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Abstract: Water reuse and recycling is gaining momentum as a way to improve the circularity of
cities, while recognizing the central role of water within a circular economy (CE) context. However,
such interventions often depend on the location of wastewater treatment plants and the treatment
technologies installed in their premises, while relying on an expensive piped network to ensure
that treated wastewater gets transported from the treatment plant to the point of demand. Thus,
the penetration level of treated wastewater as a source of non-potable supply in dense urban en-
vironments is limited. This paper focuses on the demonstration of a sewer mining (SM) unit as a
source of treated wastewater, as part of a larger and more holistic configuration that examines all
three ‘streams’ associated with water in CE: water, energy and materials. The application area is the
Athens Plant Nursery, in the (water stressed) city of Athens, Greece. SM technology is in fact a mobile
wastewater treatment unit in containers able to extract wastewater from local sewers, treat it directly
and reuse at the point of demand even in urban environments with limited space. The unit consists of
a membrane bioreactor unit (MBR) and a UV disinfection unit and produces high quality reclaimed
water for irrigation and also for aquifer recharge during the winter. Furthermore, a short overview
of the integrated nutrient and energy recovery subsystem is presented in order to conceptualise
the holistic approach and circularity of the whole configuration. The SM technology demonstrates
flexibility, scalability and replicability, which are important characteristics for innovation uptake
within the emerging CE context and market.

Keywords: circular economy; sewer mining; wastewater reuse; decentralised wastewater treat-
ment; replicability

1. Introduction

Within the past decade, increasing water consumption, water scarcity and climate
change have affected global water security. Water resources are under stress as, according to
the UN, it is estimated that by 2030 water shortages could reach 40% of total demand [1] and
approximately half of the world’s population could suffer from water stress [2]. Half million
people are significantly affected as they live where water consumption surpasses the local
water resources that lead to water scarcity at least one month each year [3]. By keeping the
current situation—the discharge of untreated sewage, the partially treated wastewater from
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industry combined with unsustainable techniques used in agriculture—the degradation of
water quality will continue to increase in the next decade, more intense in dry and poor
countries [4]. This situation has led to an increased interest to explore alternative solutions
to reduce waste and resource usage, the dominant behaviour of ‘take-make-consume-
dispose’, which assumes that resources are abundant, available and competitive to dispose
of needs to be eliminated and. embrace ‘circular economy’ principles and technological
innovation. It is therefore essential to design a new circular water management system
that takes under consideration the different elements in the water cycle and maximises
their efficient usage. Some measures that can be implemented, based on the principles of
the circular economy (CE) model are to reuse by keeping water either within one system
(closed loop) or redirecting it for use in other systems or communities.

Within the context of the urban water cycle, water reuse is a concept that is gaining
traction and is considered an innovative way to address water scarcity [5]. Water reuse
translates mainly into using treated wastewater (a waste) to supply (as a resource) a usually
non-potable water use [6]. The centralised wastewater treatment plants are usually far
away from the city centre and as a result the possibility of transporting the recovered water
within the city requires high-cost constructions and energy-intensive processes which
greatly increases the final water cost. Additionally, such configurations lack flexibility and
autonomy of water resource in urban environments. On the other hand, decentralised
technologies are in line with the circular economy approach by the in situ installation and
also by eliminating the transmission costs [6].

A technology that can combine flexible and decentralised wastewater treatment as
well as advanced treatment technologies is called sewer mining (SM). SM technology was
originally pioneered in Australia in 2006 [7–10] and was first tested successfully in Greece
through an FP7 project called Dessin in 2015 [6,11].

The present paper attempts to investigate further and more holistically the larger scale
NextGen sewer mining hybrid MBR/UV system and its applicability in a real world urban
environment, where wastewater is actually extracted from local sewers, treated at the point
of demand and reused for irrigation in water-stressed green areas [12]. Thus, the current
work focuses on presenting results that prove the high quality of the effluent water as
well as the stability in the water quality produced by the system. Furthermore, in order to
demonstrate the holistic approach of the solutions, the energy recovery unit along with the
composting unit is briefly described in the scope of closing water energy material loops
within a dense urban environment. The application area is the Athens Plant Nursery, in
the water stressed city of Athens, Greece.

2. Materials and Methods
2.1. General Description of the Circular Approach

Athens is a city of 4 million citizens thus suffers from great urbanisation and emerging
water scarcity issues. The Athens demo application is located in an area called Athens Plant
Nursery, which is part of the Goudi Park, an area in the process of redevelopment and
regeneration to become one of the key Metropolitan parks of the capital. The area, which
lies in the heart of Athens and is illustrated in Figure 1, is a mixed-use area, comprising of
urban green and urban agriculture spaces as well as administration and residential uses.
The regeneration is an effort to boost both the local economy and improve quality of life
for the citizens of the Attica Region.

The Athens Nursery covers an area of approximately 96 acres/0.39 km2, 40 of which
(0.16 km2) are used in the production, development and maintenance of the plants while
the rest are used for general purposes such as administration building and offices of the
Municipality of Athens. The Nursery supplies all urban parks and green spaces of Athens
with plant material and uses potable water from Athens’s Water Supply and Sewerage
Company (EYDAP) for its irrigation. Furthermore, the pruning waste of the urban parks
is accumulated in the Nursery, not treated, partly transferred in Athens landfill. About
the use of fertilisers, these are bought from the market. With regards to the energy needs,
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the Nursery gets electrical energy from the urban network and for heating they use petrol
oil. In this respect, the city seeks alternative water sources to achieve environmental,
social and financial benefits to address the water scarcity matters through autonomous and
decentralised water systems. Figure 2 presents the original linear situation in the Athens
Plant Nursery in terms of water, energy and materials.

Figure 1. Area of the Athens Plant Nursery.

Figure 2. Linear baseline situation in Athens Plant Nursery in terms of water, energy and materials.

The Athens demo site hosts a circular, decentralised and innovative pilot system
that tests all three aspects associated with CE: optimisation of water resources, nutrient
mining and energy recovery and reuse practices. More specifically, as illustrated in Figure 3,
wastewater is mined from a sewer (using sewer mining technology), treated at the point of
demand through a mobile modular treatment unit that consists of a membrane bioreactor
unit (MBR) along with a UV disinfection unit and reused directly for irrigation. In addition,
the excess sludge from the treatment as well as appropriate organic waste streams from
pruning are further treated via a rapid composting solution to produce nutrient-rich
solid compost to be used as fertiliser for local (on-site) urban agriculture applications.
Furthermore, energy recovery schemes directly from the sewer mining unit are tested to
recover thermal energy for the configuration needs of the composting unit, thus, enhancing
the circularity of the proposed approach.

In this paper a brief overview is provided in order to illustrate the concept and
potential of the whole CE configuration. The focus is on examining the water-related
element, that is the operation and performance of the SM unit for the two associated
‘streams’. In the following section, the implemented sewer mining technology is presented
in detail.
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Figure 3. Circular economy approach for the Nursery in terms of water, energy and materials.

2.2. Sewer Mining Technology
2.2.1. Concept and Set Up

SM is a concept that is considered as an innovative way to address water scarcity in
urban environments. This technology involves extracting untreated wastewater from the
local sewers, treating it at the point of demand and producing fresh water. The effluent
water is a high-quality water that can be used directly in a nearby area, for irrigation
needs and for aquifer recharge during the winter, while waste by-products are returned
to the mail sewerage system [13]. It is considered a sustainable management of water
resources option to integrate into urban environment that suffer lack of water and green
spaces [14–16]. A smaller pilot SM unit has been installed and set in operation in EYDAP’s
premises in Metamorphosis area in the context of the Dessin FP7 project since 2015 until
now. This unit proved its efficiency and stability while produces effluent water suitable for
any kind of use [11,13].

Membrane systems due to their mechanical configuration, have a high level of au-
tomation. Membrane bioreactors (MBR) are very efficient for removing the pathogens
and also other parameters that are included into national and international legislation for
wastewater irrigation. These parameters are emerging contaminants, heavy metals and pri-
ority substances [14–19]. These can simply be adapted to the whole CE system, to provide
a completely automated system suited for decentralised wastewater treatment [13–15].

In NextGen’s concept, a hybrid MBR/UV unit has been set in operation in April
2021. NextGen examines SM technology in a real environment with real extraction of
wastewater through a prefabricated pumping station in the centre of Athens. The unit is
far more advanced in terms of location, overall design with automatic operation and lower
energy consumption. For installing the unit, the sewerage network was studied, in order to
identify the optimum location for installing the equipment. In particular, the topography
of the area, the adequacy of sewage flow as well as the quality characteristics of the influent
were studied so that the SM unit and the pumping station are well designed according to
the desired needs. The complete process and set up of the technology in the Athens Plant
Nursery are illustrated in Figure 4. Raw sewage from the local city’s network that passes
through the Nursery flows by gravity into the tank of a prefabricated compact pumping
station with a capacity of 25 m3/day.
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Figure 4. The Athens pilot configuration.

The treatment in the sewer mining unit comprises several processes taking place in a
series of tanks as shown in Figure 5.

Figure 5. Top view of the hybrid MBR/UV system and the control room.

More specifically, the sewerage is extracted through two pumps that work alternately,
from about four meters below the surface to fill in a buffer tank (3). Subsequently, the sewer
mining unit is fed with wastewater through a submersible pump (4) installed inside the
buffer tank. The raw sewage from the buffer tank is transferred through an inlet pipe (5)
and screened while flowing through a continuously rotating self-cleaning screen filter (6)
and its flow is constantly measured with an electromagnetic flowmeter. (7) The screenings
(fine particulates) that are brushed away end up in a screenings bin (8) to be disposed or
included in the compost produced later in the process.

In particular, the process starts when screened sewage is stored temporarily in a buffer
tank (9) of filtered wastewater which communicates with a denitrification tank (10) through
a bottom window (11). Inside the denitrification tank (10), anaerobic microorganisms turn
nitrates to nitrogen gas which naturally leaves the system. A mixer (12) is also employed
in the denitrification tank to help homogenise the mixture and keep the microorganisms in
suspension and continuous contact with it. The denitrification tank communicates with the
nitrification or aeration tank (13) through a bottom window (14). Inside the nitrification
tank, aerobic microorganisms turn reduced nitrogen compounds (primarily ammonia)
to nitrates. A constant dissolved oxygen concentration of 2–3 mg/L is maintained by
supplying air through diffusers (15) to the aeration tank (13). A dissolved oxygen (16)
meter is utilised to control the blowers’ (17) air flow output using a variable frequency drive.
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There is an extra tank (18) that can function either as a second nitrification tank or a
second denitrification tank depending on the systems’ needs by turning on or off the air
flow through the aeration tank air inlet pipe (19). The air flow pressure and temperature
are monitored constantly (20).

Subsequently, the biologically treated wastewater is transferred to the membrane tank
with a constant flowrate of 5 m3/h. Membrane modules (21) composed of 80 m2 of hollow
fibres can produce about 1 m3/h of permeate water so the remaining 4 m3/h overflows
through the tanks top window (22) to the deoxygenation tank (23) where anaerobic condi-
tions are met before the mixture enters the denitrification tank once again through a bottom
window (24).

An amount of the excess sludge that is produced is transferred to the thickening tank
(25) and then it flows to the dewatering bag filters (26) to be thickened and used for the
compost product. The mixed liquor suspended solids (MLSS) value is measured (27) online
and is kept constant between 10.000 and 11.000 mg/L.

The permeate produced in the membranes is pumped into the backflush tank (28)
to be used during the backflush sequence. During this sequence, 1.4 m3 of permeate is
pumped inversely from the backflush tank (28) through the inside of the membranes to
clean their surface and dissolve the cake layer that is formed. The ultrafiltration mem-
branes (21) achieve a better filtration of the biologically treated wastewater, removing
all suspended solids, colloids bacteria and viruses. Additionally, a chemically enhanced
backflush sequence occurs once per day, during which, sodium hypochlorite (29) and citric
acid (30)solutions are added to the backflush sequence. Then, the permeate overflows
and passes through the UV disinfection unit (31) and the final disinfected product flows
naturally toward irrigation storage tank (32).

The whole process is fully monitored through specific sensors (tanks level, pH me-
ters, MLSS sensors of the HACH Lange company, dissolved oxygen probes, etc.,) and is
automated using pneumatic actuated valves (33) that are controlled by a PLC unit (34). An
external overview of the sewer mining unit (on the right) and the control room (on the left)
are illustrated in Figure 6.

Figure 6. Overview of the sewer mining unit and the control room.

2.2.2. Experimental Design

The monitoring process consists of sampling from five (5) distinct points of the pilot
unit. Specifically, regarding conventional parameters (COD, TSS, TN, etc.) composite
samples were collected, twice per week from filtered inlet, membrane tank, denitrification
tank, permeate tank and after UV disinfection. The parameters monitored were: COD, BOD,
TP, TN, NH4-N+, NO3-N−, TC, EC, pH, conductivity, dissolved oxygen and transmembrane
pressure (TMP). All analyses occurred regarding Standard Methods (APHA, 2017).
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2.2.3. Operating Parameters

The current evaluation and results derive from 4.5 months of full operation of the
SM unit (mid-April–August 2021). During this period, the temperature at the time period
examined ranged from 18 to 25 ◦C. The capacity of the unit was set to 25 m3 of treated
water per day, even though it has been designed to be able to reach 100 m3/day. The
concentration of mixed liquor suspended solids (MLSS) in the MBR tank was controlled
roughly at 10 g/L with daily extraction of excess sludge, while the same variable inside the
anoxic and aeration tank had a value of about 8 g/L. Moreover, the sludge retention time
(SRT) was set to 20 days.

An operation cycle of MBR involved a 10-min filtration and a 1-min backflushing mode
to preserve the membrane’s permeability. The maintenance cycles include one oxidising
cleaning per day and one acid maintenance per week. Table 1 provides information about
the membrane that has been installed in the system.

Table 1. Membrane characteristics.

Manufacturer KOCH

Membrane type Hollow Fiber
Membrane model PSH 41

Pore size 0,03 µm
Membrane surface (2 × 41 m2)

Material Proprietary PVDF
Specific Air Demand based on membrane area (SADm) 0.36 m3 air/m2 membrane area/h

The last stage of treatment for the safe disposal of treated wastewater is a UV disinfec-
tion unit. Table 2 provides information about the UV disinfection unit.

Table 2. UV unit characteristics.

Manufacturer S.I.T.A. Srl (Societa’ Italiana Trattamento Acque)

Model 440 LCD RM model
Material AISI 316L

Max Flow rate 60 L/min
No. of UV-C lamps 1

Life of lamps (around) 9000 h
UV-C Dose >300 J/m2

Working pressure (max.) 9 bar

To control the quality of the process and of the effluent, a series of online sensors was
adjusted in several key points of the unit, which provides continuous information about the
integrity of the operation. More specifically, an MLSS sensor and a pH sensor were installed
in the membrane tank, two DO sensors in the aeration tank and in the denitrification tank
and a turbidity sensor in the permeate tank.

Apart from using sensors a series of lab tests provide feedback for the unit and
many of them are used for cross validation with the sensor measurements, thus providing
feedback on the status of the sensors. The laboratory analysis takes place twice a week
and includes measurements of COD, BOD, TP, TN, NH4-N+, NO3-N, TC, EC, MLSS,
mixed liquor volatile suspended solids, diluted sludge volume index (DSVI), biochemical
oxygen demand (BOD5), total phosphorus (TP), total nitrogen (TN), NH4–N, NO3–N, total
coliforms (TC), faecal coliforms (FC) and Escherichia coli (EC). Table 3 summarises the
operational parameters of the system.
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Table 3. Operational parameters of the system.

Parameters PHASE 1 Start Up PHASE 2 Steady State Conditions

Days of operation 40 41–140
Operating temperature 18–23 18–25

Q (L·d−1) 25 25
HRT (d) 2 1
SRT (d) ∞ 20

Flux (L/m2 h) 1.6 ± 0.2 3.3 ± 0.4
OLR (KgCOD/m3/d) 0.225 ± 0.03 0.45 ± 0.05

Waste Activated Sludge (L·d−1) - 1.6

2.2.4. Cost Parameters

Regarding the SM unit’s cost, the total capital cost of produced water was calculated
to be 0.36 €/m3, while the operational cost amounts to 0.5 €/m3, which produces a quite
moderate total cost of 0.86 €/m3 of produced water [11].

The economic evaluation of the sewer mining technology demonstrated in the Athens
Urban Tree Nursery showed that in general SM technology is a viable and profitable
scheme and can be an interesting alternative water source to more conventional options
(such as potable water from the central system). The Nursery’s SM investment allows
for significant cost reduction compared to the current situation. A complete cost-benefit
analysis that takes into consideration the sum of the environment, social and economic
cost-benefits, is expected to make the SM technology even more attractive [20].

2.3. Production of Compost and Energy Recovery Technologies

With regards to the other two ‘streams’, energy and materials, a brief overview of
the basic concepts and potential is provided in order to illustrate that the sewer mining
technology is part of a more integrated and circular approach, aiming at closing the
respective loops within a dense urban environment. A flow scheme of the technology is
illustrated in Figure 7.

Figure 7. Flow scheme of the technology.

With regards to the material, significant amounts of pruning materials accumulated
in the Athens Plant Nursery until now remain untapped resources. The excess sludge
produced from the sewer mining unit along with the green and wood waste goes through
a rapid composting process to produce on-site fertiliser.

The rapid composting technology is illustrated in Figure 8 and follows the specific
steps. First, the sludge is thickened through dewatering in bag filters to a dry solid content
of approximately 5%. Meanwhile, the wood and green waste is shredded, homogenised
and sorted through a specific sieve to get a fraction of about 2–5 mm. In a mixing unit,
homogenised wood and green waste are mixed with the thickened excess sludge and an
inert filling material consisting of shredded wood of 2–5 cm size. The mixer continuously
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rotates the entire contents of the reactor. Approximately 700 L/per week are incubated in
the rapid composting unit at mostly aerobic conditions due to continuous air supply by
the connected blower. At a temperature between 50 and 70 ◦C, aerobic microorganisms
convert approximately 20–30% of the volatile organic material to CO2 and water and thus,
stabilise the material. Due to mixing, aeration and high temperature, the thermophilic
composting process is significantly accelerated compared to the conventional process. The
retention time in the composting unit ranges between 10 and 15 days depending on the
input raw material.

Figure 8. Layout of the rapid composting bioreactor (RCB).

The output is a compost-based growing media product with output rate of around
150–180 kg per week. Optimum oxygen concentration, temperature, humidity and mixing
intensity are monitored by means of sensors and microprocessor. The output compost goes
through a sieve to get back the inert filling material. It should be noted that the heavy
metals and trace organics in the excess sludge and in the finished product are regularly
monitored, in order to ensure a concentration which complies with the existing regulations
for the use of the end product. The composting bioreactors system is illustrated in Figure 8.

With regards to the energy recovery unit this consists of a heat exchanger and heat
pump system that recovers thermal energy from the wastewater to be reused for the
technological processes of the compost production unit.

The operation and results of the compost production and the energy recovery units are
not in the scope of the present paper and are only briefly described as additional elements
of the SM unit that comprise the whole CE configuration.

3. Results and Discussion
3.1. Athens Demo Case Start-Up

The unit started its full operation in mid-April 2021. The previous 2 months, the unit
was working with clean water for assessing the automations and testing the performance
of the pumping station and the hybrid MBR/UV pilot system. The whole performance
of the unit and of the pumping station has shown great stability. The hybrid MBR/UV
had a start period of approximately 5 weeks. Figure 9 illustrates the start-up period of
the unit along with some period of early steady state conditions. It is evident that even
during the start-up period the removal rates are higher than 90% which shows that the
MBR technology is a very safe technology to use due to the great stability it provides.
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Figure 9. Start-up period.

Figure 9 illustrates the start-up of the unit regarding COD removal. Concentrations
of the raw sewage shows many fluctuations but that does not affect the effluent COD
concentrations. Even during start-up the effluent COD had concentrations of 60 mg/L
which then decreased further and stabilised at the average value of 34 mg/L. The first
evidence of nitrification appeared at around day 33 when a sharp increase was observed in
the effluent nitrate concentrations from near detection limit to higher than 15 mg/L which
coincided with sharp decreases in ammonia concentrations.

3.2. Athens Demo Case Overall Performance

After the start-up, a monitoring plan was implemented to regularly collect and analyse
a series of raw and treated wastewater samples. Whole MBR/UV operation showed great
stability in terms of constant operation as well as effluent water quality. In combination
with our previous experience of the Dessin’s unit since 2015 [21], NextGen’s unit seems
an even more advanced solution for implementing decentralised wastewater treatment
water reuse schemes at the point of demand. The added value of this particular unit is
the fact that it addresses real world water scarcity issues in a dense urban environment,
by transforming treated wastewater (a waste) into supply (a resource). Figures 10 and 11
depict the MBR performance for the whole-time operation in terms of TSS and NH4-N
removal respectively. More specifically, Figure 10 shows the TSS of the inlet and outlet,
the MLSS concentration inside the MBR tank as well as the online measurements of the
installed probe. It is evident that TSS concentrations of the effluent reach zero while the
installed probe provide data that fit with the laboratory measurements. Figure 11 illustrates
the concentrations of the NH4-N of the inlet and the outlet. It is shown that after the 33rd
day the nitrification started while the effluent concentrations of ammoniacal nitrogen’s
concentrations started reaching zero. Table 4 illustrates the aggregated results for the
quality characteristics of the Hybrid MBR/UV effluent of the experimental system along
with the limit values as set in the Greek National legislation regarding wastewater reuse
for unrestricted irrigation and urban use (JMD 145116/2011). Figure 10 shows two time
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periods. The start-up period and the period of steady state conditions. The period of steady
state is defined as the period with constant MLSS concentration, steady removal rates and
initiation of nitrification.

Figure 10. MBR performance in terms of TSS removal.

Figure 11. MBR performance in terms of NH4-N removal.
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Table 4. Performance of the Hybrid MBR/UV pilot system (concentrations in mg/L, TC, FC, EC in cfu/100 mL, turbidity in
NTU, conductivity in µS/cm).

Parameters Influent 1 Effluent after UV Disinfection Legislation Limits 2

TSS 253 ± 97 3 ≤2 for 80% of samples ≤2 for 80% of samples 5

≤10 for 80% of samples 4

BOD5 216 ± 64 3 9 (average)
9.6 for 80% of samples ≤10 for 80% of samples 4,5

CODt 695 ± 97 3 34 ± 5 3

TN 81 (average) 18 (average) ≤15 4,5

NH4-N 5 ± 3 3 0.25 ± 0.3 3 ≤2 4,5

TP 10 ± 1.4 3 5.9 ± 1 3 -

Turbidity - 2 (median) ≤2 (median) 4,5

Conductivity 1109 ± 75 3 1067 ± 170 3 -

pH 7.1 ± 0.1 3 7.5 ± 0.3 3 -

TC >10 6 2 for 80% of samples
9 for 95% of samples

≤2 for 80% of samples 5

≤20 for 95% of samples 5

FC >10 6 ≤3 -

EC >10 6 ≤3 for 80% of samples
≤3 for 95% of samples

≤5 for 80% of samples 4

≤50 for 95% of samples 4

1 Refer to filtered wastewater; 2 refer to the Greek legislation regarding wastewater reuse (Joint Ministerial Decision 354/8-3-2011); 3 average
± standard deviation; 4 refer to the limit values set in the Greek legislation for wastewater reuse for unrestricted irrigation and/or industrial
reuse; 5 refer to the limit values set in the Greek legislation for urban reuse and/or groundwater recharge; 6 refer to the limit value set in the
Greek legislation for every type of reuse for WWTPs with a population equivalent greater than 100,000.

It is evident that the MBR effluent characteristics lie within the limits set in the Greek
wastewater reuse legislation for unrestricted irrigation and urban use. Its EC and FC
contents are minimal, while its TC content is low. There are some values for total nitrogen
and ammoniacal nitrogen during the start-up that are higher than the limits set in the
National Legislation. This is due to nitrification-denitrification which is a slow process
to start. Therefore, it is anticipated that to achieve effluent characteristics for all the
parameters, the system needs to find steady-state conditions.

The aggregated results of Table 4 confirm what was already concluded from our
previous experience that the Hybrid MBR/UV unit manages the removal of the organic
content and also with high rates of nitrification. The microbial load is also completely
removed after the UV disinfection unit. Table 5 presents the UV performance by providing
microbial data before (MBR tank) and after the UV disinfection.

Table 5. UV performance (concentrations in cfu/100 mL).

Parameters MBR Effluent After UV Disinfection

TC 10,525 ± 2874 2 for 80% of samples
9 for 95% of samples

FC 21 ± 18 ≤3

EC 3.75 ± 0.5 ≤3 for 80% of samples
≤3 for 95% of samples

UV disinfection unit shows great performance. The dose of 60 L/min is enough to
remove all pathogens and produce safe water for any kind of reuse as it meets even the
strictest criteria.

Except for the start-up period, the total operation of the system shows great stability.
The COD removal rates are kept higher than 90% and the filtration performance was very
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stable. The values of the transmembrane pressure have been kept low with an average value
at around 135 mbar. Dissolved oxygen (DO) was kept in the aeration tank at values greater
than 2 mg/L during the whole time of operation. The combination of the aeration tank
along with the MBR filtration was very successful for the removal of all the biodegradable
COD but also all suspended solids as they cannot pass through the pores of the membrane.
Its automations enable it to operate autonomously without the need for daily monitoring.

The presented characteristics of the effluent water, in combination with the compact
nature of the pilot unit that neither requires other than the existing infrastructures nor
plenty space, make the hybrid unit an ideal solution for the Athens Plant Nursery but also
overall for municipalities suffering from water scarcity.

4. Conclusions

This paper focuses on the demonstration of a distributed circular solution addressing
the real-world challenge of providing autonomous, decentralised resource recovery in
water scarce cities and hence ‘climate-proof’ non-potable water supplies (such as urban
green space irrigation) against the uncertainty [22] that is necessarily associated with water
supply from natural water sources and related hydroclimatic changes.

The implementation of a sewer mining unit that produces high-quality reclaimed
water for urban green irrigation at the point of demand is proven to address resource
efficiency issues in a circular economy context.

According to the findings of this study, it is concluded that the application of SM
technology through the implementation of a prefabricated pumping station along with an
on-site compact hybrid MBR/UV treatment system allows to produce water of excellent
quality that meets all the national and international criteria set regarding wastewater
reclamation for urban reuse. The system presented very satisfactory operational stability
and great performance. The elimination of organic carbon and pathogenic content was
complete. The filtration process through the MBR managed the reduction of pathogens
without any addition of chemicals, thus avoiding the production of secondary pollutants.
TMP remained steady at low values, proving that the combination of backflushing with
maintenance cleaning was very effective. Additionally, the UV disinfection unit showed
great performance.

Sewer mining, due to the limited space required for installation and its decentralised
form, can be installed in situ, and therefore is closer to the circular economy concept.
Additionally, the SM technology is designed in an advanced and flexible design manner as
it also includes the identification of the optimum sewage network location for extracting
wastewater, the design and construction of a compact system placed in a container right at
the point of demand and the energy-efficient prefabricated pumping system. Therefore, a
variety of benefits are anticipated: e.g., the overtaxed wastewater systems can be relieved,
water and wastewater infrastructure costs can be trimmed, energy and chemical use is
reduced and potable water is saved. Hence, this research provides proof of pilot operation
of an innovative solution, in which a compact mobile wastewater treatment system is able
to extract wastewater from local sewers, treat it directly and reuse at the point of demand.
Furthermore, the innovation of this technology lies in the fact that, in terms of treatment, it
is a very efficient and stable system, it requires limited space thus has a small footprint and
it transforms treated wastewater (a waste) into supply (a resource). Subsequently, it seems
ideal for implementing decentralised wastewater treatment and water reuse schemes to
address real-world water scarcity issues in a dense urban environment.

These technologies along with the whole pumping station engineering design and
the UV disinfection unit are implemented and tested for the first time in Greece in a real-
world application and the results aim to serve as a step towards more flexible, expandable,
scalable and replicable CE solutions.
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