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Abstract: In recent years, the potential impacts of climate change on water resources and the hy-
drologic cycle have gained importance especially for snow-dominated mountainous basins. Within
this scope, the Euphrates-Tigris Basin, a snow-fed transboundary river with several large dams, was
selected to investigate the effects of changing climate on seasonal snow and runoff. In this study, two
headwater basins of the Euphrates River, ranging in elevation between 1500–3500 m, were assigned
and SWAT was employed as a hydrological modeling tool. Model calibration and validation were
conducted in a stepwise manner for snow and runoff consecutively. For the snow routine, model
parameters were adjusted using MODIS daily snow-covered area, achieving hit rates of more than
95% between MODIS and SWAT. Other model parameters were calibrated successively and later
validated according to daily runoff, reaching a Nash-Sutcliffe efficiency of 0.64–0.82 in both basins.
After the modeling stage, the focus was drawn to the impacts of climate change under two different
climate scenarios (RCP4.5 and RCP8.5) in two 30-year projection periods (2041–2070 and 2071–2099).
From the results, it is estimated that on average snow water equivalent decreases in the order of
30–39% and snow-covered days shorten by 37–43 days for the two basins until 2099. In terms of
runoff, a slight reduction of at most 5% on average volume is projected but more notably, runoff
center-time is expected to shift 1–2 weeks earlier by the end of the century.

Keywords: SWAT; snow; climate change; Turkey

1. Introduction

Mountainous regions serve as a lifeline in socio-hydrological systems, as the origin of
most rivers stems from such elevations [1–4]. Snow at high altitudes, sometimes called ‘wa-
ter towers’ [3,5], contributes significantly to discharge downstream, and plays a major role
in the hydrological cycle. Therefore, knowledge of the amount and spatial distribution of
snow cover are essential [6]. However, snow measurements are particularly difficult in such
areas, and to overcome the limitations of data scarcity, the utilization of satellite imagery
has been an effective method for many hydrological studies since the late 1970s [7–15]. Be-
cause snow-dominated areas are very susceptible to increasing temperatures, snow is also
a strong indicator of climate change. According to the Intergovernmental Panel on Climate
Change (IPCC) report [16], there is no doubt that the climate system has been changing
due to human influence; therefore, in recent years, many researchers have focused their
attention on climate change impacts in snow-dominated mountainous basins [2,17–19].
They commonly emphasize the need for analyzing future water availability in such regions,
usually lacking sufficient ground observations.

The Soil and Water Assessment Tool (SWAT) [20] has had widely successful applica-
tions in hydrological and environmental issues over many regions of the world [21–24].
Generally, hydrologic modelling in mountainous areas is challenging; moreover, [25] re-
ported that SWAT had inadequate performance on high-elevated catchments until a new
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algorithm was adopted by [26], incorporating elevation bands that discretize the snowmelt
process based on basin topographic controls.

Along with this development, different studies have been applied at various parts of the
world on the purpose of observing orographic effects using snow-melt parameters [27–30]. In
some snow-dominated basins, runoff and snow processes of different models are compared
with SWAT [31,32]. Additionally, remote sensing data like MODIS images are used along
with SWAT in various mountainous regions [14,33]. In these studies, ground or satellite
snow data are exploited in order to validate the model representation of the snow extent
both spatially and temporally. Furthermore, SWAT is also made use of as an effective
hydrologic simulator when assessing the impact of climate change on different regions
of the globe [34–37]. Overall, SWAT produces acceptable results and has been shown
to be an efficient tool for the planning and management of water resources, including
snow-dominated catchments, when compared to other models [24,38–41].

In the current study, SWAT is utilized for the simulation of two contiguous headwater
basins located in the mountainous eastern Turkey, with ArcSWAT, a GIS-based interface.
There have been previous applications of SWAT in Turkey covering different fields: water
quality [42,43], optimal water-management strategies [43,44], the effect of climate change
on groundwater [45], and water resource potential [46,47], but the novelty of this study
is its use of remotely sensed and in situ measured snow data for SWAT model calibra-
tion/validation. Hence, the novel contribution and main objectives of the current research
are: (i) the application of SWAT in snow-dominated mountainous basins as a pioneer study
in Turkey, (ii) utilizing remote sensing and ground snow data for model calibration and
validation besides runoff, and (iii) evaluating the impacts of climate change scenarios on
the mountainous headwater basins.

2. Materials and Data
2.1. Study Area

For the area of application, Murat (E21A022, 39.54◦ N–42.78◦ E) and Karasu (E21A054,
39.94◦ N–40.76◦ E) basins, both located at the headwaters of Euphrates River in the eastern
part of Turkey, were selected (Figure 1). Murat and Karasu basins have areas of 5900 km2

and 2890 km2 and mean slopes of 15.7% and 16.5%, respectively. Elevations range from 1559
m to 3516 m for Murat and from 1675 m to 3156 m for Karasu with a similar hypsometric
mean of around 2100 m. According to the European Environment Agency—Coordination
of Information on the Environment (EEA-CORINE) [48] Land Cover dataset, the major
land cover types for each basin are rangelands (55.4% Murat and 52.4% Karasu) and
agricultural areas (36.7% Murat and 38.8% Karasu). As for the soil map produced by
the Food and Agriculture Organization of the United Nations Educational, Scientific and
Cultural Organization (FAO-UNESCO) [49], different types of kastanozems and leptosols
are the major soil groups in the two basins (100% Murat and 93% Karasu).

Annual average discharges (Q) recorded at stream gauging stations of the basins are
55.03 m3/s (294.2 mm) for Murat and 22.38 m3/s (244.2 mm) for Karasu. Agri (1648 m) and
Erzurum (1758 m) are two meteorological stations within the basin boundaries (Figure 1).
Annual total precipitation (P) and mean temperature (T) are around 490 mm and 6.7 ◦C
for Agri station and 470 mm and 5.4 ◦C for Erzurum station. Yearly hydro-meteorological
conditions for both basins are presented in Figure 2.
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Figure 1. Geographic location of Murat and Karasu basins. 

 
Figure 2. Hydro-meteorological conditions of (a) Murat and (b) Karasu basin. 
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2.2. SWAT Model

The Soil and Water Assessment Tool (SWAT) is a comprehensive, semi-distributed,
continuous, process-based hydrological model developed in the early 1990s [20]. Initially,
the objective in model development was to predict the impact of management on water,
sediment, and agricultural chemical yields in large ungauged basins. The current version
of SWAT [50] has been extensively developed since its origin based on the Simulator for
Water Resources in Rural Basins (SWRRB) model [51]. A detailed history of SWAT model
development can be found in [52–54].

In recent years, SWAT has become a well-known and convenient model for many appli-
cations, from hydrological to environmental issues, and its area of utilization is widespread
throughout the world [22,23,40,41]. On the other hand, the model’s setup and calibration
procedures are demanding because of several physical model inputs and parameters.

In SWAT, a basin is divided into subbasins based on topography; moreover, hydro-
logical response units (HRUs) for each subbasin are defined as unique combinations of
slope, land use, and soil. In this study, ArcSWAT GIS-based interface is used to identify
subbasins and HRUs, as well as handling model input files. Major hydrological processes
that include surface runoff, lateral flow, evapotranspiration, recharge, revap, return flow,
infiltration, and percolation are computed in each HRU within a water-balance calculation
based on four reservoirs (snow, soil, and shallow and deep aquifer) [55–57].

It has been proven in several studies that using elevation bands with associated snow
parameters and lapse rates increases the model’s success for snow-dominated mountainous
basins [6,14,26,58–61]. Among these studies, there is no common idea or recommendation
on the number of elevation bands selected, which can be defined as a function of elevation
or area. For this study, ten elevation bands are preferred in modelling to elaborate the
model snow outputs in detail.

2.3. Model Inputs

Table 1 shows model inputs under four major classes: HRU definition, climate, cali-
bration/validation, and climate projection data. SWAT needs some physical data in order
to properly define HRUs. Shuttle Radar Topography Mission (SRTM) data [62] is utilized
as a digital elevation model (DEM) in delineating the basin and river network. CORINE
and FAO data are employed for generating land-use and soil type, respectively.

Table 1. Data description, source, and scale/resolution used in SWAT.

Data Type Data Source Scale/Resolution

HRU Definition Data
Digital Elevation Model (DEM) Shuttle Radar Topography Mission (SRTM) Grid cell 90 × 90 m
Land use European Environment Agency CORINE Land Cover (year 2000) Grid cell 100 × 100 m
Soil FAO-UNESCO Global Soil Map Scale 1:5,000,000

Climate Data
Precipitation, max./min.
temperature Turkish Meteorological Service (MGM) Ground station

Rel. hum., solar rad., wind speed Climate Forecast System Reanalysis (CFSR) Grid cell ~38 km

Calibration/Validation Data
Discharge Turkish Hydraulic Works (DSI) Ground station
Snow Water Equivalent (SWE) Turkish Hydraulic Works (DSI) Ground station
Snow Cover Area (SCA) MODerate Resolution Imaging Spectroradiometer (MODIS) Grid cell 500 × 500 m

Climate Projection Data
Temperature/precipitation Turkish Meteorological Service (MGM) Grid cell 20 × 20 km

For the climate data, daily precipitation and temperature were obtained from the Turk-
ish Meteorological Service (MGM) gauge measurements. The optional relative humidity,
solar radiation, and wind speed data were gathered from global weather data derived
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from Climate Forecast System Reanalysis (CFSR) [63], which is provided as an option
under SWAT.

For model calibration/validation, discharge and snow water equivalent (SWE) data
were collected from the Turkish Hydraulic Works (DSI). Daily discharge at basin outlets
and monthly snow tube SWE measurements from snow stations located in the vicinity
of the basins are utilized. As for remote sensing data, MODerate Resolution Imaging
Spectroradiometer (MODIS) daily snow-cover images (M*D10A1) were downloaded from
NASA [64]. MODIS (Terra/Aqua) snow-cover extent was processed through a series
of cloud-filtering algorithms (including a combination of Terra/Aqua, spatio-temporal,
elevation, and seasonal filters) to obtain the daily cloud-free snow extent [65].

Climate projection data were gathered from the Turkish Meteorological Service (MGM)
using the output of the MPI-ESM-MR Global Circulation Model whose climate parameters
are dynamically downscaled to 20 km domain.

3. Modelling Studies and Results
3.1. Base Model Setup

For setting up the base model without any calibration, ArcSWAT 2012.10_4.19 desktop
version was used as an interface. Firstly, in the watershed delineation step, the minimum
subbasin threshold area (STA) values were defined credibly [66,67]. When a certain STA
was selected for each basin (Table 2), SWAT automatically discretized 45 subbasins and
663 HRUs for Murat, along with 41 subbasins and 462 HRUs for Karasu basin. Ten elevation
bands were preferred for each basin. Finally, the selected timeline for running the model
in terms of water year was chosen as: three years (1999–2001) for warm-up, six years
(2002–2007) for calibration, and four years (2008–2011) for validation.

Table 2. Base model setup descriptions for each basin.

Description Murat Karasu

Minimum subbasin threshold area 10,000 Ha 5000 Ha
HRU threshold (slope/land use/soil) 0/0/0

Subbasin number 45 41
Slope classes 0–12/12–25/>25 (%)
HRU number 663 462

Elevation band number 10
Warm-up period 1999–2001 (3 years)

Calibration period 2002–2007 (6 years)
Validation period 2008–2011 (4 years)

3.2. Snow Parameters Fitting Procedure

SWAT has several model parameters for calibration and for such processes; an external
automatic calibration software called SWAT-CUP (SWAT-Calibration and Uncertainty
Program) [68] is preferred by SWAT-users for ease and efficiency [57]. When all the
model parameters were set for calibration with runoff only in SWAT-CUP, unrealistic
values were achieved, especially for some of the snow parameters, as also experienced
by [61]. These abnormalities were especially seen in SMFMN (minimum melt factor in the
Northern Hemisphere) parameter being greater than SMFMX (maximum melt factor in the
Northern Hemisphere), as well as in high/low PLAPS/TLAPS rates. These results could be
attributed to either calibrating too many parameters at the same time or fitting the model
parameters to flow only. As stated by [69], according to the parametrization procedure,
snow parameters and lapse rates should be fitted first before flow calibration. For this
reason, a temporal methodology was undertaken in this study to compare the SWE-SCA
(SWAT derived Snow Water Equivalent in mm and MODIS derived Snow-Covered Area in
percent) relationship.

SWE calculations in SWAT are HRU-based; therefore, values were first transformed
into subbasins and later converted as basin-wide SWE outputs. On the other hand, SCA



Water 2021, 13, 1982 6 of 23

values were derived from MODIS daily cloud-free snow extent for each basin. Although
these two snow components (SWE vs SCA) have different units, a time series comparison
could be carried out [12,14,70–76].

In our fitting procedure, the consistency between SWE and SCA was achieved by
manually adjusting the SWAT snow parameters within physical limits using previous
investigations on the basins [77–79]. Figure 3 illustrates an example of the SWE-SCA
comparison for one year (2004) in each basin, including default and calibrated snow
parameter sets. In this comparison, the important elements are the timing match between
the beginning and end dates of snow cover as well as the accumulation and depletion
phases. Figure 4 depicts SWAT-derived SWE using default/calibrated snow parameters
and MODIS-derived SCA in both Murat and Karasu basins for the whole modeling period
(2002–2011). A simple hit rate performance measure was utilized to assess the comparison
success as given in Equation (1). In order not to degrade the match performance from small
fluctuations (due to improper satellite snow-cloud discrimination or ground partial snow
cover at the beginning and end periods of the snow season), a limit of 1 mm for SWE and
5% for SCA was set.

Hit rate = [(a + d)/(a + b + c + d)] × 100 (1)

where ‘a’ is the number of snow days for both SWE and SCA, ‘d’ is the number of no snow
days for both SWE and SCA, ‘b’ is the number of snow days for SWE and no snow days for
SCA, and ‘c’ is the number of no snow days for SWE and snow days for SCA.
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Table 3 displays the SWE-SCA comparison hit-rate scores for the calibrated model in
each basin and water year. Overall, hit rate scores are above 95% both in the calibration
and validation periods, indicating a good fit in terms of temporal comparison. Table 4
tabulates the suitable snow parameters and lapse rates fitted after applying the SWE-SCA
temporal methodology. These values were manually calibrated, and tended to suit both
basins (since the two basins are quite similar in terms of climate, topography, and land use),
hence they may not be global optimums but rather a physically meaningful and trustable
parameter set.



Water 2021, 13, 1982 7 of 23
Water 2021, 13, 1982 7 of 25 
 

 

 
Figure 4. SWE (default/calibrated)–SCA comparison chart for (a) Murat and (b) Karasu basin in the modeling period. 

Table 3 displays the SWE–SCA comparison hit-rate scores for the calibrated model 
in each basin and water year. Overall, hit rate scores are above 95% both in the calibration 
and validation periods, indicating a good fit in terms of temporal comparison. Table 4 
tabulates the suitable snow parameters and lapse rates fitted after applying the SWE–
SCA temporal methodology. These values were manually calibrated, and tended to suit 
both basins (since the two basins are quite similar in terms of climate, topography, and 
land use), hence they may not be global optimums but rather a physically meaningful 
and trustable parameter set.  

Figure 4. SWE (default/calibrated)-SCA comparison chart for (a) Murat and (b) Karasu basin in the modeling period.

Table 3. Hit rates for SWE-SCA comparison charts for calibrated snow parameters.

Hydrological
Year

Murat Basin Karasu Basin

a b c d Hit Rate
(%) a b c d Hit Rate

(%)

2002 213 7 5 140 96.71 200 16 2 147 95.07
2003 179 8 9 169 95.34 184 2 33 146 90.41
2004 209 5 2 150 98.36 209 0 8 149 98.08
2005 179 7 10 169 95.34 183 6 9 167 95.89
2006 171 0 26 168 92.88 203 0 3 159 99.18
2007 193 2 5 165 98.08 193 0 9 163 97.53

Total Cal.
Period 1144 29 57 961 96.07 1172 24 64 931 95.98

2008 157 2 19 188 94.52 180 11 23 152 90.96
2009 177 5 6 177 96.99 178 2 8 177 97.26
2010 198 6 3 158 97.53 194 4 8 159 96.71
2011 159 1 11 194 96.71 179 24 11 151 90.41

Total Val.
Period 691 14 39 717 96.37 731 41 50 639 93.77

Total 1835 43 96 1678 96.25 1893 75 114 1570 95.15
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Table 4. Fitted snow parameters and lapse rates.

Parameter Fitting Value

SFTMP 1 ◦C
SMTMP 0.5 ◦C
SMFMX 2.5 mm H2O/◦C-day
SMFMN 0.5 mm H2O/◦C-day

TIMP 1
SNOCOVMX 55 mm H2O
SNO50COV 0.55

PLAPS 175 mm H2O /km
TLAPS −5.5 ◦C/km

3.3. Flow-Sensitivity Analysis, Calibration, Validation and Water Balance

After manually fitting the snow parameters, the calibration procedure for the remain-
ing model parameters was conducted utilizing SWAT-CUP according to observed runoff.
Before starting the calibration, to determine the critical parameters, a sensitivity analysis is
performed by SWAT-CUP using the Sequential Uncertainty Fitting Algorithm—version2
(SUFI-2) algorithm, which relies on the Latin hypercube sampling [80]. A global (all-at-
a-time) sensitivity analysis procedure as well as a large number of runs (around 1000
were proposed in order to identify the impact of each parameter on the objective function)
was preferred to achieve more reliable results described by [23]. Table 5 tabulates the
parameters considered in sensitivity analysis and their statistical results for each basin.

Table 5. Statistical results of global sensitivity analysis.

Parameters Description
Murat Basin Karasu Basin

t-Stat p-Value t-Stat p-Value

CN2 SCS runoff curve number 2.48 0.01 −11.73 0.00
ALPHA_BF Base flow alpha factor 35.05 0.00 6.18 0.00
GW_DELAY Groundwater delay −6.88 0.00 4.57 0.00

GWQMN Threshold water depth in the shallow aquifer for return flow to occur −1.29 0.19 2.18 0.02
REVAPMN Threshold water depth in the shallow aquifer for ‘revap’ to occur 2.12 0.03 1.83 0.06

RCHRG_DP Deep aquifer percolation fraction 1.41 0.15 9.81 0.00
GW_REVAP Groundwater ‘revap’ coefficient −0.43 0.66 1.06 0.28

ESCO Soil evaporation compensation factor −0.11 0.90 −0.68 0.49
EPCO Plant evaporation compensation factor −0.57 0.56 −0.43 0.66

CH_K2 Effective hydraulic conductivity in main channel alluvium 0.65 0.51 0.45 0.65
CH_N2 Manning’s “n” value for the main channel −0.19 0.84 1.01 0.31

CANMX Maximum canopy storage −0.71 0.47 0.17 0.86
LAT_TTIME Lateral flow travel time −1.01 0.30 0.91 0.36

SLSOIL Slope length for lateral subsurface flow 0.35 0.72 0.32 0.74
SURLAG Surface runoff lag coefficient 0.67 0.50 0.52 0.04

FFCB Initial soil water storage 0.06 0.94 1.36 0.17
SOL_Z Depth from soil to bottom of layer −1.66 0.09 27.54 0.00

SOL_AWC Available water capacity of the soil layer −1.28 0.20 6.27 0.00
SOL_BD Soil moist bulk density 4.43 0.00 2.09 0.12
SOL_K Saturated hydraulic conductivity −11.95 0.00 4.62 0.00

There are two statistics employed for the assessment of sensitive parameters in SUFI-2
algorithm, named t-stat and p-value. The larger the absolute value of t-stat, the more
sensitive a parameter becomes; on the other hand, the significance of parameter sensitivity
increases as p-value approaches zero. At the end of the sensitivity analysis, ten common
model parameters: CN2, ALPHA_BF, SOL_Z, SOL_AWC, SOL_K, SOL_BD, GW_DELAY,
RCHRG_DP, GWQMN, and REVAPMN were selected as being more sensitive at each basin
and set forth for the calibration process, as shown in Table 5.

For the automatic calibration phase on streamflow, the SUFI-2 algorithm of SWAT-CUP
was again utilized with the selected sensitive model parameters. Suitable change methods,
relative (r_) or replace (v_) were assigned for each parameter along with the upper and
lower limits. The term “r” is used for the relative adjustment of a parameter within a given
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range and the term “v” means directly replacing the parameter value with the assigned
value. Two iterations with 1500 runs each were performed with Nash-Sutcliffe Efficiency
(NSE) set as the objective function. The results of the calibration process are provided in
Table 6 showing the parameter value/range for each basin.

Table 6. Calibrated parameters with change methods and initial ranges.

Parameters Change Method
Default Range Initial Range Calibrated Value

Lower Limit Upper Limit Lower Limit Upper Limit Murat Karasu

CN2 r_ 35 98 −0.3 0.3 −0.28 −0.16
ALPHA_BF v_ 0 1 0 1 0.73 0.75

SOL_Z r_ 0 3000 −0.3 0.3 −0.21 0.30
SOL_AWC r_ 0 1 −0.3 0.3 0.29 0.19

SOL_K r_ 0 2000 −0.3 0.3 −0.19 0.30
SOL_BD r_ 0.9 2.5 −0.3 0.3 0.10 0.12

GW_DELAY v_ 0 500 5 100 10.69 7.53
RCHRG_DP v_ 0 1 0.2 0.5 0.36 0.40

GWQMN v_ 0 5000 5 1000 172.85 155.04
REVAPMN v_ 0 1000 500 1000 770.45 750.10

During the SWAT-CUP calibration process, the degree of uncertainty was also eval-
uated using two statistical measures referred to as p-factor and r-factor. The p-factor is
defined as the percentage of measure data captured by 95% prediction uncertainty (95
PPU), calculated at the 2.5% and 97.5% levels of cumulative distribution of an output
variable obtained through Latin hypercube sampling, and the r-factor shows the average
thickness of the 95 PPU band. The p-factor and r-factor are 0.94, 0.38 for Murat and are
0.79, 0.21 for Karasu basin, respectively.

In order to evaluate the goodness of fit, Nash-Sutcliffe Efficiency (NSE), Coefficient
of Determination (R2) and Percent Bias (PBIAS) values were determined. Table 7 shows
performance statistics for SWAT modeling considering daily calibration/validation results
in each basin. Although there are no explicit standards, model outcomes could be assessed
according to the ratings adapted by [81]. Accordingly, almost all categories are within
a “good” to “very good” performance rating, confirming a trustable model setup. For
Murat basin, calibration results are slightly better than the validation period, whereas this
is reversed for Karasu basin. A pictorial representation of the hydrographs for each basin
is shown in Figure 5. All periods considering the calibration (2002–2007) and validation
(2008–2011) are seen in common charts for Murat and Karasu basins and the (dis)agreement
can easily be detected between observed and simulated flow data for each year.

SWAT provided water balance components as model outputs on monthly and annual
basis. These outputs were first compared annually in terms of total water yield (WYLD)
between the simulated and observed values considering 2002–2011 water years for each
basin (Table 8) where the error margin seems to be within 1–2%. Afterwards, each modelled
water balance component was analyzed annually as shown in Table 9. Most of the input
components appear to be similar between the two basins, although output constituents
show important differences. Finally, Figure 6 depicts some of the principal water bal-
ance components (precipitation, water yield, and evapotranspiration) in monthly terms
for Murat and Karasu basins. Since they are mountainous basins, most of the stream-
flow is generated in the spring months due to snowmelt, and evapotranspiration is high
during summer.
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Table 7. Performance statistics of SWAT modeling (daily time-step).

Objective
Function

Murat Basin Karasu Basin

Calibration Validation Calibration Validation

NSE 0.73 0.67 0.64 0.82
R2 0.74 0.76 0.63 0.82

PBIAS −4.3 −14.00 8.5 −3.00
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Table 8. Annual total water yield of SWAT.

Murat Basin Karasu Basin

Simulated WYLD (mm) 304.2 246.3
Observed WYLD (mm) 294.2 244.2
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Table 9. Annual water balance components of SWAT.

Water Balance Component Volume (mm)
Murat Basin Karasu Basin

Precipitation 508.1 529.2
Snowfall 183.2 173.7

Snowmelt 170.1 168.3
Sublimation 17.0 10.0

Surface runoff 11.9 2.26
Lateral flow 5.1 5.6

Ground water flow (Shallow aquifer) 216.2 122.6
Ground water flow (Deep aquifer) 70.9 115.5

Revap 18.2 14.5
Recharge from deep aquifer 70.9 115.5
Recharge from total aquifer 294.1 238.2

Total water yield 304.2 246.3
Percolation 294.1 238.1

Evapotranspiration 274.8 290.9
Potential evapotranspiration 925.7 737.4
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3.4. Snow Validation with Ground and Satellite Data

After the model had been calibrated and validated using flow data, additional valida-
tion was carried out with different types of snow data. The first of these utilized manually
measured discrete snow observations. There are six snow stations located in and around
the two basins under study (Figure 1). Manual snow observations with a snow tube were
conducted at these snow stations once/twice a month. The station locations, names, ele-
vations and the corresponding subbasin numbers are shown in Figure 7. Being located
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at different elevations, each snow station corresponded to a certain elevation zone of the
nearest subbasin. In order to test the representativeness of the snow station versus elevation
band of the subbasin, Figure 8 illustrates discrete SWE measurements on the continuous
model SWE for selected years.
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Looking at Figure 8, it is seen that in Murat basin, Eleskirt and Haciomer stations
show a good correspondence with their elevation band, whereas Dogangun station gives a
higher observed SWE compared to its model. In Karasu basin, Hacimahmut station gives
a fine agreement to its elevation; on the other hand, Guzelyayla and Yesildere stations
seem to slightly overestimate their corresponding elevation range in the snow season.
These outcomes are commonly observed in many situations when point measurements
are assumed to represent a certain spatial/elevation extent. Overall, it can be deduced
that the match between discretely measured and continuously modelled SWE may show
differences from year to year and station to station, although the general trend agrees
quite well.

The second validation assessment using snow data compared SWAT-modelled SWE
with MODIS satellite SCA in spatial terms. In the calibration process, a temporal analysis
was conducted, resulting in a very high correspondence (over 95% match). This time a
spatial analysis was undertaken to relate modelled SWE and remotely sensed SCA during
a snow season. In the literature, this relation (SWE-SCA threshold, meaning the amount
of modelled SWE in mm over which there is complete snow cover by satellite) has been
tested by different authors, sometimes keeping the threshold constant [14,71] and variable
at others [73,76] during the modeling period. In this study, HRU-based SWE calculations
of SWAT were converted into subbasins and compared with MODIS cloud-free SCA for
each subbasin unit. This methodology was evaluated for an example snow season of 2006
where most of the snow conditions (SWAT SWE and MODIS SCA accumulation, peak and
depletion value/timing) were on average terms (Figure 4).
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Figure 8. SWE comparison charts between SWAT elevation bands and snow stations for Dogangun in (a) 2002 and (b) 2003,
Eleskirt in (c) 2007 and (d) 2010, Haciomer in (e) 2003 and (f) 2007, Guzelyayla in (g) 2002 and (h) 2003, Hacimahmut in
(i) 2005 and (j) 2006, Yesildere in (k) 2002 and (l) 2003 hydrological year.

Since it is not practical to visualize the results in daily steps, example periods repre-
senting snow accumulation (4 December 2005) and snow depletion (8 April 2006) were
selected for each basin as depicted in Figure 9. Two different assumptions are tested here,
one keeping the SWE-SCA threshold constant throughout the year, and the other varying
the threshold for accumulation and depletion periods until reaching the best possible
agreement between SWE and SCA grids. Figure 9 parts (a,b) and (e,f) represent the two
basins in the accumulation and depletion periods, respectively, with a 15 mm SWE-SCA
constant threshold as employed by [14]. On the other hand, Figure 9 parts (c,d) and (g,h)
show the same intervals utilizing variable thresholds in each subbasin to have the best
possible visual match between SWAT-modelled SWE and MODIS-derived SCA as proposed
by [76]. The results for the daily 2006 snow season are summarized in Table 10. It is seen
that even though the SWE-SCA threshold ranges are a little different for the two basins,
most probably due to topographic and climatic factors, there is a clear variation between
the accumulation and depletion periods. The thresholds were higher during the depletion
phase as compared to the accumulation. Not only time intervals but also aspect differences
were spotted for each basin. The subbasins comprising of the north mountain ridges
(facing south) have lower SWE-SCA thresholds compared to the south ridges (facing north)
in both basins. These results indicate that besides snow season accumulation/depletion
differences, aspect variations may also need to be considered directly or indirectly while
producing the HRUs within the snow routine of the model. More details on this topic
can be assessed in the future, when there is a good set of ground snow data representing
different elevation bands along with the availability of finer resolution satellite snow cover
for a smaller-sized basin.
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Table 10. SWE-SCA threshold ranges of subbasin groups for each basin.

Period
SWE Threshold Range (mm)

Murat Subbasin Groups Karasu Subbasin Groups
North Side South Side North Side South Side

Accumulation Period (Oct-Dec) 7–8 25–30 20–25 35–40
100% Snow Cover (Jan-Feb) 20–25
Recession Period (Mar-May) 10–15 50–60 25–30 45–50
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3.5. Climate Change Impacts

The climate is a pivotal factor that directly affects all elements of the hydrological cycle.
As mentioned in the Fifth Assessment Report of the IPCC [16], changing precipitation and
temperatures are altering hydrological systems, especially in mountainous regions. In the
same report, four different scenarios referred to as Representative Concentration Pathways
(RCPs—RCP2.6, RCP4.5, RCP6, and RCP8.5) are emphasized depending on the greenhouse
gas concentration trajectories.

In the recent years, the Turkish Meteorological Office (MGM) has conducted climate
projections to reveal the impacts of climate change in different regions of the country under
the project “Climate Projections with New Scenarios for Turkey” [82]. Three Global Circu-
lation Models (GCMs), HadGEM2-ES, MPI-ESM-MR, and GFDL-ESM2M, were exploited,
and climate parameters were further dynamically downscaled using RegCM4.3.4 (Regional
Climate Model) based on the RCP4.5 and RCP8.5 scenarios. While 1971–2000 was used as
the reference period, the projection period covers 2016–2099.

In this study, the precipitation and temperature values of MPI-ESM-MR projections
using the two scenarios (RCP4.5 and RCP8.5) were utilized in SWAT, as they were seen to
have the best match with the reference observation datasets [83]. The projections are treated
in two 30-year sub-periods: 2041–2070 (1st period) and 2071–2099 (2nd period). According
to the MPI-ESM-MR projections based on two emission scenarios during the selected two
periods, the model input variables showed changes as given in Table 11 with respect to the
reference period (1971–2000). For the two basins under study, the variations in temperature
(∆Tmp) are all in the positive direction (+1.8–+4.5 ◦C), increasing with the more pessimistic
scenario as well as period. When the change in precipitation (∆Pcp) is considered, there
are more fluctuations within periods and basins. Some of the positive changes may be
attributed to the Black Sea effect (several climate change projections indicate an increase
or no change in precipitation especially in the eastern Black Sea region) close to where
Karasu basin is situated, as seen in Figure 1. For Murat basin, precipitation shows a small
decrease almost unrelated to the type of scenario. Using these projections, climate change
impacts were assessed with the calibrated SWAT model over the two basins in terms of
snow and discharge.

Table 11. Climate change data (temperature and precipitation) for each basin.

Murat Karasu

∆Tmp
(◦C)

∆Pcp
(%)

∆Tmp
(◦C)

∆Pcp
(%)

1st Period
RCP4.5 +1.86 −1.10 +1.79 +2.84
RCP8.5 +2.74 −4.40 +2.67 −1.82

2nd Period
RCP4.5 +2.33 −3.70 +2.29 −4.40
RCP8.5 +4.43 −1.46 +4.34 +1.31

For snow comparison, SWAT-averaged SWE outputs were plotted for reference, first
and second periods of the two emission scenarios (RCP4.5 and RCP8.5) in Murat and
Karasu basins as shown in Figure 10. It is clearly seen that for long-term averages, the
change in mean SWE values (∆SWE) is negative, which means less snow will accumulate
on the ground compared to what currently occurs. From the figure, it is also detectable
that by the end of the century, the snow season will narrow as snow starts to accumulate in
mid-November instead of late October, and it will deplete quicker and disappear at the
end of May rather than June. In terms of numbers, the change in the snow-covered days
(∆Snow days) is anticipated to decrease by 23 to 43 days in Murat basin and 22 to 37 days
for Karasu basin in the two projection periods, respectively (Table 12). For average SWE
values, a decrease of 21% and 30% is expected to occur in Murat basin during the first and
second periods, respectively, whereas these values reach 26% and 39% for Karasu basin.
Figure 11 depicts SWE change rates for different elevation zones in the second period
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(2071–2099) of the RCP8.5 scenario, when the impact is most evident. It is clearly observed
that the highest variations are in the lower elevations below 1800 m.
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Table 12. Detecting climate change impacts for snow outputs in different scenarios and periods.

Murat Karasu

∆SWE
(%)

∆Snow Days
(day)

∆SWE
(%)

∆Snow Days
(day)

1st Period
RCP4.5 −18.70 −19 −19.64 −18
RCP8.5 −20.95 −23 −25.78 −22

2nd Period
RCP4.5 −25.56 −22 −31.82 −22
RCP8.5 −29.84 −43 −38.83 −37

Considering the impacts on discharge (∆Q), the volume of runoff does not seem to be
affected as much as snow, showing a decrease of at most 5% (Table 13). This is probably
closely related to the change in precipitation between the periods and scenarios (Table 11)
that show varying trends in each basin. For discharges, a center-time (CT) concept [17] is
used which marks the day of the water year when 50% of annual total runoff is reached.
There is a close relation between CT and snow melt in snow-dominated basins, because a
temporal shift in the CT may indicate the impact of climate change. Table 13 shows the
days representing CT for the reference time, first and second projection intervals of RCP4.5
and RCP8.5 scenarios in Murat and Karasu basins. Although the reference CTs for the two
basins are almost a week apart, from the numbers it is evident that CT is shifting to earlier
dates in the future (Figure 12). Since the region of interest is mountainous headwaters
and the climate change scenarios project a gradual increase in temperatures, as expected
more dramatical shifts are foreseen in the second period of the RCP8.5 scenario. With
these results, CT for Murat is predicted to shift towards mid-April, whereas in Karasu this
time shift shows the end of April. Overall, a 9- to 11-day CT translation is expected for
the area of study by 2099. These results agree with the outcomes of other studies in the
literature [18,19,84] stating that a 1–2 week CT translation is expected for regions above
2000 m and 2–4 week shifts are anticipated for areas between 1000–2000 m, thus predicting
that no permanent snow cover will exist below 1000 m by the end of the century.
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Table 13. Detecting climate change impacts for runoff outputs in different scenarios and periods.

Murat Karasu

Reference CT: 27-April Reference CT: 5-May

∆Q (%) CT/Shift ∆Q (%) CT/Shift

1st Period
RCP4.5 −0.57 22-April/5 days +3.83 04-May/1 day
RCP8.5 −4.23 19-April/8 days −1.5 28-April/7 days

2nd Period
RCP4.5 −2.73 23-April/4 days −2.65 02-May/3 days
RCP8.5 −1.18 16-April/11 days +1.56 26-April/9 days
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4. Conclusions

This research investigates a pioneer application of SWAT in the mountainous eastern
regions of Turkey. Since the study comprises high elevated areas, snow is the most sig-
nificant element of the hydrological cycle. However, it is well-known that hydrological
modeling in snow-dominated basins is challenging due to the scarcity of observed data,
considering complex topography and harsh climatic conditions.

In this context, SWAT was chosen to model two snow-dominated headwater basins
of the transboundary Euphrates River in Turkey. A stepwise calibration procedure was
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applied whereby firstly, model snow parameters were manually adjusted within physical
limits exploiting a satellite-assisted temporal methodology. Over 95% hit rate was achieved
comparing MODIS daily cloud-free snow cover images with SWAT snow outputs for the
modeling period. Such a calibration method showed a valuable example of adjusting
model snow parameters using snow observations rather than runoff which could be
applicable for poorly gaged areas. The second part of the calibration procedure continued
by applying the SUFI-2 algorithm within SWAT-CUP software. Initially, sensitive model
parameters were determined and later, they were automatically calibrated according to
NSE objective function on daily runoff terms. NSE calibration/validation results ranged
between 0.64–0.82 for daily timescales, corresponding to 0.74–0.89 for monthly terms,
respectively. These values indicate that SWAT could produce acceptable results also in
mountainous catchments.

Apart from validating the model with runoff only, validation with respect to snow was
also undertaken. A satisfactory trend was observed between continuous model and discrete
point snow measurements during the snow season, although some point observations
deviated from their corresponding elevation bands at specific periods. This could be
improved by collecting more manual points or even better by setting up automatic stations
measuring continuous SWE or snow depth for a more valuable direct comparison. In terms
of spatially distributed snow validation, it was displayed that instead of a single SWE-SCA
threshold, varying limits were demonstrated especially for accumulation and depletion
periods. Furthermore, a noteworthy aspect effect was highlighted as a detailed future
study that could be assessed while producing HRUs within the model setup.

Once a trustable hydrological model was attained, the impacts of climate change
on the basins were investigated. Regionally downscaled MPI-ESM-MR model clearly
indicated an increasing temperature trend with different emission scenarios (RCP4.5 and
RCP8.5) and projection periods (2041–2070 and 2071–2099), but a variable precipitation
change. Accordingly, a more drastic variation is expected to occur in terms of snow amount
(30–39%) and shortening of snow days (37–43 days) rather than runoff volume. The greatest
SWE change is foreseen to occur in the lower elevations (<1800 m) of the region. Although
runoff volume seems to be affected less, the shift in streamflow timing to earlier dates
(1–2 weeks) is a notable indication of changing climate for the headwater basins.

The results of this study indicate that climate change will have a significant impact
on snow amounts and runoff regimes for the two headwater basins which may continue
to increase downstream to the large storage reservoirs by the end of the century. Multi-
hydrologic models including multi-climate projections expanding to the water-scarce lower
areas should be conducted in order to draw more concrete conclusions on the outcomes.
Overall, the consequences of climate change promote decision-makers to consider new
plans and more sustainable management techniques in terms of water resources, agricul-
ture, livestock, and winter tourism in the region.
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