from 1980 to 2016 are
calculated. The energy import, export, external dependence, vehicle ownership, smoke
(dust) emission and total investment in environmental pollution control are all data from
1991 to 2016. The data of CO2 emission per capita is from the carbon dioxide information
analysis center of the Environmental Science Department of Oak Ridge National Laboratory
(ORNL) in Tennessee. Among them, the degree of external dependence is equal to regional
energy input divided by energy consumption; the elasticity coefficient of energy consump-
tion (production) is equal to the annual average growth rate of total energy consumption
(production) divided by the annual average growth rate of the national economy [36]; the
energy processing conversion efficiency is equal to (processing conversion output divided
by processing conversion input) × 100%; the energy reserve rate is equal to (basic reserves
of coal, oil and natural gas divided by total national reserves) × 100%.

3.2. Identification and Weight Determination of Risk Factors

Taking Beijing as the sample, 24 main risk factors of water shortage are selected from
four aspects: water resource endowment, social economy, water resources utilization and
water environment. In addition, 28 major risk factors of energy security are screened out by
using national scale data in view of energy endowment, social economy, energy utilization
and atmospheric environment. See Tables S1 and S2 for details.

Water shortage rate [37] is usually used to describe the water shortage degree, so this
indicator is used as the characterization value of water resources shortage risk.

water shortage rate =
total water consumption− total water resources

total water consumption
(8)

The information flow values between each indicator and water risk are shown in Table
S1. Generally speaking, if the information flow is greater than 0.1, there is a strong causal
relationship between risk factors and risks.

According to the calculation results, precipitation (d1), surface water resources (d2),
groundwater resources (d3), per capita water resources (d4), water consumption per 10,000-
yuan GDP (d5) and water supply per capita (d6), the causal relationship between the six
indicators and the water resources shortage rate is relatively strong, and the order of
relative importance is as follows:

d5 > d2 > d3 > d6 > d1 > d4 (9)

Therefore, these six indicators are the main risk factors of water resource shortage risk.
In addition, there may be a certain correlation between the indicators, so it is necessary to

further analyze the correlation between factors. If two or more indicators are highly correlated,
the indicator with higher relative importance should be selected and other indicators should
be eliminated. The data from 2000 to 2016 are used for correlation analysis based on the
Spearman method, which requires a smaller sample size and overall distribution of variables.
Figure 1a shows the correlation coefficient of the six risk factors. Blue indicates a positive
correlation between the two variables, pink indicates a negative correlation, and the darker
the color implies that the larger the filling area, the stronger the correlation between the two
variables. To gather variables with similar correlation patterns together, the row and column
of the matrix are reordered by the principal component method.
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Figure 1. The diagram of causality between risk factors and risks. (a) The correlation between risk factors and water
resource security; (b) the correlation between risk factors of energy security.

As can be seen from Figure 1a, the correlation between d3, d4 and d2 is very strong.
According to the relative importance of factors, d2 is selected. Finally, d1, d2, d5 and d6 are
selected as risk factors of water shortage risk assessment.

According to the formula for water shortage rate, energy shortage rate is defined as

energy shortage rate =
energy consumption− energy production

energy consumption
(10)

Energy shortage rate is used to describe the degree of regional energy shortage, and
the indicator is used as the characterization value of energy shortage risk. The value of
information flow between each indicator and energy security risk is shown in Table S2.
According to the calculation, there are 10 indicators that have a strong causal relationship
with energy shortage risk: energy reserve rate (c1), energy consumption per 10,000-yuan
GDP (c2), population number (c3), urbanization rate (c4), proportion of primary industry
(c5), proportion of secondary industry (c6), proportion of tertiary industry (c7), energy
import (c8), degree of external dependence (c9) and vehicle ownership (c10). The order of
relative importance is

c6 > c3 > c2 > c4 > c9 > c5 > c10 > c8 > c7 > c1 (11)

According to the strong causal relationship between energy shortage rate and 10
indicators (Figure 1b), we can see that c3, c4, c5, c7, c8, c9 and c10 have a strong correlation,
and the meanings of different colors are the same as above. According to the relative
importance of factors, c3 and c2 are selected.

Finally, c6, c3, c1 and c2 are selected as the main factors of energy security risk.
For comparison, surface water resources and population number are transformed into

runoff coefficient and population density. Taking water resource shortage assessment fac-
tors as an example, the structure entropy weight method is used to calculate the weight [38].
Different expert opinions may have an impact on the acquisition of weight. Therefore,
to make the decision-making results reflect the real situation as much as possible, we
comprehensively considered factors such as research field relevance, academic influence
and geographical distribution, and five experts were selected to rank the importance of the
four indicators. The results are shown in Table S3.

The ranking result aij formed according to the experts’ opinions is applied to obtain
the membership matrix bij:

bij =
ln
(
6− aij

)
ln5

=


1 0.86 0.68 0.43

0.86 1 0.68 0.43
1 0.68 0.86 0.43

0.86 1 0.68 0.43
0.68 0.86 1 0.43

 (12)
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The average cognition degree bj is

bj = (0.88 0.88 0.78 0.43) (13)

The cognitive blind degree Qj was calculated as

Qj = (0.04 0.04 0.06 0) (14)

The five experts’ overall cognition degree of each indicator is:

xj = (0.84 0.84 0.73 0.43) (15)

Finally, the weight vector W of the indicators was obtained by normalization for xj:

W = (0.296 0.296 0.257 0.151) (16)

In the same way, we can get the weight of energy security assessment indicators. See
Table S4.

3.3. Prediction of Risk Factor Value

Due to the periodicity of precipitation, surface water and incoming water volume
data, the gray model simulation error of GM (1,1) is large. Therefore, the Pearson III
(P-III) curve commonly used in hydrology is selected to fit the frequency curve of rainfall,
and the precipitation and surface water with P = 25% (wet year), P = 50% (normal year),
P = 75% (dry year) and P = 95% (extraordinarily dry year) are calculated [39]. The gray GM
(1,1) model is used to simulate the water consumption per 10,000-yuan GDP and water
supply per capita of all provinces and cities in 2020 [40]. The simulation value is compared
with the actual value to verify the simulation accuracy, and the prediction accuracy level is
judged according to the posterior difference rate C.

Taking Beijing as an example, the Pearson III (P-III) curve is used to fit the frequency
curve of precipitation and surface water resources, as shown in Figure S1. The results are
shown in Table 1.

Table 1. Predicted results of precipitation in Beijing in 2020.

Period Types Precipitation (mm) Surface Water Resources
(108 m3)

P = 25% (wet year) 647.08 14.91
P = 50% (normal year) 547.39 9.95

P = 75% (dry year) 447.70 6.96
P = 95% (extraordinarily dry year) 304.29 5.11

The GM (1,1) model was used to predict d5 and d6. The data of Beijing from 2004 to
2016 were imported and the predicted values were obtained, as shown in Figure S2.

The accuracy of the simulation results was tested and the accuracy test results are
shown in Table 2. The relative residual error, average relative error, relative precision and C
value of the original value and the fitting value from 2004 to 2016 are small, and the fitting
effect is good. The posterior difference rate C of d5 and d6 is 0.061 and 0.257, respectively,
and the prediction level is I (good).
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Table 2. Predicted results of precipitation in Beijing in 2020.

Indicator Average
Relative Error

Relative
Precision C Level

Water
consumption per

10,000-yuan
GDP/d5

647.08 14.91 0.061 Good

Water supply
per capita/d6

547.39 9.95 0.257 Good

The main risk factors of energy security, such as the proportion of secondary industry,
population density, energy reserve rate and energy consumption per 10,000-yuan GDP, are
also predicted by the gray GM (1,1) model, and the data from 2004 to 2016 are used for fitting.
However, when the GM (1,1) model is used to establish the population and the proportion of
the secondary industry, it is found that the changes of the population and the proportion of
the secondary industry tend to be stable in recent years. Taking the population of Tianjin as
an example (as shown in Figure S3), the fitting curve is established on the basis of ensuring
the minimum relative error of the overall original data, so the residual in recent years are
relatively large. To ensure the relative stability and similarity of the original data, the data
from 2004 to 2016 were selected for fitting. According to the fitting results, adjust the sample
size, shorten the sample range and make the fitting effect better.

Similarly, the prediction results of all major risk factors can be obtained by repeating
the above steps. Among them, for provinces (cities) with missing precipitation data, the
annual average precipitation of major cities is used instead. Based on all the calculation
results, the water resource and energy status of provinces (cities) in 2020 are predicted.

3.4. Risk Assessment Results Based on the Cloud Model and Discussion

In this section, the assessment indicators of water resource and energy security can
be divided into positive and negative indicators. The positive indicators include water
consumption per 10,000-yuan GDP, water supply per capita, proportion of secondary
industry, population and energy consumption per 10,000-yuan GDP. The greater the value
of positive indicators, the greater the pressure on water resources or energy utilization
in the region, indicating that the risk of water resource shortage or energy security is
greater. The negative indicators include precipitation, surface water resources and energy
reserve rate. The greater the value of negative indicators, the less the risk of water resource
shortage or energy security in the region.

On the basis of the existing literature and the actual situation, each indicator is divided
into five levels: low risk (Level I), relatively low risk (Level II), medium risk (Level III),
relatively high risk (Level IV) and high risk (Level V). The results are shown in Table 3.

Table 3. Classification criteria for risk assessment indicators of water resources and energy security.

Indicators Level I Level II Level III Level IV Level V

Water consumption per 10,000-yuan
GDP 0~15 15~50 50~100 100~300 300~750

Water consumption per capita ≥500 400~500 300~400 200~300 0~200
precipitation ≥1000 750~1000 500~750 250~500 0~250

Runoff coefficient ≥0.32 0.29~0.32 0.27~0.29 0.24~0.27 0~0.24
Proportion of secondary industry 0~35 35~40 40~46 48~46 ≥48

Population density 0~250 250~300 300~350 350~400 ≥400
Energy reserve rate ≥2.0 1.0~2.0 0.6~1.0 0.2~0.6 0~0.2

Energy consumption per 10,000-yuan
GDP 0~250 250~500 500~750 750~1000 ≥1000
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The risk assessment results of water and energy security based on the cloud model
are shown in Figure 2.

Figure 2. The risk assessment results of water resources and energy security based on the cloud model for (a) water
consumption per 10,000-yuan GDP (on X-axis); (b) water consumption per capita (on X-axis); (c) Precipitation (on X-
axis);precipitation; (d) precipitation coefficient (on X-axis).

In Figure 2a,b, the abscissa represents the water consumption per 10,000-yuan GDP
and water consumption per capita, and the ordinate is its corresponding degree of certainty.
From left to right, they represent cloud clusters corresponding to low risk (U(1)), relatively
low risk (U(2)), medium risk (U(3)), relatively high risk (U(4)) and high risk (U (5)).
Figure 2c,d is the opposite. When the specific value is given, the degree of risk value
belonging to a certain risk value can be judged intuitively from the cloud image. For
example, in 2020, the predicted water consumption per 10,000-yuan GDP in Beijing is
10.74 m3. According to the positive cloud generator, the degree of certainty of each risk
level was obtained: U(1) = 0.61, U(2) = 0.13, U(3) = U(4) = U(5) = 0. In the practical
sense, X (water consumption of 10,000 yuan GDP) = 10.74 should belong to low risk, while
the calculation result was U(1) > U(2) > U(3) = U(4) = U(5) = U(6), which shows that X
(water consumption of 10,000 yuan GDP) = 10.74 belongs to level I, and it is possible to be
subordinate to level II, but it is small, and it is not subordinate to other higher-risk levels,
which is consistent with the practical significance. By repeating the above operations, the
degree of certainty of other assessment indicators at a certain point can be obtained, and
the certainty matrix can be obtained. In the same way, we can get the cloud model that
each energy security risk factor belongs to in terms of risk level, as shown in Figure S4.

The four water resources shortage risk indicators were determined according to the
cloud chart, which belong to different risk levels. Then, according to the different weights
of the four water resource shortage risk assessment indicators, the certainty values of
each risk level are weighted average. The value of certainty of different risk levels was
compared. The level with the highest degree of certainty is the level corresponding to the
risk of water shortage in the province. Then, the risk assessment results of water resource
shortage for each province under the conditions of P = 25% (wet year), P = 50% (normal
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year), P = 75% (dry year) and P = 95% (extraordinarily dry year) are calculated and shown
in Table S5 and Figure 3.

Figure 3. The risk level distribution of water resource shortage with different guarantee rates P in China 2020 (predicted).

It can be seen from Table S5 and Figure 3 that the risk level zoning of water resource
shortage does not change much with different assurance rates, but the spatial distribution
difference is large under the same guarantee rate, which is mainly manifested as “low in
the South and high in the North”, which is consistent with the distribution characteristics
of water resources in China.

In the case of P = 25% (wet year), P = 50% (normal year), P = 75% (dry year) and
P = 95% (extraordinarily dry year), there are 0, 1, 2 and 2 provinces (cities) with high risk;
14, 15, 14 and 14 with higher risk; and 4, 3, 4 and 4 with medium risk. Among them,
Gansu, Qinghai, Xinjiang, Nei Monggol, Heilongjiang, Jilin, Liaoning, Beijing, Tianjin,
Hebei, Shandong, Henan, Shanxi, Shaanxi, Yunnan and Ningxia have maintained relatively
high-risk levels, which are areas with serious water shortage. In addition, Sichuan, Jiangxi,
Hunan and Hainan belong to the areas with good water resource endowment, but when
the guarantee rate changes from P = 25% (wet year) to P = 95% (extraordinarily dry year),
the risk level is significantly improved to medium risk, while the guarantee rate in Jilin,
Ningxia and Nei Monggol is changed from P = 25% (wet year) to P = 95% (extraordinarily
dry year), the risk level is significantly increased to high risk or higher risk, which indicates
that if drought occurs, the security risk will increase significantly.

The assessment results of energy security risk degree in each province are shown in
Table S6 and Figure 4. It can be seen that, in terms of spatial distribution, the risk level
distribution of energy security is basically inconsistent with that of water resource security.
For example, Xinjiang, Gansu, Ningxia, Shanxi, Shaanxi, Nei Monggol, Heilongjiang,
Jilin and Liaoning are seriously short of water resources, but the energy is relatively rich,
belonging to low-risk areas.
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Figure 4. The risk level distribution of energy security in China 2020 (predicted).

There are 12 high-risk energy security areas, including Beijing, Hebei, Qinghai, Henan,
Jiangsu, Hubei, Shanghai, Fujian, Zhejiang, Guangdong, Guangxi and Anhui. For example,
although the energy production is small in Hainan, Yunnan, Hunan, Sichuan and other
provinces, these areas have mainly tourism, planting and other low-energy consumption
industries, and the per capita energy consumption is small, so the demand is small and the
energy security is relatively adequate.

4. Conclusions

In this paper, the Liang–Kleeman method is used to screen the risk factors of water
resource shortage and energy security, respectively. Four indicators are selected as the main
risk factors, and the risk assessment model of water resource shortage and energy security
is constructed to quantitatively assess the risk of water resources and energy security in
various regions in 2020.

The results of the risk assessment of water resources and energy security for different
regions in 2020 based on the cloud model show that, under different guarantee rates
(P = 25%, P = 50%, P = 75% and P = 95%), the risk level zoning of water resources
shortage in the same region does not change much, but the spatial distribution of different
regions is quite different, showing the characteristics of “low in the South and high in
the North.” When the guarantee rate is changed from P = 25% (wet year) to P = 95%
(extremely dry year), the risk level of Sichuan, Jiangxi, Hunan, Hainan, Jilin, Ningxia and
Nei Monggol is significantly improved, and the drought early-warning work in these
areas should be strengthened. The spatial distribution of energy security risk and water
shortage risk is inconsistent, which will bring difficulties to regional water resources and
energy development.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/w13131823/s1: Table S1: Information flow value of risk factors and water shortage risk;
Table S2: Information flow value of risk factors and energy security risks; Table S3: Ranking results
based on expert opinions; Table S4: Calculation table of structure entropy weight of the energy security
risk assessment indicator; Table S5: Assessment results of risk degree of water resources shortage
with different guarantee rates; Table S6: Assessment results of energy security risk degree; Figure S1:
Frequency curve for (a) annual precipitation in Beijing; (b) surface water resources in Beijing; Figure S2:
Comparison between the original value and the fitted value for (a) Water consumption per 10,000-yuan
GDP; (b) Water consumption per capita, values of d5 and d6; Figure S3: Comparison of the original
and fitted values for population in Tianjin; Figure S4: Cloud model of energy security belonging to risk
level for (a) Proportion of secondary industry (on X-axis); (b) Energy reserve rate (on X-axis); (c) Energy
consumption per 10,000-yuan GDP (on X-axis); (d) Population density (on X-axis).
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