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Abstract: Textile industries are the largest consumer of synthetic dyestuff compounds and conse-
quently, they are the prime contributor of colored organic contaminants to the environment. The
dye compounds when released in soil or freshwater resources such as rivers, cause a potential
hazard to living beings due to their toxic, allergic and carcinogenic nature. Current conventional
treatment methods for removal or degradation of such dyestuff materials from water systems are not
sufficient, and therefore, there is an immediate need to find efficient and eco-friendly approaches.
In this regard, nanotechnology can offer an effective solution to this problem. In the present work,
montmorillonite/silver nanocomposite (MMT/Ag nanocomposite) is developed through green syn-
thesis methods using naturally occurring montmorillonite (MMT) clay and silver nanoparticles. The
material was characterized by using a particle size analyzer (PSA), UV/Visible spectroscopy, Fourier
transform infrared spectroscopy (FTIR), field emission scanning electron microscope (FE-SEM), en-
ergy dispersive X-ray (EDX) spectroscopy and a Brunner–Emmett–Teller (BET) surface area analyzer.
The adsorption efficiency of the nanocomposite and per cent removal of methylene blue (MB) was
investigated by using a batch system.

Keywords: montmorillonite; silver; nanocomposite; methylene blue; remediation

1. Introduction

Human’s fascination with “color” has brought a huge revolution to the industrial
sector. The textile industry majorly contributes to water pollution by releasing a huge
amount of dyestuff as effluent. This untreated or partially treated industrial effluent
containing synthetic dye compounds is eventually discharged into water systems, where
it causes damage to the aquatic ecosystem [1,2]. Some metal complex-based synthetic
dyes are causing severe mutagenic and other health issues even at ppm concentrations [3].
Methylene blue (MB) is one of the most widely used cationic dyes in biological staining
and in textile industries because of its faster adsorption on cotton fabric, water solubility

Water 2021, 13, 3206. https://doi.org/10.3390/w13223206 https://www.mdpi.com/journal/water

https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0001-5448-7676
https://orcid.org/0000-0002-4228-2726
https://orcid.org/0000-0001-7790-2131
https://orcid.org/0000-0002-5060-0018
https://orcid.org/0000-0001-5069-0888
https://orcid.org/0000-0002-5478-765X
https://doi.org/10.3390/w13223206
https://doi.org/10.3390/w13223206
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/w13223206
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w13223206?type=check_update&version=1


Water 2021, 13, 3206 2 of 13

and economic benefits. However, MB has been reported to cause diarrhea, eye irritation,
vomiting, breathing difficulty, nausea and chronic toxicity in humans, mainly in relation
to the central nervous system [4,5]. Therefore, the removal of MB dye molecules from
aqueous systems has become a crucial requirement. MB (C16H18 N3SCl) is a heterocyclic
aromatic compound with 319.85 g/mol of molecular weight. MB is a cationic dye molecule
that has a positive charge and its chemical structure is shown in Figure 1.

Figure 1. Chemical structure: MB chloride salt.

Various physicochemical and biological treatment methods are available for the re-
moval of MB dye molecules from the water system [6,7]. Further, various conventional
methods such as coagulation, flocculation [8], oxidation/ozonation [9], membrane-based
separation [10] have been used to separate dye molecules from wastewater [11]. However,
there are some limitations with these methods such as high cost, toxic intermediate produc-
tion, and lower efficiency. Therefore, adsorption techniques are being used by industries
because of their low cost and easy handling [12–14].

Numerous adsorbents (natural and engineered) have been studied by various re-
searchers for the removal of dye molecules such as activated carbon [15,16], zeolite [17],
tourmaline [18], black phosphorous nanosheet [19], waste materials [20], dead biomass [21],
natural clay and clay minerals [22,23] and agricultural waste materials [24]. Recently,
nanotechnology-driven materials such as clay/metal nanocomposites are being explored
for their potential as efficient adsorbents, where metal nanoparticles act as fillers and
clay provides support for their synthesis. Clay is an abundantly available, natural and
low-cost material with excellent cation exchange efficiency due to its high surface area,
mechanical stability, swelling properties and high cation exchange capacity (CEC) [25].
Montmorillonite (MMT) is one such clay mineral that has been studied for its ability to
adsorb different types of dye compounds [26]. Silver nanoparticles are used for catalytic
degradation of textile dyes [27].

Some previous studies have reported the synthesis of MMT clay and silver nanocom-
posite by the chemical reduction method [28], γ-irradiation technique [29], and green
methods using plant extracts of medicinal plants [30–32] and fruit waste [33]. These studies
have focused on the antimicrobial property of the nanocomposite. In the present study, we
have developed montmorillonite clay/silver (MMT/Ag) nanocomposite as an adsorbent
material for the removal of MB dye from its liquid solution, keeping in mind that clay
has a high cationic exchange capacity, high absorption capacity and silver nanoparticles
are also known to have good catalytic efficiency [34]. Besides, this is the first time we are
reporting the use of a weed plant, “sida acuta” extract for the synthesis of an MMT/Ag
nanocomposite where MMT clay is used as a matrix and silver nanoparticles as nanofillers.
Sida acuta Burm. f., also known as broom weed, is a perennial undershrub of the Malvaceae
family. Although, the weed plant has its native roots in Central America, it is also widely
distributed in pan-tropical regions of the world including India. S. acuta is used for the
treatment of diseases related to the liver, blood, and the urinary and nervous systems [35].
This plant contains bioactive compounds, thus it has numerous pharmacological activities
such as anti-ulcer, analgesic, antipyretic, antiviral, anti-plasmodial, anticancer, antimicro-
bial and anti-inflammatory properties [36]. The use of the extract from the weed leaves is a
rapid, economic and environmentally-friendly method for nanomaterial synthesis.

The phytochemicals and bioactive compounds in the aqueous leaf extract of S. acuta
act as a reducing agent for silver salt and result in the formation of silver nanoparticles
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in the lamellar space of MMT clay [32]. The clay acts as a matrix in the composite, which
provides support and also prevents the agglomeration of silver nanoparticles during the
synthesis process. The developed nanocomposite and raw MMT clay were characterized
for their morphology and structural information. The PSA provided information related
to the particle size of nanocomposite material whereas FTIR analysis was carried out to
observe the functional groups in the sample. FE-SEM analysis was done to study the
surface features, EDX for elemental analysis, and BET surface area analysis was conducted
to evaluate the specific surface area. Finally, the adsorption potential of the developed
nanocomposite was studied by conducting batch adsorption experiments for the removal
of MB dye from an aqueous solution.

2. Materials and Methods
2.1. Reagents and Materials

Silver nitrate (AgNO3,) with 99.00% purity and montmorillonite (MMT) clay used for
the study were purchased from Merck. Sida acuta leaves were collected from the Gandhina-
gar region, Gujarat, India. The solutions were prepared using distilled water (DW).

2.2. Synthesis of MMT/Ag Nanocomposite

Freshly collected Sida acuta leaves were washed by thorough rinsing with DW to
ensure complete removal of unwanted particles and were allowed to dry in the shade.
Then, 10 gm of dry S. acuta leaves were boiled in 100 mL of DW at 100 ◦C for 5 min as
shown in Figure 2.

Figure 2. Sida acuta: (a) Plant and (b) Leaf extract.

The leaf extract was allowed to cool to room temperature and then filtered to remove
pigments and other insoluble fractions. This fresh extract was used for nanocomposite
synthesis. For nanocomposite preparation, 10 gm of MMT clay was dried in a hot air oven
at 50 ◦C for 30 min. Figure 3 presents the synthesis procedure for the development of
MMT/Ag nanocomposite.
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Figure 3. Synthesis process of MMT/Ag nanocomposite.

2.3. Batch Adsorption Experiments

Batch experiments were used to study the effects of experimental parameters such as
different concentrations of MB (25, 50 100 and 200 ppm), contact time, adsorbent dosage
(25, 50, 100 mg in 50 mL of MB solution) and the initial dye concentration on the absorption
of the dye by the nanocomposite. For these experiments, 250 mL conical flasks with 50 mL of
dye solution were used. To determine the adsorption capacity of MMT/Ag nanocomposite,
50 mL of MB solution with varying concentrations (25 ppm, 50 ppm, 100 ppm, and 200 ppm)
was prepared. An assessment of different adsorbent doses was conducted with 50 mL
of 50 ppm dye solution and 50 mg of MMT/Ag nanocomposite was added to the MB
solutions. The mixtures were agitated mechanically in a rotary shaker at 150 rpm for 30 min.
After a 5 min interval, aliquots of 3 mL reaction mixture were centrifuged at 5000 rpm for
5 min. Further, the supernatant solution was examined for the remaining MB concentration
by using a UV spectrophotometer (λmax = 665 nm). The per cent removal of dye and the
adsorption capacity of adsorbent at any time (qt) and at equilibrium (qe) were analyzed
using the following equations.

% Removal =
C0 − Ct

C0
× 100 (1)

qt (mg|g) = (C0 − Ct )V
M

(2)

qe (mg|g) = (C0 − Ce )V
M

(3)

where:
C0 = initial MB concentration in mg/L;
Ct = MB concentration at time t, in mg/L;
Ce = MB concentration at equilibrium, in mg/L
V = volume of MB solution in liters;
M = mass of adsorbent material in grams (g).
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2.4. Characterization Techniques

Both MMT clay and MMT/Ag nanocomposite were analyzed by FTIR for the identifi-
cation of functional groups, for which 2 mg powder samples were mixed with 98 mg of KBr
to obtain a solid pellet. The analysis was done by using the Perkin Elmer “Spectrum 6500”
(USA). The measurement was done in the band region of 400–4000 cm−1, with a resolution
of 1 nm. The particle size distribution of both MMT and MMT/Ag nanocomposite was ana-
lyzed by a particle size analyzer, for which liquid formulations was prepared by dispersing
1–2 mg powders in double-distilled water (ddw) and sonicating for 10 min in an ultrasoni-
cator (Sonar, 40 Khz, Gujarat, India). The sonicated dispersed samples were divided into
two portions, one portion was used for the PSA measurement, which was done by the
Malvern Zetasizer, Z-90 (Malvern Instruments Ltd, Malvern, UK) at room temperature (RT),
while the second portion of the dispersed sample was used for the UV-Vis measurement
in the range of 200–700 nm, using a 2060+ Analytical double-beam spectrophotometer
(Analytik Jena Japan Co., Ltd., Yokohama Kanagawa, Japan). For FE-SEM analysis of the
powder samples, a pinch of the samples was spread on a carbon tape, which was fixed on
the aluminum stub. Both the samples were subjected to gold sputtering. FESEM analysis
revealed the morphological properties of the samples, and the measurement was done by
using the Nova NanoSEM 450 (FEI Company. Hillsboro, OR, USA), while the elemental
analysis of the samples was done by using the attached Bruker-made EDX analyzer. A BET
analyzer was used for the measurement of the surface area and the pore size of both the
powder samples NOVA 1200e (Quanta Chrome Instruments, Vernon Hills, IL, USA).

3. Results and Discussions
3.1. PSA for Particle Size Distribution

The particle size distribution of both MMT and MMT/Ag nanocomposite was ana-
lyzed by a particle size analyzer, for which liquid formulations were prepared by dispersing
1–2 mg powders into the DW and sonicating for 10 min in an ultrasonicator (Sonar, 40 KHz).
The PSA graph of both the particles exhibits two types of species, i.e., it is a bimodal graph
as shown in Figure 4. The majority of the MMT particles are below 1000 nm, while some of
the particles fall in the size range of 3000–4000 nm. The average size of the MMT particle is
341.3 nm (dm) and the zeta potential value is −37.13 mv.

In the case of MMT/Ag nanocomposite, the majority of the particles also vary in size
from 100 nm to 1000 nm, while the size of the particles ranges from 4500 to 6000 nm in the
total population. The average size of the MMT/Ag nanocomposite particles is 366.2 nm
and the zeta potential is −16.49 mv.

So, based on the PSA, it is clear that the size of the MMT/Ag nanocomposite increased
slightly, i.e., 15–20 nm, as the silver nanoparticles were deposited on the surface of the
clay, which is also evidenced by the microscopic analysis and XRD. The zeta potential
was decreased in the case of the nanocomposite, which may indicate the instability of
the samples in the solution as compared to clay, as the deposition or loose attachment
of the silver nanoparticles on the surface of the clay might have made them unstable in
the distilled water. Gashti et al. also reported that the presence of silver nanoparticles on
the surface of clay (kaolin) decreased the thermal stability of the material due to proton
delocalization of hydroxyl groups in the nanocomposite [37].
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Figure 4. PSA graph of (A) MMT clay and (B) MMT/Ag nanocomposite.

3.2. UV-Visible Spectroscopy Analysis

Light absorption by the molecules in the UV or near UV region of the electromagnetic
spectrum results in electronic transitions from the ground state to a state of higher energy.
This happens because of a high degree of conjugation of the molecules. The UV-Vis spectra
for MMT clay and MMT/Ag nanocomposite are shown in Figure 5 with peaks ranging
from 200–400 nm.

Figure 5. UV-Vis spectra: (a) MMT clay and (b) MMT/Ag nanocomposite.

In the MMT clay sample, the characteristic bands are present in the ultraviolet region
(200–400 nm), i.e., at 210 nm, 214 nm and 250 nm. Bands at 210 nm and 214 nm point to the
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existence of exchange sites and iron valency in the lattice. These absorption bands display
the charge translocation of oxo-to-iron (III) [38]. Also, the EDX analysis of the clay confirms
the presence of iron in its elemental composition. The absorption peak at 250 nm is due to
π-to-π* electronic transition of the functional group Si=O. The vibrational frequencies of
group Si=O were also detected in the FTIR spectra of MMT clay. A similar study regarding
UV spectroscopic analysis of MMT clay has been reported by Wanyika et al. [39]. The
absorption spectrum of MMT/Ag nanocomposite shows a low-intensity band at 365 nm,
which confirms the presence of silver nanoparticles in the matrix of MMT clay.

3.3. FTIR Analysis

The FT-IR analysis showed that spectra (Figure 6) for MMT and MMT/Ag nanocom-
posite were quite similar with a slight shift in the band’s position and intensity. In both sam-
ples, Si-O and Al-OH were the main functional groups detected in the range of 1000 cm−1

and 500 cm−1.

Figure 6. FTIR spectra of MMT and MMT/Ag nanocomposite.

The absorption peak at 528 cm−1 and 790 cm−1 is because of the bending vibration
of the Al-O-Si bond and the Fe3+-OH-Mg stretch, respectively. Bands at 1130 cm−1, and
1048 cm−1 were attributed to Si-O stretching vibrations. IR peaks at 3626 cm−1 and
918 cm−1 were ascribed to the Al-Al-OH group of MMT clay [40], while bands at 3710 cm−1,
3448 cm−1 and 1675 cm−1 were assigned to the O-H functional group, which is due to the
existence of water molecules between the layers of MMT. Similar FTIR spectral results for
MMT were found by Wanyika et al. The IR spectrum for the MMT/Ag nanocomposite
was similar to that of MMT with peaks or bands at the same location but with altered
intensities. For instance, the IR band at 918 cm−1 moved slightly to 914 cm−1 with an
enhanced intensity, which indicates an increase in the mass of the molecules due to silver
nanoparticles-MMT clay interaction. The MMT/Ag nanocomposite spectra showed a new
absorption band near 3150 cm−1, which is an indication of the interaction between silver
nanoparticles and the O-H functional group in the MMT layers [29,41].

3.4. FESEM, TEM and EDX Analysis

The analysis of surface structures and elemental composition of MMT clay and
MMT/Ag nanocomposite was done using FESEM and EDX (Figure 7). The results suggest
that the nanocomposite has a flaky and layered structure that contains silicon, aluminum
and silver as the principal constituents.



Water 2021, 13, 3206 8 of 13

Figure 7. FESEM images and EDX spectrum of (A) MMT clay and (B) MMT/Ag nanocomposite.

The FESEM images of MMT/Ag nanocomposite shows the presence of silver nanopar-
ticles on large flakes of MMT clay, confirming the interaction between the two. Also, the
interaction between MMT and silver nanoparticles in the nanocomposite has already been
proven by the FTIR results. The elemental composition of the nanocomposite obtained by
EDX showed that it contains Si (31.55%), Al (6.02%), Fe (8.86%), and Ag (1.38%). Hence, mi-
croscopic analysis outcomes suggest that the nanocomposite is a heterogeneous composite
containing flakes of MMT and silver nanoparticles.

3.5. BET Surface Area Analysis

The specific surface area and porosity of MMT clay and MMT/Ag nanocomposite were
analyzed by using the BET analyzer model no. NOVA-1200e (Quanta Chrome Instruments).
Surface area analysis by BET involves the physisorption of gas (nitrogen) onto the sample
surface with weak van der Waal force. The Barrett–Joyner–Halenda (BJH) method was
used for the evaluation of pore volume and pore diameter. The results are shown in Table 1.
The surface area of MMT/Ag nanocomposite was found to be higher than raw MMT
clay. The nanocomposite specific surface area was found to be 82.663 m2/g with a pore
volume and pore diameter of 0.127 cc/g and 4.136 nm, respectively. Smaller pore size and
higher specific surface area are characteristic features of an efficient and highly capable
adsorbent [42].

Table 1. Surface area of MMT and MMT/Ag nanocomposite.

Material Surface Area
(m2/g)

Pore Volume
(cc/g)

Average Pore
Diameter (nm)

Montmorillonite Clay (Raw) 77.234 0.116 3.782

MMT/Ag nanocomposite 82.663 0.127 4.136
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3.6. Adsorption Results of MB Using MMT/Ag Nanocomposite

The adsorption system was evaluated by examining the results of various experimen-
tal parameters such as the effect of contact time, initial MB concentration and nanoadsor-
bent dose.

3.6.1. Effect of Contact Time

The removal of MB from aqueous solution occurred either via a physisorption or
chemosorption process. During 30 min of contact time, the amount of MB adsorbed onto
the nanocomposite was found to increase with time up to 20 min, and then it attained
equilibrium. A quick decrease in the MB concentration during the initial 5 min shows strong
contact between the cationic dye MB and the negative charge-carrying nanocomposite
material. After 5 min, the MB adsorption increased gradually up to 20 min. The per cent
removal of four different concentrations of MB using a fixed amount of raw clay and
adsorbent, up to 30 min of contact time is shown in Figure 8. The figure shows that MB
removal efficiency (for all four concentrations) increased with contact time whereas the
per cent removal of MB decreased with the increase in MB concentration. After 30 min
of contact time, the MMT/Ag nanocomposite showed MB removal of 99.90% for 25 ppm,
96.50% for 50 ppm, 89% for 100 ppm and 81.14% for 200 ppm. Similar results were reported
by [43] for MB dye adsorption by montmorillonite clay.

Figure 8. Removal percentage of MB using (a) MMT clay and (b) MMT/Ag nanocomposite.

3.6.2. Effect of Initial MB Concentration

Figure 9 shows the effect of increasing the initial MB concentration on the adsorption
efficiency of the raw MMT clay and nanocomposite. The removal efficiency of both materi-
als decreased with increasing MB concentration. The reason could be the unavailability
of sufficient active sites on the nanocomposite surface for binding with MB ions. Similar
observations were reported by [44] for MB adsorption on red clay.
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Figure 9. Effect of initial MB concentration on adsorption by raw MMT clay and MMT/Ag nanocomposite.

3.6.3. Effect of Adsorbent Dose

To identify the optimum adsorbent dose, the effects of adsorbent dosage was studied
with regard to the amount of MB concentration. In general, increasing the adsorbent dose
increases the removal efficiency. Figure 10 shows an increase in the removal efficiency of
adsorbents, which is due to the easy and excessive availability of adsorption sites at the
nanocomposite surfaces. Increases in the removal efficiency slowed down after 50 mg,
which suggested that 50 mg is the optimum nanocomposite dose for adsorption of 100 ppm
MB dye from an aqueous solution. The obtained outcome is in good agreement with the
results reported by [45].

Figure 10. Effect of adsorbent doses on MB removal efficiency.

3.6.4. Effect of Contact Time on Adsorption Capacity of Nanocomposite

The variations detected in MB adsorption on MMT clay (raw) and MMT/Ag nanocom-
posite as a function of contact time are shown in Figure 11a–d. The figure shows that the
maximum MB adsorption occurred during the initial 15 min. Afterwards, it increased
gradually and almost reached equilibrium within 30 min of the initial contact. The faster ad-
sorption rate in the initial time period is because vacant and available sites on the negatively-
charged adsorbent surface result in faster adsorption of negative charge-carrying MB dye
from the aqueous solution at neutral pH [46,47]. Further, the decreased adsorption rate
is due to a lack of available active sites resulting from MB monolayer formation on the
adsorbent surface. Similar results were also reported by Vutskits et al. [5] for MB adsorption
by activated carbon. The adsorption capacity of raw MMT clay ranged from 13 mg/g
to 151.68 mg/g and MMT/Ag nanocomposite ranged from 14.32 to 156.22 mg/g against
adsorption of MB dye [48].
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Figure 11. Effect of the contact time on adsorption capacity of raw MMT clay and MMT/Ag
nanocomposite (a) 25 ppm, (b) 50 ppm (c) 100 ppm and (d) 200 ppm of dyes.

4. Conclusions

The outcomes of the present research study show that MMT/Ag nanocomposite was
successfully synthesized using a weed plant extract and effectively used as an adsorbent
for the removal of cationic dyes from an aqueous medium. The FTIR results showed the
interaction between the clay and silver nanoparticles and the FESEM study revealed the
layered, sheet-like morphology of MMT/Ag nanocomposite. The MB adsorption study
showed that both raw MMT and MMT/Ag nanocomposite have potential for the removal
of MB dye and the difference in their adsorption efficiency was found to be very small.
This might be due to the low silver content in the developed nanocomposite material.
Further research should be conducted with different clay: Ag ratios in order to evaluate
the adsorption capacity of clay/Ag nanocomposite against the adsorption of MB dye.
Silver-based clay nanocomposites are well-known antimicrobial agents. More research on
this material could provide a solution for the removal of microbial and organic pollutants
from wastewater.
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