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Abstract: N,S-TiO2 deposited on three kinds of pre-treated sugarcane bagasse was synthesized via a
sol–gel method. The obtained composites were characterized by various techniques, including scan-
ning electron microscopy (SEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy
(FTIR), and photoluminescence spectroscopy (PL). UV-visible induced degradation of ciprofloxacin
was investigated. The influence of some experimental parameters such as contact time, pH, dosage,
and initial concentration on the efficiency of ciprofloxacin elimination was also evaluated. The highest
efficiency was observed for the alkaline pre-treated sugarcane bagasse combined with N,S-TiO2,
about 86% under optimal conditions (contact time 150-min irradiation, pH 5.5–6, dosage 0.5 g L−1,
and the initial concentration CIP 30 ppm). There may be a rapid ciprofloxacin transition from the
adsorption site to the photocatalytic site, and the alkaline pre-treated sugarcane bagasse/N,S-TiO2

prevented the recombining of holes and electrons of the photocatalyst. Furthermore, the alkaline
pretreatment sugarcane bagasse/N,S-TiO2 composite material was sustainable, with only a 10%
reduction after reusing the material three times. The presence of sugarcane bagasse made the material
easy to recover from the liquid phase.

Keywords: sugarcane bagasse; ciprofloxacin; antibiotic; N,S-TiO2; photocatalyst

1. Introduction

For water purification, various technologies are used, which include conventional
techniques (coagulation/flocculation, sedimentation, filtration), adsorption, membrane
filtration, and advanced oxidation processes [1]. Conventional techniques and adsorption
are frequently applied because of their economy, simple design, and easy application [2];
however, they do leave some harmful organic substances non-decomposed and generate a
new waste (solid phase). This drawback is similar to implementing membrane technology
because the pollutants are not degraded but transferred to a more concentrated fraction [3].
Advanced oxidation processes, such as Fenton reaction [4], catalytic ozonation [5,6], and
photocatalytic oxidation [7], are based on the creation of hydroxyl radicals that can degrade
contaminants, especially those that are difficult to biodegrade, and have clearly proved
to be a viable method on the industrial scale [8]. Photocatalytic oxidation processes
using titanium dioxide (TiO2) are considered the most promising and efficient among the
different potential methods due to their well-known properties [9–11]. However, there are
two limitations to its practical application: (i) the large bandgap energy (3.2 eV for anatase
TiO2) limits its use to UV light; (ii) the high recombination rate of electrons and holes,
reported to reach 90% [12,13]. Many studies have shown that doping substances such as
metals and non-metals on TiO2 reduce the bandgap energy and expand light absorption
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to the visible region; it was reported that non-metallic doping is highly stable and more
active than metallic doping [14,15]. Nitrogen, sulfur, and carbon are the most frequently
used non-metal dopants due to their visible light response and quantum efficiency of the
TiO2 lattice, enhancing photocatalytic activity [9].

Apart from doping, TiO2 can also improve the adsorption of photocatalysts by con-
structing a composite with support materials or by incorporating secondary materials [16].
On the other hand, support materials help to reduce the agglomeration of TiO2 nanopar-
ticles over time and allow them to overcome difficulties in their recovery from suspen-
sion [17]. Various supports have been explored with TiO2 as zeolites [16], silica [18],
clay [14], activated carbon [19], biochar [20,21], kaolin [22], and graphene [23]. Low-cost
biomass as carbonaceous source receives significant attention due to its typical large sur-
face area and well-developed porosity. Sugarcane bagasse is a waste residue of the sugar
industry [24], having a typical lignocellulosic biomass composed of cellulose (40–45%),
hemicellulose (30–35%), and lignin (20–30%) [25]; it has the potential to make part of a
composite with TiO2. This meets the criteria of today’s ambition for a circular economy,
as it turns waste into an input for another closed production cycle, in contrast to the
“take-make-waste” approach.

The occurrence of antibiotics in water sources in many countries is one of the obstacles
to achieving the goal of clean water for all. Ciprofloxacin (CIP) belongs to the fluoro-
quinolones group, which comprises third generation antibiotics. It is very commonly used
to give medical care for infectious diseases in humans, pets, livestock, and fish farms [26].
It can spread into the environment through water sanitation systems, cultivated crops, and
food chains; they are a potential threat to the ecosystem and community [27]. Concentra-
tions as high as 50 mg L−1 have been detected near drug manufacturing plants [28] and
from 620–246, 100 ng L−1 in the influent and effluent of wastewater treatment plants in
North America and Europe [29]. It is also considered as one of the 10 high concentration
pharmaceutical substances [26]. Therefore, the removal of CIP from water is an emerging
problem of concern.

From that point of view, a novel sugarcane bagasse/N,S-TiO2 hybrid photocata-
lyst was studied to overcome the limitations mentioned above. Sugarcane bagasse was
chemically activated by alkaline and couple acidic–alkaline agents used for the N,S-TiO2
composite. Sugarcane bagasse/N,S-TiO2 was characterized and tested to determine its
ciprofloxacin removal abilities in comparison with N,S-TiO2. The influence of the experi-
mental parameters was evaluated to find the optimal processing conditions and finally, its
performance and stability after recycling was also investigated.

2. Experimental Section
2.1. Chemicals

Tetraisopropyl orthotitanate (C12H28O4Ti); thiourea (CH4N2S); ethanol 99% (C2H5OH);
nitric acid 65% (HNO3); hydrochloric acid (HCl); sodium hydroxide (NaOH); and ciprofloxacin
hydrochloride (C17H18FN3O3.HCl), all of analytical grade, were purchased from Sigma-
Aldrich and were used without further purification.

2.2. Preparation Materials
2.2.1. Pretreatment Sugarcane Bagasse

The obtained sugarcane bagasse from a local market was cut into pieces of 5 cm and
washed several times with tap water and hot water and was then dehydrated in an oven
at 70 ◦C until a constant weight was obtained. Dried sugarcane bagasse was ground and
sieved to 0.5 cm fractions, denoted as RSB (raw sugarcane bagasse without chemically
pre-treatment), which was used for further chemical modification. An appropriate amount,
10 g RSB, was immersed in a solution containing 1.5 mol L−1 sodium hydroxide. The
materials were washed by deionized water, filtered after 24 h, and dried at 80 ◦C overnight,
becoming ASB (alkaline pretreated sugarcane bagasse). The last adsorbent CSB (two-stage
acidic-alkaline pretreated sugarcane bagasse) was obtained by using 10 g RSB having
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completely imbibed 1 mol L−1 nitric acid, which was then washed, filtered, and dried
under the same conditions as ASB followed by soaking in 1.5 mol L−1 sodium hydroxide
solution. Next, the suspension was filtered, washed with deionized water, and dried at
80 ◦C until constant weight was reached. RSB, ASB, and CSB were stored and used as
supported material in the following experiments.

2.2.2. Synthesis of Sugarcane Bagasse/N,S-TiO2 Composite

The sugarcane bagasse/N,S-TiO2 composite was prepared by a similar method re-
ported in a previous study [30] by adding 3g sugarcane bagasse to the thiourea and nitric
acid solution. The samples were denoted as RSB/N,S-TiO2, ASB/N,S-TiO2, and CSB/N,S-
TiO2 after calcination at 450 ◦C in a furnace for 2 h.

2.3. Characterization of Materials

The crystalline phases of the N,S-TiO2 and sugarcane bagasse/N,S-TiO2 composite
samples were identified by X-ray diffraction (XRD) using a Rigaku-MiniFlex 600 diffrac-
tometer(Rigaku, Tokyo, Japan). The morphology of the samples was revealed by scanning
electron microscopy (SEM) using a Jeol–model JEM 1010 microscope, (JEOL Ltd., Tokyo,
Japan). The functional groups of samples were explored by Fourier-transform infrared
spectroscopy (FTIR) using a Jasco FTIR-4600 spectrometer (Jasco Products Company, Okla-
homa, OK, USA). The quenching of photoluminescence spectroscopy (PL) was recorded
using a Horiba PL FluoroMax-4 spectrofluorometer (Horiba, Tokyo, Japan).

2.4. Experimental Approach

Experimental design and measurement of antibiotic concentration after the reaction
were conducted as described elsewhere [30]. An adequate weight of synthesized sample
was added in 100 mL CIP solution until achieving an adsorption–desorption equilibrium
(45 min) before exposure UV-vis light from a halogen lamp of 500 W under atmospheric
pressure and at room temperature.

RSB/N,S-TiO2, ASB/N,S-TiO2, and CSB/N,S-TiO2 composite samples were tested
to remove CIP in comparison to the synthetic N,S-TiO2 that was prepared using the
procedure described in the literature [30]. The effects of pH, dosage, contact time, and
the initial concentration on CIP removal were studied. Samples were taken and analyzed
with a UV–vis analyzer (Shimadzu, Tokyo, Japan) at a wavelength of 276 nm. The CIP
removal efficiency was evaluated through the Ct/Co ratio, with Ct and Co representing
the equilibrium and initial CIP concentration (ppm), respectively. The stability of the
photocatalyst composite was tested three times to assess its reusability.

3. Results
3.1. Characterization of Materials
3.1.1. XRD

In Figure 1, XRD analysis was performed to characterize the nitrogen and sulfur co-
doped TiO2 and sugarcane bagasse/N,S-TiO2 composite. Since RSB/N,S-TiO2, ASB/N,S-
TiO2, and CSB/N,S-TiO2 have the same XRD spectrum, a general plot called sugarcane
bagasse/N,S-TiO2 is shown. The peaks at the 2-Theta angles correspond to the (101), (103),
(200), and (105) diffraction planes of the anatase phase [30]. The pre-treatments of the
sugarcane bagasse did not change the crystal structure of the photocatalyst. With a 100%
anatase structure, the composite material exhibits a better photocatalytic degradation than
the rutile or brookite phase [31].
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Figure 1. XRD spectrum of N,S-TiO2 and sugarcane bagasse/N,S-TiO2 composite.

3.1.2. SEM

SEM images of N,S-TiO2, RSB/N,S-TiO2, ASB/N,S-TiO2, and CSB/N,S-TiO2 are
shown in Figure 2. N,S-TiO2 nanoparticles have a uniform, even, smooth surface and
a spherical shape. Composite materials have a different surface morphology; specifi-
cally, RSB/N,S-TiO2 has a rough and uneven surface compared to ASB/N,S-TiO2 and
CSB/N,S-TiO2; ASB/N,S-TiO2 seems to be more abrasive than RSB/N,S-TiO2; therefore,
it is smoother and more uniform. CSB/N,S-TiO2 is in the form of the corroded plates.
ASB/N,S-TiO2 material has a smoother surface; therefore, the N,S-TiO2 nanoparticles can
be easily exposed to light to generate the reactive oxygen species that are necessary for
antibiotic degradation reaction. In contrast, RSB/N,S-TiO2 and CSB/N,S-TiO2 have cata-
lyst particles located deep inside, making it difficult for N,S-TiO2 particles to be exposed
to light.

3.1.3. FT-IR

FT-IR results are shown in Figure 3. Spectra were used to identify the surface func-
tional groups of composite synthesized samples. Broad peaks within the 400–800 cm−1

range are related to Ti-O, Ti-O-Ti, O-Ti-O, and Ti-O-C bonds [32,33]. The low FT-IR fre-
quencies of RSB/N,S-TiO2 and CSB/N,S-TiO2 in this range may be because of the low
titanium and oxygen element concentration. Ti-O-N and Ti-O-S bonds appear at the bands
between 1047–1055 cm−1 and 1130–1441 cm−1, respectively [33,34], which clearly show
in the co-doped composites of N,S-TiO2 and ASB/N,S-TiO2. The bands in the regions
1500–1600 cm−1 and 2800–2900 cm−1 are attributed to the stretching of the C–O–O groups,
the symmetric vibration of C–H, and asymmetric vibration of C–H [20]. The peak around
1630–1640 cm−1 is assigned to the bending vibrations of either O-H or the stretching vi-
bration N-H [32,35]. According to Mohamed et al. (2019), the Ti-N-O-C bonds can be
formed at the peak of 1700 cm−1 [32]. The peak at 3300–3500 cm−1 corresponds to the
O-H stretching and bending vibrations of the hydroxyl groups and the adsorbed water
molecules [33]. The presence of the elements N, S, Ti is confirmed in the three material
composites through the FTIR results.
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3.1.4. Photoluminescence

Photoluminescence spectra were used to investigate the recombination of electron–
hole pairs in the composite materials compared to N,S-TiO2. This is shown Figure 4. It can
be seen that the photoluminescence intensity of CSB/N,S-TiO2 is the highest compared
to other materials and decreases steadily in RSB/N,S-TiO2; N,S-TiO2; and ASB/N,S-TiO2.
ASB/N,S-TiO2 can be predicted to have better photocatalytic activity since the recombina-
tion of the e-/h pairs is minimal. After calcination at 450 ◦C, sugarcane bagasse naturally
converted into biochar, which can trap electrons at conduction band energy. The alkaline
pre-treated sugarcane bagasse may strengthen the activated state of the photocatalyst since
the vacant d orbitals of metals present in biochar act as electron acceptors that prevent
the recombination of the e−/h pairs; therefore, the production of OH•, H2O2, and O2

•−

when in contact with O2 on the surface of the material [36] causes an improvement in the
photocatalytic degradation. The results also suggest that the pretreatment methods of
support material influence the photocatalytic material properties.
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3.2. Elimination of CIP
3.2.1. Adsorption Reaction and Photocatalytic Degradation

Figure 5 shows the adsorption reaction and photocatalytic degradation of CIP of
nitrogen, sulfur co-doped TiO2, and three composite materials. It was observed that about
46–49% CIP in solution absorbed on N,S-TiO2; RSB/N,S-TiO2; and CSB/N,S-TiO2 after
45 min in the dark, while the amount of CIP removed by ASB/N,S-TiO2 was approxi-
mately 66%. This suggests that N,S-TiO2 incorporation with alkaline pre-treated sugarcane
bagasse improved the antibiotic adsorption capacity. CIP concentrations tended to de-
crease sharply during about 60 min of illumination; after that, they gradually decreased in
all four materials. The alkaline pretreated sugarcane bagasse gave the highest antibiotic
treatment efficiency compared to the non-pretreated and acid–base pretreatment samples.
ASB/N,S-TiO2 was chosen for the effect of the experimental parameters since the removal
efficiency of ASB/N,S-TiO2 is higher than RSB/N,S-TiO2 and CSB/N,S-TiO2 in comparison
with N,S-TiO2.
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3.2.2. Effect of pH

The influence of pH in the range 3–11 was studied by performing experiments on
the removal of CIP in this pH range; the results are shown in Figure 6. The trend of the
CIP concentration as a function of pH was similar for both materials, decreasing more in
acidic solutions than in basic solutions. The highest treatment efficiency was observed at
a pH in the range of 5.5 to 6 for N,S-TiO2 (78.68%) and ASB/N,S-TiO2 (85.59%). This can
be explained by two effects: (i) the surface of sugarcane bagasse after calcination usually
carries a negative charge surface when the pH is below 7, which gives CIP a positive
charge (the presence of N+) leading to a higher CIP adsorption capacity than in the alkaline
environment; (ii) the photocatalytic reaction is also enhanced in acidic solutions due to the
increase of reactive oxygen species, specifically the OH• radicals. This result also agrees
with the study of Alireza et al. [11]. Therefore, the pH = 5.5–6 of the CIP solution was
applied for further experiments.

Water 2021, 13, x FOR PEER REVIEW 8 of 13 
 

 

 

 
Figure 5. Adsorption reaction and photocatalytic degradation of CIP of N,S-TiO2 and three compo-
site materials(condition: pH = 5.5–6, [CIP]0 = 30 ppm, dosage = 0.05 mg). 

3.2.2. Effect of pH 
The influence of pH in the range 3–11 was studied by performing experiments on the 

removal of CIP in this pH range; the results are shown in Figure 6. The trend of the CIP 
concentration as a function of pH was similar for both materials, decreasing more in acidic 
solutions than in basic solutions. The highest treatment efficiency was observed at a pH 
in the range of 5.5 to 6 for N,S-TiO2 (78.68%) and ASB/N,S-TiO2 (85.59%). This can be ex-
plained by two effects: (i) the surface of sugarcane bagasse after calcination usually carries 
a negative charge surface when the pH is below 7, which gives CIP a positive charge (the 
presence of N+) leading to a higher CIP adsorption capacity than in the alkaline environ-
ment; (ii) the photocatalytic reaction is also enhanced in acidic solutions due to the in-
crease of reactive oxygen species, specifically the OH• radicals. This result also agrees 
with the study of Alireza et al. [11]. Therefore, the pH = 5.5–6 of the CIP solution was 
applied for further experiments.  

 

 
Figure 6. Effect of pH on removal for N,S-TiO2 and ASB/N,S-TiO2 composites (condition: contact
time = 150 min irradiation, [CIP]0 = 30 ppm, dosage = 0.05 mg).



Water 2021, 13, 2300 8 of 11

3.2.3. Effect of Dosage

The effect of the dosage (0.1–3.5 g/L) of the N,S-TiO2 and ASB/N,S-TiO2 composites
was studied. From Figure 7, CIP concentration decreased sharply with an increasing
dosage from 0.1 to 1 g/L and gradually declined from 2 to 3.5 g/L for both materials. This
may be explained by the increase in the total surface area or the number of active sites.
Due to the synergistic interaction between the adsorption and photocatalytic effects of
composite materials, ASB/N,S-TiO2 has a higher efficiency than N,S-TiO2. However, an
increased material dosage does not yield a proportional increase in removal. Increasing
the dosage of the catalyst will generate more oxidizing radicals and improve the efficiency
of antibiotic degradation, but an excessive dosage will interfere with the light exposure
of N,S-TiO2 photocatalyst. An optimum material weight of 0.5 g L−1 was selected for the
subsequent experiments.
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Figure 7. Effect of dosage on removal for N,S-TiO2 and ASB/N,S-TiO2 composites (condition: contact
time = 150 min irradiation, [CIP]0 = 30 ppm, pH = 5.5–6).

3.2.4. Effect of Initial Concentration

The effect of the initial concentration of CIP on the performance of N,S-TiO2 and
ASB/N,S-TiO2 under UV-vis light by varying its concentration from 5–50 ppm is shown in
Figure 8. The efficiency of the two materials in degrading the antibiotic decreased with
an increasing initial concentration of CIP. Under a specific dosage and contact time, only
a sustained amount of the reactive oxygen species radicals generated will participate in
the reaction with the antibiotic molecules. The probability of the reactive oxygen species
radicals to reach the antibiotic molecule increases at low concentrations, resulting in high
removal efficiency. At higher concentrations, this amount of reactive oxygen species
may be less than that of the antibiotic molecules to be eliminated, or exposure to many
intermediate products or high antibiotic concentrations that prevent the catalytic material
from being exposed to light. The Ct/C0 ratio is almost zero at CIP 5 ppm and ranges
from 0.11–0.23 for N,S-TiO2 and 0.05–0.21 for ASB/N,S-TiO2 in the C0 range of 10–50 ppm.
The ASB/N,S-TiO2 composite always showed better antibiotic treatment than N,S-TiO2
at any initial CIP concentration. Therefore, it can be deduced that alkaline pre-treatment
of sugarcane bagasse before binding with N,S-TiO2 is the best pretreatment method to
prepare a high-performance hybrid sugarcane bagasse/N,S-TiO2 hybrid photocatalyst in
comparison with the other two pre-treatment methods. Depending on the nature of the
support material and the photocatalyst different pretreatment methods will bring optimal
efficiency. For example, in the study by Xu et al., kaolin that was pre-treated with acid
before being combined with TiO2 produced the highest efficiency [22].
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3.3. Reusability of ASB/N,S-TiO2 Composite

To assess the long-term performance of the ASB/N,S-TiO2 composite photocatalyst,
three consecutive runs were conducted under the same reaction conditions, as shown in
Figure 9. The change in the removal efficiency of ASB/N,S-TiO2 in the presence of 30 ppm
CIP antibiotic was found to be minimal, with only ∼10% (reduced from 85.59% to 77.67%)
of treatment activity lost after the third run. The results revealed that the composite
photocatalytic activity of ASB/N,S-TiO2 remained relatively stable. This suggests its
suitability for water treatment applications.
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Figure 9. Reusable performance of ASB/N,S-TiO2 composite.

4. Conclusions

Sugarcane bagasse-supported N,S-TiO2 was prepared using a simple sol–gel method
that did not change the crystal phase of N,S-TiO2. Among the pre-treatment methods,
alkaline pretreatment for sugarcane bagasse had the highest efficiency with a combined
adsorption and photocatalysis effect. Sugarcane bagasse in ASB/N,S-TiO2 played a vital
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role in the adsorption of antibiotic molecules on the photocatalyst and prevented the
recombination of the electron (e−)/hole (h+) pair, resulting in the enhanced removal
efficiency of CIP antibiotic in comparison with N,S-TiO2. The optimal removal efficiency
of ASB/N,S-TiO2 was about 86% at pH = 5.5–6, the weight of the material was 0.05 mg in
100 mL of CIP 30 ppm, adsorption in the dark for 45 min, and exposure to UV-vis light in
150 min. On the other hand, the presence of sugarcane bagasse in ASB/N,S-TiO2 makes the
hybrid material easier to diffuse in solution and torecover the photocatalyst after filtration.
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