
water

Article

Spontaneous Imbibition in a Fractal Network Model with
Different Wettabilities

Shaobin Cai 1,2, Li Zhang 3, Lixin Kang 1,2, Yongfei Yang 1,2,* , Wenlong Jing 1,2, Lei Zhang 1,2,*, Chao Xu 1,2,
Hai Sun 1,2 and Mozhdeh Sajjadi 4

����������
�������

Citation: Cai, S.; Zhang, L.; Kang, L.;

Yang, Y.; Jing, W.; Zhang, L.; Xu, C.;

Sun, H.; Sajjadi, M. Spontaneous

Imbibition in a Fractal Network

Model with Different Wettabilities.

Water 2021, 13, 2370. https://

doi.org/10.3390/w13172370

Academic Editors: Jianchao Cai and

Steffen Berg

Received: 28 June 2021

Accepted: 26 August 2021

Published: 29 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Key Laboratory of Unconventional Oil & Gas Development, Ministry of Education,
China University of Petroleum (East China), Qingdao 266580, China; S19020157@s.upc.edu.cn (S.C.);
kanglixinupc@163.com (L.K.); jingwenlongupc@163.com (W.J.); Z19020079@s.upc.edu.cn (C.X.);
sunhai@upc.edu.cn (H.S.)

2 Research Center of Multiphase Flow in Porous Media, School of Petroleum Engineering,
China University of Petroleum (East China), Qingdao 266580, China

3 Geological Exploration & Development Research Institute, CNPC Chuanqing Drilling Engineering Company
Limited, Chengdu 610051, China; zhangl-sc@cnpc.com.cn

4 College of Chemical Engineering, University of Tehran, Tehran 1417466191, Iran; sajjadi.mozhdeh@ut.ac.ir
* Correspondence: yangyongfei@upc.edu.cn (Y.Y.); zhlei84@163.com (L.Z.)

Abstract: In this work, we derived a mathematical model for spontaneous imbibition in a Y-shaped
branching network model. The classic Lucas–Washburn equation was used for modeling the im-
bibition process occurring in the Y-shape model. Then, a mathematical model for the Newtonian
fluid’s imbibition was derived to reveal the relationship between dimensionless imbibition time and
length ratio, radius ratio, and wetting strength. The dimensionless imbibition time in the model was
adopted to compare with that of the capillary bundle model. Different length and radius ratios were
considered in the adjacent two-stage channels, and different wettabilities were considered in the
different branches. The optimal radius ratio, length ratio, and wetting strength were calculated under
the condition of the shortest imbibition time. In addition, the shortest dimensionless imbibition time
of the three-stage Y-shaped branching network model was calculated when the wettability changes
randomly. The results indicate that the imbibition time changed mostly when the wettability of the
second branch changed, and the second branch was the most sensitive to wettability in the model.

Keywords: porous media; capillary force; imbibition; fractal; L–W equation

1. Introduction

Research on percolation theory is of great significance in various disciplines, such
as soil physics [1], enhancing oil recovery [2–5], rock physics [6,7], fluid flows in porous
media [8–10], and growth of branched structures [11]. Among this research in porous
media, much of the literature concerns drainage processes rather than imbibition processes.
However, imbibition processes take control of most fluid flows in tight porous media
rather than drainage processes. The pressure difference opposed in the tight porous
media [12–14] is most likely to fail in mobilizing hydrocarbon due to low connectivity
of pores. The imbibition processes controlled by capillary force [15,16] gained from the
extremely small size of the pores would be the dominant force.

The wetting phase fluid enters the porous medium spontaneously and replaces the
nonwetting phase fluid originally existing in the porous medium under the action of
capillary force. This process is often referred to as spontaneous imbibition [17,18]. The
existing literature on spontaneous imbibition theory is extensive and focuses particularly
on the capillary bundle model. The existing theoretical models for the study of spontaneous
imbibition mainly include the Lucas–Washburn model [19,20], Terzaghi model [21], Handy
model [22], and dimensionless time scale model [23–28]. Lucas [19] simplified porous
media into capillary bundles and proposed a capillary osmosis model. Based on Lucas’s
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work, Washburn [20] improved the model to obtain the classical capillary imbibition model,
namely the Lucas–Washburn model (L–W model). The Lucas–Washburn model based on
the capillary bundle is the most basic model, from which more complicated models for a
wide range of applications have been developed, incorporating the effect of tortuosity [29],
different pore geometry [30], and fractal characteristics [31–33]. A great deal of previous
research into imbibition processes has ignored the complex structure of porous media.

The academic literature has revealed that tree-like networks widely exist in nature
and, to date, several studies have been devoted to tree-like networks [34–36]. Shou et al.
developed the L–W model based on the understanding of the fractal characteristics of the
imbibition model [37]. By using the L–W model, a correlation between the imbibition length
and the imbibition time in a tree-like network model was obtained, and the dynamics of
capillary flow in tree-like networks were investigated. The wettability was assumed to be
constant in Shou et al.’s model; however, the wettability alteration of pore space can be
widely found in nature. One of the examples is the wettability alteration taking place in
the microfractures in tight sandstone. Due to the different mineral compositions in the
unconventional reservoir [38], the fracture surface after hydraulic fracturing has different
wettabilities. Moreover, the adsorption of organic components on the rock surface also
affects the wettability of the fracture surface [39]. It is worth noting that the imbibition
process is affected by the spatially varying wettability of rock surfaces determined by the
corresponding values of contact angles [40–42].

The mechanism of spontaneous imbibition under spatially varying wettability is still
somewhat poorly understood. Studying the dynamics of capillary flow in branch models
with different wettabilities will shed light on the subject of spontaneous imbibition in
tight porous media. Therefore, in this paper, wettability was taken into account in the
model. A branch model considering variable permeability, wettability, and other factors
was established. Based on the L–W model, the dimensionless imbibition time of liquid
flow in the branch model was derived by considering the number and wettability of the
branches. According to the mathematical model, the effects of length ratio and radius
ratio under different wettability conditions were analyzed. In addition, the influence of
wettability change on the imbibition process was investigated separately.

2. Assumptions and Models

In this section, a novel mathematical model of wetting phase imbibition into tree-like
networks is proposed and the mechanisms of wettability alteration is considered. The
tree-like network is shown in Figure 1. The wetting phase enters from the left side of the
model and the capillary force and the imbibition speed change as wettability alteration
occurs at different levels of the branched network. To compare with the Y-shaped branching
model, we defined a control model called the capillary bundle model (as shown in Figure 2)
and the following assumptions were made in regard to matching the models:

• The total length of the capillary tube is the same as that of the Y-shaped branch-
ing model;

• The specific surface area of the capillary bundle model is equal to that of the Y-shaped
branching model, and the radius of the capillary bundle model is determined by
this feature;

• The porosity of the capillary bundle model is equal to that of the Y-shaped branching
model. According to the same porosity, the number of capillaries is determined;

• The permeability of the capillary bundle model is equal to that of the Y-shaped
branching model. By keeping the specific surface area and porosity of the two models
equal, the permeability of the two models is approximately equal.
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Figure 1. Y-shaped branching model. 

The dynamics of capillary flow in a straight tube driven by the negative capillary 
pressure has been established and a correlation between the distance of liquid movement 
z and the time t has been proposed by Washburn [20]. 
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the wetting strength of each branch is different. It is called the Y-shaped branching model 
because the branching resembles a multi-stage Y-shape. The different branch colors rep-
resent the different wetting strengths of each level. Y-shaped branching networks with 
different wetting strengths are widely found in the development of tight sandstone reser-
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In Figure 1, the branches are composed of straight hollow tubes. Each branch is di-
vided into m lower branches in the network system. By repeating this process, the network 
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number of branching levels. 

The ratio of the radius between the (j + 1)th branch and jth branch is defined as Equa-
tion (2). 

1 /j jr rα +=  (2) 
and thus, 

1
1

j
jr rα −=  (3) 

where jr  and 1r  are the radii of the tubes at the jth and the first branching levels, respec-
tively. α  is generally assumed to be smaller than 1 as in natural network systems. 

Similarly, the ratio of the length of the tubes at the (j + 1)th branching level to that at 
the jth branching level is defined as Equation (4). 

1 /j jl lβ +=  (4) 
and therefore, it is easy to obtain Equation (5). 

1
1

j
jl lβ −=  (5) 

where jl  and 1l  are the lengths of the tubes at the jth and first branching levels, respec-
tively. 

Figure 1. Y-shaped branching model.
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Figure 2. Capillary bundle model.

The dynamics of capillary flow in a straight tube driven by the negative capillary
pressure has been established and a correlation between the distance of liquid movement z
and the time t has been proposed by Washburn [20].

z = (
γr cos θ

2η
t)

0.5
(1)

However, Washburn’s model is not based on describing the imbibition of complex
porous media.

As shown in Figure 1, a network model with fractal characteristics is assumed and the
wetting strength of each branch is different. It is called the Y-shaped branching model be-
cause the branching resembles a multi-stage Y-shape. The different branch colors represent
the different wetting strengths of each level. Y-shaped branching networks with different
wetting strengths are widely found in the development of tight sandstone reservoirs.

In Figure 1, the branches are composed of straight hollow tubes. Each branch is
divided into m lower branches in the network system. By repeating this process, the
network can be generated from the first-level branch to the nth-level branches, where n is
the total number of branching levels.
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The ratio of the radius between the (j + 1)th branch and jth branch is defined as
Equation (2).

α = rj+1/rj (2)

and thus,
rj = αj−1r1 (3)

where rj and r1 are the radii of the tubes at the jth and the first branching levels, respectively.
α is generally assumed to be smaller than 1 as in natural network systems.

Similarly, the ratio of the length of the tubes at the (j + 1)th branching level to that at
the jth branching level is defined as Equation (4).

β = lj+1/lj (4)

and therefore, it is easy to obtain Equation (5).

lj = βj−1l1 (5)

where lj and l1 are the lengths of the tubes at the jth and first branching levels, respectively.

3. Derivation and Calculation
3.1. Model Features

In this work, we focused on investigating the capillary flow in the Y-shaped branching
model whose tube length is greater than the radius. Y-shaped tree-like networks are widely
found as natural and hydraulic fractures in the reservoir. In the model, the effect of the
nodes between different branching levels on the flow is assumed negligible.

Based on Equation (4), the total length of the Y-shaped branching model is given by

Ln =
n

∑
j=1

lj =
1 − βn

1 − β
l1 (6)

The specific surface area of the capillary bundle model is calculated as Equation (7).

SV =
∑n

j=1 2πk jrjlj

∑n
j=1 πk jr2

j lj
=

2
r1

1 − (mαβ)n

1 − mαβ

1 − mα2β

1 − (mα2β)
n (7)

where n is the total number of branching levels; m is the number of lower branches from an
upper branch; k j is the number of branches at level j.

The specific surface area of the capillary bundle model is given by

SV =
kn2πRLn

knπR2Ln
=

2
R

(8)

where R is the branching radius of the capillary bundle model. According to Equations (7)
and (8), it can be obtained that R is

R = r1
1 − mαβ

1 − (mαβ)n
1 −

(
mα2β

)n

1 − mα2β
(9)

The total volume of the Y-shaped branching model is calculated as Equation (10).

Vn =
n

∑
j=1

πk jr2
j lj = πr2

1l1
1 −

(
mα2β

)n

1 − mα2β
(10)

where k j is the number of tubes at the jth level, which is expressed as k j = mj−1.
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The capillary bundle model has the same volume as the Y-shaped branching model,
and the volume of the capillary bundle model is given by

Vn = πkR2Ln (11)

where k is the branch number of the model. Through Equations (9)–(11), it can be obtained
that k is

k =
∑n

j=1 k jr2
j lj

LnR2 = π

(
1 − mα2β

)
1 − (mα2β)

n
1 − β

1 − βn

(
1 − (mαβ)n

1 − mαβ

)2

(12)

To make it easier to derive the formula, we defined that the wetting strength varies
proportionally in the branching model. We defined the wettability coefficient S as the ratio
of the cos θ between the (j + 1)th branch and the jth branch,

s = cos θj+1/cos θj (13)

and thus,
cos θj = sj−1 cos θ1 (14)

3.2. Derivation of Flow Process

The capillary flow in each branch is driven by capillary pressure in the Y-shaped
model. When the interface is in the kth branch, the capillary pressure is

∆pc,k = −2γ cos θk
rk

(15)

The flow rate of the branch in the model is

Q = πr2u = −πr4

8η

∂p
∂x

(16)

Based on Equations (1), (15), and (16) (summarized in Equation (17)), we performed a
series of derivations to obtain Equation (18) (the detailed derivation process is shown in
Appendix A). 

z = ( γr cos θ
2η t)

0.5

∆pc,k = − 2γ cos θk
rk

Q = πr2u = −πr4

8η
∂p
∂x

(17)

The time tj required for the liquid to fill the tubes of the jth level with the length lj is
obtained as Equation (18).

tj =
2η

γ cos θj

l2
j

rj
+

4η

γ cos θj

j

∑
k=2

(
mj+1−k

r3
j lk−1lj

r4
k−1

)
(18)

The total time Tn required for the liquid to move distance Ln is shown in Equation (19).

Tn =
n

∑
j=1

tj =
2η

γ

n

∑
j=1

1
cos θj

l2
j

rj
+

4η

γ

n

∑
j=2

1
cos θj

j

∑
k=2

(
mj+1−k

r3
j lk−1lj

r4
k−1

)
(19)

Then, when the liquid flows to the jth stage of the Y-shaped branching model and the
total flow distance is l, the corresponding time tl,j is

tl,j =
2η

γ cos θj

(
l − Lj−1

)2

rj
+

4η

γ cos θj

j

∑
k=2

[
mj+1−k

r3
j lk−1

(
l − Lj−1

)
r4

k−1

]
+ Tj−1 (20)
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By substituting Equations (3)–(5) into Equation (19), the relationship between Tn and
α,β is obtained as Equation (21).

Tn =
2η

γ cos θ1

l2
1

r1

1 −
(
α−1β2s−1)n

1 − α−1β2s−1 +
4η

γ cos θ1

l2
1

r1

K
1 − α−4m−1β

(21)

where K =

[
α3mβs−1−(α3mβs−1)

n

1−α3mβs−1 − α−1β2s−1−(α−1β2s−1)
n

1−α−1β2s−1

]
.

Based on Equation (1), the total time for the liquid to fill the branches can be calculated
in the capillary bundle model, as shown in Equation (22).

T0 =
2η

γ cos θ1

L2
n

R
=

2η

γ cos θ1

l2
1

r1

(
1−βn

1−β

)2

[
1−mαβ

1−(mαβ)n
1−(mα2β)

n

1−mα2β

] (22)

The dimensionless time of a capillary flow is defined as the ratio of Equations (21) and
(22) in the Y-shaped branching model:

Td =
Tn

T0
=

[
1−mαβ

1−(mαβ)n
1−(mα2β)

n

1−mα2β

]{
1−(α−1β2s−1)

n

1−α−1β2s−1 + 2
1−α−4m−1β

K
}

(
1−βn

1−β

)2 (23)

In the formula, K =

[
α3mβs−1−(α3mβs−1)

n

1−α3mβs−1 − α−1β2s−1−(α−1β2s−1)
n

1−α−1β2s−1

]
indicates that the

imbibition rate of the Y-shaped branching model is faster than that of the capillary bundle
model, while Td is less than 1.

4. Results and Discussions
4.1. Effect of Proportional Variation in Wetting Strength on the Flow

In this section, we mainly studied the Y-shaped branching models with spatially
varying wettability and the number of branches m = 2. From Figure 3 (n = 2), Figure 4
(n = 3) to Figure 5 (n = 4), the variation in the dimensionless time curves of the capillary
flow (obtained from Equation (23)) with respect to the radius ratio α, the length ratio β, and
the wettability coefficient s is clearly observed.

Figure 3a shows the curve of dimensionless time Td changing with the length ratio
of α under different s values in the two-level model. In Figure 3a, with the increase in
α, the dimensionless time curve first decreases sharply, reaches the lowest point when α
approaches 0.5, and then increases sharply at all four different values of s (i.e., s = 0.7, 0.8,
0.9, and 1.0). Therefore, it can be seen from the curve that the optimal α is close to 0.4 for the
minimum time required for the liquid to reach the end of the second branch in Figure 3a.
It is also indicated that the decrease in s value leads to the increase in dimensionless time
at the same radius ratio α. However, the change in wettability coefficient s only causes the
curve to shift up and down and has no influence on the trend of the curve with the radius
ratio α.

Figure 3b also shows that the constant decrease in the wettability coefficient s leads to
the increase in dimensionless time when other parameters remain fixed. However, when
β approaches 0, the length of the secondary branch is close to 0, and the whole model
becomes a uniform straight tube with the same wetting strength. Thus, for four different
wettability coefficients s (i.e., s = 0.7, 0.8, 0.9, and 1.0), Td converges to the same value. When
the length ratio β grows larger, due to the increasing length of the secondary branch, the
influence of different wetting strengths on capillary imbibition occurs gradually, and the
difference between the curves gradually increases. Although the four curves with different
s values vary in different ranges, the trend of the curves is almost the same.
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In Figure 3c, it is found that the dimensionless time decreases gradually as the wet-
tability coefficient s (s < 1) increases for an unchanged radius ratio and length ratio. The
reason is that the improvement of wetting strength leads to the increase in capillary force
and a faster imbibition rate. The change in the above curve is consistent with the change in
dimensionless time when the s value increases in Figure 3a,b. It can be seen that as the s
value increases, the amplitude of the dimensionless time change is smaller. The variation
range of dimensionless time at s > 0.9 is much less than that at s < 0.4, so we considered that
dimensionless time is approximately unchanged at s > 0.9. In addition, with the increase in
wetting strength coefficient s, the law of dimensionless time variation does not change for
different radius ratios α and length ratios β.
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The α, β, and s values at the minimum dimensionless time Td can be obtained from
Figure 3. In addition, the minimum dimensionless time Td = 0.6362 can be calculated
precisely under the conditions of s = 1, α = 0.4603, and β = 0.6203. Under the same
conditions of length, volume, and specific surface, the spontaneous imbibition time Td of
the two-stage branching model is 36.38% lower than that of the capillary bundle model.

Similar to the two-stage branching model with different wetting strengths, the ef-
fects of the variations in α,β, and s on dimensionless time Td are shown, respectively, in
Figure 4a–c when the total number of branching levels n is 3. Although the capillary flow
variation corresponding to α and β in the three-stage branch network has the same trend
as that in the two-stage network, the optimal solutions for α, β, and s are different from
those for the two-stage network. The minimum dimensionless time Td= 0.5154 is calcu-
lated precisely under the conditions of s = 1, α = 0.5143, and β = 0.6557. Under the same
conditions of length, volume, and specific surface, the spontaneous imbibition time Td of
the three-stage branching model is 48.46% lower than that of the capillary bundle model.

When the total number of branching levels n is 3 to 4, the minimum dimensionless time
Td and the corresponding α, β, and s are all changed, where Td= 0.4518, s = 1, α = 0.5567,
and β = 0.6896. Under the same conditions of length, volume, and specific surface, the
spontaneous imbibition time Td of the four-stage branching model is 54.82% lower than
that of the capillary bundle model. According to the above curve, a conclusion can be
drawn: under the condition that s = 1 (with same wetting strength), the shortest time Td
can be obtained, and the fluid imbibition speed in the multi-stage branching model will
be faster.



Water 2021, 13, 2370 10 of 18
Water 2021, 13, x FOR PEER REVIEW 11 of 20 
 

 

 
(a) 

 
(b) 

Water 2021, 13, x FOR PEER REVIEW 12 of 20 
 

 

 
(c) 

Figure 5. Dimensionless time curves of capillary flow at n = 4. (a) The curve of change with radius 
ratio α  at different s values, (b) curve of change with length ratio β  at different s values, (c) 
curve of change with radius s values at different radius ratios α  and length ratios β . 

When the total number of branching levels n is 3 to 4, the minimum dimensionless 
time dT  and the corresponding α , β , and s are all changed, where =0.4518dT , s = 1,  
α  = 0.5567, and β  = 0.6896. Under the same conditions of length, volume, and specific 
surface, the spontaneous imbibition time dT  of the four-stage branching model is 54.82% 
lower than that of the capillary bundle model. According to the above curve, a conclusion 
can be drawn: under the condition that s = 1 (with same wetting strength), the shortest 
time dT  can be obtained, and the fluid imbibition speed in the multi-stage branching 
model will be faster. 

In order to make a comparison between a capillary bundle model, which is restricted 
by the same length, porosity, and permeability as the tree-like network model (s = 1), the 
dimensionless imbibition time was calculated for different dimensionless distances ld. The 
dimensionless distance ld is the total length of the Y-shaped branching model divided by 
the length of the first branch, which is normalized to avoid the value of the model length 
and to facilitate the comparison under different conditions. The relationship between di-
mensionless time Td and dimensionless length ld is shown in Figure 6. The result confirms 
that the imbibition process in the capillary bundle model obeys the rule described by the 
Washburn equation. However, the imbibition in the tree-like network model did not obey 
the Washburn equation. With the same ld, a shorter imbibition time was observed in the 
tree-like network model. The minimum dimensionless time Td = 0.5154 was calculated 
precisely under the conditions of s = 1, α = 0.5143, and β = 0.6557. Hence, the imbibition 
process can be accelerated in the tree-like network models. 

Figure 5. Dimensionless time curves of capillary flow at n = 4. (a) The curve of change with radius
ratio α at different s values, (b) curve of change with length ratio β at different s values, (c) curve of
change with radius s values at different radius ratios α and length ratios β.
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In order to make a comparison between a capillary bundle model, which is restricted
by the same length, porosity, and permeability as the tree-like network model (s = 1),
the dimensionless imbibition time was calculated for different dimensionless distances
ld. The dimensionless distance ld is the total length of the Y-shaped branching model
divided by the length of the first branch, which is normalized to avoid the value of the
model length and to facilitate the comparison under different conditions. The relationship
between dimensionless time Td and dimensionless length ld is shown in Figure 6. The result
confirms that the imbibition process in the capillary bundle model obeys the rule described
by the Washburn equation. However, the imbibition in the tree-like network model did not
obey the Washburn equation. With the same ld, a shorter imbibition time was observed in
the tree-like network model. The minimum dimensionless time Td = 0.5154 was calculated
precisely under the conditions of s = 1, α = 0.5143, and β = 0.6557. Hence, the imbibition
process can be accelerated in the tree-like network models.
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4.2. Effect of Random Variation in Wetting Strength on Flow

In the previous section, the variation trend of spontaneous imbibition time with radius
ratio α, length ratio β, and wettability coefficient s in the multi-stage branching model was
discussed. However, wettability hardly varies proportionately, and more random variation
is observed in the pore space of the real tight sandstone reservoir. Therefore, in this section,
a three-stage Y-shaped branching model is used to study the fluid imbibition qualitatively
when the wetting strength changes randomly in the pore space of tight sandstone.

We assumed six random realizations of wettability variations and divided them into
two groups for analysis (as shown in Table 1). The two groups of experiments investigated
the change in spontaneous imbibition time with distance when the wettability of a certain
branch suddenly becomes stronger or weaker.

In the first group, it is assumed that the wettability of the first-, second-, or third-stage
branch is strong when other branches’ wettability is generally weak in the model. In
assumption 1, the wettability in the first-, second-, and third-stage branches is strong, weak,
and weak, respectively. This means that the wetting strength of the first stage in the model
is relatively large, which differs from those of the other branches. In assumption 2, the
wettability in the first, second, and third stages is weak, strong, and weak, respectively.
This shows that the wetting strength of the second stage’s branch is larger than those of the
other branches. In assumption 3, similarly, the wetting strength of the third stage is larger
than those of the other stages and the order of the wettability is weak, weak, and strong. By
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comparing the three assumptions, the effect of the wettability of a certain branch becomes
stronger on the overall imbibition time and the sensitivity of each branch to the wettability
change can be obtained.

Table 1. Cases of random variation in wetting strength.

Case No. cosθ1 cosθ2 cosθ3

First Group
#1 0.8 0.2 0.2
#2 0.2 0.8 0.2
#3 0.2 0.2 0.8

Second Group
#4 0.2 0.8 0.8
#5 0.8 0.2 0.8
#6 0.8 0.8 0.2

According to Equation (18), the relationship between flow time and flow distance of
the first group is shown in Figure 7 when the length ratio and radius ratio are the optimal
solutions in the three-level branching model. It is easily observed that, compared with the
branch tubes with weak wetting strength, the branch tubes with strong wetting strength
have a strong capillary force and a faster flow of fluid, which causes a significantly shorter
time of fluid imbibition.
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The shortest imbibition time is obtained in realization 2. The fluid flows through the
first-stage branch for a longer time in realization 2. However, the flow time of realization 2
is still shortest as the fluid flows faster and more time is shortened in the second-stage
branch. In addition, the longest flow time occurs in realization 1. We compared the three
curves and found that the flow time is most sensitive to the wettability of the second branch
in the three-level branch model.

In the second group, the assumption is opposite to the first group. It was assumed
that the wettability of the model is generally strong but the wettability of the first, second,
or third stage branches change suddenly and become weak. Realization 4 is that the
wettability of the first-stage branches becomes weak. Similarly, realization 5 is that the
wettability of the second-stage branches becomes weak. In addition, the order of the
wettability is strong, strong, and weak in realization 6.

According to Equation (18), the relationship between flow time and flow distance
of the second group is shown in Figure 8 when the length ratio and radius ratio are the
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optimal solutions. It can be seen that the flow time of the fluid in the branch tube with
weak wetting strength is significantly longer and the flow velocity of the fluid is lower.
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Comparing the ordinates of the three curves, it is obvious that realization 5 has the
longest time, and the shortest time occurs in realization 4. This phenomenon means that
the flow time is most sensitive to the wettability of the second branch, which is consistent
with the findings of the first group.

The first group assumes that the wetting strength is randomly weakened, and the
second group assumes that the wetting strength is randomly strengthened. By comparing
the two groups and considering the above curve analysis, the following conclusions can
be drawn: (1) The strong wettability branch can accelerate the capillary fluid imbibition,
while the weak wettability branch can slow down the capillary fluid imbibition. (2) In the
three-stage branching model, the dimensionless time is most sensitive to the wettability
of the second branch for liquid spontaneous imbibition when the length ratio and radius
ratio are the optimal solutions. (3) In the approximate three-level branching model, we
should first consider the second-level branch, which will cause great changes in the results
if wetting strength is to be changed.

5. Conclusions

In this paper, a new physical model considering wettability and permeability for the
Y-shaped branch model was established. The capillary bundle model was designed as
the control model, and the mathematical formulas of dimensionless time and other flow
characteristics of the branch model in the branch model were derived. In the case that the
ratio of radius α and ratio of length β are defined, the variation trend of dimensionless
time Td and the time of fluid flow to the end of the model with different wettabilities were
studied, and the sensitivity of dimensionless time to wettability changes was investigated.
A three-stage branching model was selected to investigate the dynamics of capillary flow
with random wettability changes. This paper shows the law of spontaneous imbibition
of Newtonian fluids in Y-shape branching models with different wettabilities, which is of
significance for the study of fluid flow in the pore space of tight sandstone reservoirs.
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Appendix A

This section gives detailed information on the derivation of Equation (18).
In the first branch of the tree network model, according to Equation (1), the capillary

flow time can be expressed by the liquid dialysis distance l1:

tl,1 =
2η

γ cos θ1

l2

r1
(A1)

T1 =
2η

γ cos θ1

l2
1

r1
(A2)

On the second-level branch of the tree network model, the traffic in one branch is

Q2 = πr2
2u2 = −

πr4
2

8η

∂p
∂x

, and u2 =
∂z
∂t

, (A3)

Therefore, the total pressure drop of the first and second branches of the tree network
model is as follows:

∆p = −8ηQ1

∫ h1

0

dx
πr4

1
− 8ηQ2

∫ z

h1

dx
πr4

2
and k2Q2 = Q1, k2 = m (A4)

According to Equation (A4), the first- and secondary-branch total hydrostatic pressure
drops, and the second-level branch of capillary pressure ∆ pc,2 is equal to:

∆pc,2 = −2γ cos θ2

r2
(A5)

and thus,
γ cos θ2

r2
= 4mηQ2

∫ l1

0

dx
πr4

1
+ 4ηQ2

∫ z

l1

dx
πr4

2
(A6)

By integrating Equation (A6), the time formula of capillary flow in the second branch
of the tree network model is obtained:

t =
4η

γ cos θ2

∫ l

l1

(
m

r3
2l1
r4

1
+

z − l1
r2

)
dz (A7)

According to Equation (A7), given the liquid dialysis distance l, the time of liquid
aspiration in the second branch of the corresponding tree network model can be obtained:

tl,2 =
4η

γ cos θ2

[
m

r3
2l1(l − l1)

r4
1

+
1
2
(l − l1)

2

r2

]
+ T1 (A8)
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According to Equation (A8), the time can be calculated when the liquid is filled with
the l2 branch of the second level:

t2 =
4η

γ cos θ2

[
m

r3
2l1l2
r4

1
+

1
2

l2
2

r2

]
(A9)

Thus, the total time T2 of the liquid imbibition distance l1 + l2 is the sum of t1 and t2,

T2 = t1 + t2 =
2η

γ cos θ1

l2
1

r1
+

4η

γ cos θ2

[
m

r3
2l1l2
r4

1
+

1
2

l2
2

r2

]
(A10)

The time tj required for the liquid to fill the jth branch lj is derived:

tj =
2η

γ cos θj

l2
j

rj
+

4η

γ cos θj

j

∑
k=2

(
mj+1−k

r3
j lk−1lj

r4
k−1

)
(A11)

Appendix B

This section compares results calculated by the model proposed in our research and
the model developed by Shou et al. A comparison of the results with Shou et al.’s model
confirms the correctness of our model.

Assuming that the pore spaces have the same volume and length, Shou et al. calculated
Td from Equation (A12).

Td =
Tn

T0
=

(
m1−n 1−(mα2β)

n

1−mα2β

)0.5{
1−(α−1β2)

n

1−α−1β2 + 2
1−α−4m−1β

[
α3mβ−(α3mβ)

n

1−α3mβ
− α−1β2−(α−1β2)

n

1−α−1β2

]}
(

1−βn

1−β

)1.5 (A12)

Figure A1 gives the relation between Td and α. The results were obtained by solving
Equation (23) (our model) and Equation (A12) when β = 1.6 and n = 4. The results of our
model match those observed in the earlier study, in which Td decreases in the early stages
and increases in the later stages as α increases. All the Td values calculated in our model
are larger than those predicted in Shou et al.’s model. This is mainly because the specific
surface area and permeability were considered in our model, which added more resistance
to the fluid flow; thus, a longer imbibition time was predicted in our model. In addition,
according the results reported in Shou et al.’s research, the shortest Td was obtained at an α

of around 0.5. However, as discussed in the previous section, the shortest Td was predicted
at an α of around 0.6 in our model. The difference made the red curves shown in Figure A1
move to the right compared to the curve predicted by Shou et al. The movement of the red
curve made the difference in the predicted results on the left of Figure A1 larger than that
on right.

Our aim was to compare models with the same dimensionless length when the two
models have the shortest imbibition time. Under the condition of using the shortest
dimensionless time of both models, the dimensionless imbibition time of the model with
the same dimensionless length was compared, to reflect the characteristics of our model.
Figure A2 gives the relation between Td and ld. Compared to Shou et al.’s model, the
dimensionless time expected in our model was greater when the imbibition reached the end
of the capillary tube, because the specific surface and permeability factors were considered
in our model. Due to the shorter first stage of our model, a shorter imbibition time at
the first stage of our model was predicted; hence, the imbibition process would enter the
second stage earlier in our model. In addition, the radius ratio between different stages of
Shou et al.’s model was larger than ours, causing the radius variation between different
stages of their model to be more significant than ours, making the imbibition in their model
faster and the dimensionless time smaller than ours in the late imbibition stages. The
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time difference between early and late imbibition stages resulted in the intersection of the
two curves.
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