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Abstract: Climate change, population increase, and urban expansion have increased the risk of
flooding. Therefore, accurately identifying future changing patterns in the flood risk is essential. For
this purpose, this study elaborated a new framework for a basin scale that employs a future land-use
simulation model, a factor spatialization technique, and a novel hybrid model for scenario-based
flood risk assessment in 2030 and 2050. Three land-use scenarios (i.e., natural growth scenario,
cropland protection scenario, and ecological protection scenario) were set and applied in Jinjiang
Basin to explore the changes in future flood risk under these scenarios. The results indicate the
different degrees of increase in flood risk that will occur in the three scenarios. Under the natural
growth (NG) scenario, the city will expand rapidly with the growth of population and economy, and
the total area with high and very high flood risk will increase by 371.30 km2 by 2050, as compared to
2020. However, under the ecological protection (EP) scenario, woodlands will be protected, and the
growth in population, economy, and built-up lands will slow down with slightly increased risk of
flooding. In this scenario, the total area with high and very high flood risk will increase by 113.75 km2

by 2050. Under the cropland protection (CP) scenario, the loss of croplands will have been effectively
stopped, and the flood risk will not show a significant increase under this scenario, with an increase
by only 90.96 km2 by 2050, similar to the EP scenario. Spatially, these increased flood risks mainly
locate at the periphery of existing built-up lands, and the high-flood-risk zones are mainly distributed
in the southeast of the Jinjiang Basin. The information about increasing flood risk determined by
the framework provides insight into the spatio-temporal characteristics of future flood-prone areas,
which facilitates reasonable flood mitigation measures to be developed at the most critical locations
in the region.

Keywords: dynamic flood risk assessment; future land-use simulation; scenario-based planning;
spatialization technology; Markov chains; ANN; FLUS model; TOPSIS

1. Introduction

Flood is considered to be the natural disaster responsible for the most severe losses of
economy and lives [1], with economic losses caused by flood constituting 31% of the total
losses resulting from natural disasters globally [2]. According to the report, flood leads
to about 20,000 deaths and 75 million affected people each year in the whole world [3].
In 2010, for example, approximately 178 million people were affected by flooding, and
the total losses recorded during 1998 and 2010 exceeded USD 40 billion worldwide [4]. In
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China, floods are particularly serious, due to the effect of East Asian monsoon [5]. Since
1990, China has suffered an average annual economic loss of about $17 billion caused
by flooding, with two-thirds of its territory and more than half of its total population
affected by floods [1]. Therefore, considering the severity of consequential damage caused
by floods, it is necessary to implement flood control and prevention measures. However,
before taking targeted measures to control floods, the likelihood of flooding, potential
losses, and resilience must be assessed first [6]. In this regard, flood risk assessment as
a nonstructural measure has been widely taken into account to identify the areas more
susceptible to floods [7].

The ongoing climate change and socioeconomic development have direct impacts
on floods [8], which will lead to the rise of the frequency and magnitude of future flood
situations [7]. In addition, due to the population increase and the rapid growth of urban
expansion, the risk level and spatial distribution of floods will change over time [9,10].
Thus, the flood risk is considered to be dynamic, which can be attributed to land-use
change, population expansion, and property accumulation [6]. Although the directions
of future land-use change are diverse, most previous studies have assessed the flood
risk statically based on one-period data, and few studies have taken the future land-use
scenarios into account when assessing flood risk [11]. In this regard, Lai et al. have assessed
the future flood risk in Dongjiang Basin based on two land-use maps drawn for 2030 and
2050 [6]. Liu et al. have drawn four land-use maps under a planning scenario in the
years of 1954, 1982, 2000, and 2020, to analyze the impact of land-use changes on flood
exposure of Wuhan [12]. However, the different future land-use change scenarios were
ignored in their study. In this case, how to consider different land-use change scenarios in
the dynamic assessment of flood risk is an urgent issue to be addressed. In this context,
future land-use simulation (FLUS) model and Markov model were applied to simulate
the land-use changes under three scenarios in this study. The Markov model is able to
predict the amounts of future land-use types under different scenarios. The FLUS model
can efficiently integrate the relationship between land-use changes and driving factors by
embedding with an ANN, and thus can generate more realistic simulations [13]. These
two models can be used together for the simulation of future land-use changes in different
scenarios, and then these can be taken into account in the the flood risk assessment.

In the future scenarios, forecasting population size and economic conditions is essen-
tial for assessing the hazard-bearing bodies. However, most of the existing studies used
only one aggregate value, i.e., a region with only one value, as the predicting value of
future population (POP) and Gross Domestic Product (GDP) [14,15]. The interior spatial
distributions of the POP and GDP have not been focused on, leading to the low spatial
accuracy in the assessment. In this regard, some efforts have been made by Lai at al. [6],
who distributed the increased POP and GDP over urban land and obtained the spatial
distribution of them over urban land. However, their study only takes into account the
impact of building-up lands, without extensively considering changes in other land-use
types. In this case, a spatialization technique was introduced into the flood risk assessment
to obtain a fine spatial distribution of factors instead of a lumped/overall value.

For the flood risk determination, various models have been developed, and these can
be broadly classified into three categories, namely, physically based simulation models,
sampling models, and nonsampling models [6]. As effective flood inundation models,
the physically based simulation models can provide the details of floods according to
the 1D or 2D hydraulic models, such as inundation extent, the water depth, and the
velocity [16]. However, since a sea of input data and substantial computational resources are
required in these models, the application of them for regional-scale analysis is limited [17].
The sampling models and nonsampling models do not take into account the complex
hydrologic or hydrodynamic processes, and they describe a relationship between flood
risk levels and flood factors [18]. Therefore, they are widely used in regional-scale flood
analysis. At present, as sampling models, the machine learning models (i.e., support vector
machine [19], random forest [20], artificial neural network [21], and decision tree [22]) and
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statistical models (i.e., weights-of-evidence [23], frequency ratio [22], and evidence belief
function [24]) are popular for the flood risk assessment. However, the samples based on
historical flooding locations become essential for the implementation of these sampling
models, which results in their unattractive applications for data-poor regions. Compared
to the sampling models, nonsampling models can assess the flood risk without the samples
but based on the knowledge of experts or data information. However, the nonsampling
models are considered to be subjective; among them, analytic hierarchy process (AHP) is the
most typical [25,26]. Although the uncertainty of the AHP cannot be eliminated, it can be
mitigated by applying fuzzy numbers in the traditional AHP [27]. Therefore, the triangular
fuzzy number-based AHP (TFN-AHP) was selected as a subjective method to determine
the flood risk in this study. Further, considering that combining objective and subjective
results allows for a more reasonable assessment of the object [28], an objective nonsampling
method was also taken into account in this study. Generally, objective nonsampling
models are conducted based on data information, including criteria importance through
intercriteria correlation (CRITIC) [29], technique for order preference by similarity to an
ideal solution (TOPSIS) [30], entropy weighting method [31], and coefficient of variation
method [32]. Among them, the advantage of TOPSIS is obvious, as explicit trade-offs and
interactions among attributes are allowed [33]. However, the single TOPSIS method focuses
only on the final scores of different evaluation objects and ignores the heterogeneity among
the attributes of these objects, which can be quantified by methods such as CRITIC [34].
Therefore, a hybrid model (CRITIC-TOPSIS) was proposed by integrating the CRITIC
and TOPSIS models. Although the CRITIC has shown good performance in determining
weights [35], it is rarely employed for the evaluation of inhomogeneities and the generation
of decision support options. Therefore, the CRITIC warrants consideration. To the best of
our knowledge, this is the first time that CRITIC and TOPSIS have been combined, which
enriches the means of flood risk determination.

In this context, the main purpose of this study is to propose a new framework to
assess future flood risk dynamically, which provides a practical way to explore the complex
relationship between changes in future flood risk and the state of social development. In
this framework, land-use types under three scenarios in 2030 and 2050 were simulated
by Markov chain model and FLUS model. Then, the factor spatialization technique was
introduced to determine spatial distribution of hazard-bearing bodies (i.e., POP and general
budget revenue (GBR)). Notably, due to the availability of data, the GBR was used instead
of GDP to reflect the economic level of the region. Finally, each future flood risk map
under the three scenarios was obtained by combining a subjective risk map generated by
TFN-AHP and an objective risk map generated by the novel hybrid model of CRITIC and
TOPSIS (CRITIC-TOPSIS). By applying this framework in Jinjiang Basin, changes in flood
risk under three land-use scenarios from 2020 to 2050 are revealed in this study. These
findings not only facilitate a more comprehensive insight into the challenges posed by
future social development on flood risk, but also provide scientific and practical merit for
the future flood mitigation measures.

2. Materials
2.1. Study Area

This study is focused on the Jinjiang Basin (24◦31′–33◦39′ N, 117◦44′–118◦47′ E), which
is located in the southeast coast of Fujian Province, China (Figure 1). The whole Jinjiang
Basin is within the Quanzhou City, a coastal city in the Western Taiwan Straits Economic
Zone of China [36]. Therefore, the economy of the study area is developed, with the
GDP exceeding one trillion yuan in 2020. However, as the economy continues to develop,
so does the exposure, which increases the risk of flooding. There are two tributaries
flowing through this basin, the Dongxi and Xixi rivers. The area of Jinjiang Basin is about
5294 km2 at an altitude varying from 1 to 1516 m. The terrain in the study area is complex,
including the low plain in the southeast and the mountainous area in the northwest part
of the basin. In terms of climate, the Jinjiang Basin area is characterized by a subtropical
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monsoon climate and has an average annual temperature and precipitation level of 20 ◦C
and 1686 mm, respectively [37]. Notably, about 80% of the annual total precipitations are
concentrated in the period of April to September, which leads to flooding easily [36,37].
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Figure 1. The study area of Jinjiang Basin: (a) Fujian province in China; (b) Jinjiang Basin in Fujian
province; (c) digital elevation model (DEM), and location of the main river in Jinjiang Basin.

During the last few decades, the Jinjiang Basin has been highly affected by flooding.
According to the statistics provided by the National Flash Flood Investigation and Evalu-
ation Project, 359 floods occurred in the Jinjiang Basin during 1949–2018, and have lead
to huge loss of life and property. Taking 2010 as an example, a total of 14 flash floods
caused 2 deaths and 95.6 million yuan of economic losses. Under these circumstances, it is
meaningful to perform flood risk assessment for this basin.

2.2. Data

In the flood risk assessment, the first task is to construct a spatial database that
contains the flood factors. However, the suitable flood factors vary with the characteristics
of the different areas [22], and the same factors have very different influences in different
areas [21]. In this study, considering the characteristics of Jinjiang Basin and referring to
the existing studies [6], three aspects of data were selected (i.e., disaster-inducing factors,
disaster-breeding environments, and hazard-bearing bodies). The primary sources of the
factors are presented in Table 1, and each of them was converted into a gridded database
with a spatial resolution of 100 m × 100 m in ArcGIS. In addition, the data used in the
future land-use simulation are shown in the Table S1 (Supporting Information).

Table 1. Primary sources for the factors used for flood assessment in this study.

Data Aspect Sub-Factors Data Time Source of Data Resolution

Disaster-inducing
factors

M3DP

GPM 2000–2020

National Aeronautics and Space Administration
(https://disc.gsfc.nasa.gov/datasets/GPM_
3IMERGDE_06/summary?keywords=GPM)

(accessed on 18 April 2021)

0.1◦ × 0.1◦
R50 mm

Disaster-breeding
environments

DEM

DEM 2010
Geospatial Data Cloud (www.gscloud.cn)

(accessed on 6 May 2021) 30 m × 30 mSlope

TWI

https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGDE_06/summary?keywords=GPM
https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGDE_06/summary?keywords=GPM
www.gscloud.cn
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Table 1. Cont.

Data Aspect Sub-Factors Data Time Source of Data Resolution

DR River 2013 National Flash Flood Investigation and
Evaluation Project (NFFIEP) 1:1,000,000

RC Land-use 2020
Globeland30

(http://www.globeland30.com/)
(accessed on 20 May 2021)

30 m × 30 m

Hazard-bearing
bodies

POP Quanzhou
statistical
yearbook

2020
Quanzhou Statistical Information network

(http://tjj.quanzhou.gov.cn/tjzl/tjsj/ndsj/)
(accessed on 1 June 2021)

\
GBR

The disaster-inducing factors contained the maximum three-day precipitation (M3DP)
and number of days with daily rainfall ≥50 mm (R50 mm), which reflect the intensity and
frequency of precipitation, respectively. The M3DP (Figure 2a) has been proven to have a
strong correlation with the flooding [38] and has been successfully applied in the analysis of
flood susceptibility and risk [25,39]. Similarly, the R50 mm (Figure 2b) is strongly associated
with flooding, due to the fact that frequent heavy precipitation tends to lead to flooding.
These two factors were obtained by Kriging interpolation method, according to the annual
mean M3DP (2000–2020) calculated by GPM data (Global Precipitation Measurement).
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Figure 2. Disaster-inducing factors: (a) maximum three-day precipitation (M3DP), (b) number of days with daily rainfall
≥50 mm (R50 mm); disaster-breeding environments: (c) digital elevation model (DEM), (d) slope, (e) topographic wetness
index (TWI), and (f) distance to river (DR).

The disaster-breeding environments considered five factors: digital elevation model
(DEM), slope, distance to river (DR), topographic wetness index (TWI), and runoff coeffi-
cient (RC). The DEM (Figure 2c) represents the elevations of the Jinjiang Basin, which is
inversely related to flood risk because of the flowing of water from higher elevations to
lower elevations [40,41]. In this study, the DEM data were obtained from the Geospatial
Data Cloud site, Computer Network Information Center, Chinese Academy of Sciences. As
a factor can effectively reflect the degree of topographic undulations, slope is considered to
influent flood genesis significantly [42]. Slope (Figure 2d) can directly affect the surface
runoff and vertical percolation, which in turn affect the gathering of the water. Generally,
areas with low slopes face a greater threat of flooding. In this study, slope was calculated by
the DEM data using ArcGIS. The TWI (Figure 2e), reflecting the geotechnical wetness [43],
is the accumulation of flow in any location in the basin. It is calculated using a function
of slope and basin area, which is described in the study of Arora et al. [44]. Obviously,

http://www.globeland30.com/
http://tjj.quanzhou.gov.cn/tjzl/tjsj/ndsj/
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when floods occur, areas along both banks of a river will be inundated. Therefore, the
DR (Figure 2f) is an essential factor for assessing the flood risk in a specific area. The DR
was estimated using the Euclidean distance [7]. The RC is another factor influencing the
occurrence and process of floods [45], whose values are dependent on the land-use types
to a large extent [46]. In this study, the RC was determined according to the Table 2, and
varied with different land-use scenarios in 2030 and 2050.

Table 2. Land-use type and the corresponding runoff coefficient.

Land-Use
Type Cropland Woodlands Grassland Water

Area
Built-Up

Land
Unused

Land

Runoff
coefficient 0.60 0.3 0.35 1.00 0.92 0.7

The hazard-bearing bodies used in this study included total population per unit area
(POP, people/100 m2) and total general budget revenue per unit area (GBR, yuan/100 m2).
The POP, a factor reflecting the social vulnerability [47], is considered to be very important
for determining the flood risk [48]. The GBR was used to reflect the economic level of a
unit, due to the strong correlation between it and Gross Domestic Product [49]. The raw
datasets of these two factors were obtained from the Quanzhou statistical yearbook in 2020,
and were spatialized using the spatialization model described in Section 3.3. Then, the
POPs and GBRs of 2030 and 2050 were estimated according to the future land-use types
and the topographic factors.

3. Methods
3.1. Land-Use Simulation Models
3.1.1. Markov Chain Model

The Markov chain model is essentially a stochastic process, which describes the
possibility of one state changing to another state by a transition probability matrix [50].
Since the dynamic evolution of land use is characterized by Markov process [51], Markov
model has been widely applied in predicting amounts of future land-use types, and has
obtained high prediction accuracy. The Markov model can be expressed by the follow
formula [52]:

St+1 = Pij × St, (1)

where St is the status of land-use types at the current time; St+1 is the status of future
land-use types, and Pij represents the transition probability matrix for land-use types.

P = [P11 · · · P1n
... · · ·

...Pn1 · · · Pnn], (2)

where 0 ≤ Pij ≤ 1, and i, j = (1, 2, 3, . . . , n).

3.1.2. The FLUS Model and Accuracy Verification

The FLUS model was first proposed by Liu et al. in 2017, and is used to simulate the
land-use changes [53]. The working mechanism of FLUS model integrates a bottom-up
cellular automata (CA) and a deep learning algorithm—artificial neural networks (ANNs),
and considers neighborhood influence, weight factors, self-adaptive land inertia, and
conversion costs [13]. The integration of ANNs in FLUS model helps it to explore the
nonlinear relationships between the driving factors and multiple land-use types more
effectively [54]. In addition, the self-adaptive inertia mechanism and roulette selection
mechanism of the FLUS model have been shown to be more effective for spatial simulation,
compared with the traditional CA model [55]. Therefore, the FLUS model was considered
to be better than CA and CLUE-S models, and has been applied in many studies [56–58].

In this context, the FLUS model was used in this study for the spatial simulation
of land-use changes. First, the land uses were divided into six classes, according to the
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land-use types in mainland China. Then, in order to obtain a probability distribution map,
14 driving factors and land-use data were used to train the ANNs model in FLUS model.
As displayed in Figure S1 (Supporting Information), the 14 driving factors include the data
on natural environment, social economy, and geographical location factors. Subsequently,
based on the probability distribution map, the self-adaptive inertia mechanism and roulette
selection mechanism of the FLUS model were used to simulate the land-use types in 2020
with the land use in 2010 as the starting year. Finally, Kappa test was applied to compare
the simulation results in 2020 with the real 2020 land-use map, as follows [13]:

Kappa = (P0 − Pc)/(Pp − Pc), (3)

where P0 is the correct proportion of the simulation; Pc is the correct proportion of the
model in the random case, and Pp represents the proportion of the correct simulation in
the case of ideal classification. From the verification results, we found that the kappa
coefficient and overall accuracy reached 76.40% and 83.81%, respectively. These values
showed that the accuracy of the simulation results were acceptable [53]. Therefore, the
model was considered to be reliable and can be applied in future land-use simulation in
2030 and 2050.

3.2. Land-Use Simulation Scenario Setting

The direction of future land-use change cannot be fully determined [59]. In this context,
many studies simulated the land-use change under different scenarios [60], such as natural
growth scenario, ecological protection scenario, and urban expansion scenario [52]; low
development scenario, medium development scenario, and high development scenario [61].
Considering the actual development of China and based on previous studies [62,63], three
scenarios of natural growth scenario (NG), cropland protection scenario (CP), and ecological
protection scenario (EP) were set in this study. According to the characteristics of each
scenario model and with reference to the Master Plan for Land Use of Quanzhou and
the Main Functional Zone Plan of Quanzhou, the demand area of each land type in each
scenario was estimated by modifying the conversion probabilities of Markov chain model.
More details of each scenario are described below.

The NG scenario was set to be consistent with the natural law of land-use type
evolution in the study area, with an assumption that the land-use demand will not be
affected by policy adjustments. Thus, under this scenario, the land-use demand was
estimated only by the conversion probability matrix for the period 2000–2010, without any
restrictions and adjustments.

The CP scenario was set to achieve the core goal of cropland protection, which is in
accordance with the planning policy. In this scenario, the croplands were protected by
restraining the expansion rate of built-up land and the conversion rates of cropland to other
lands. Therefore, under the CP scenario, the conversion probabilities of croplands to built-
up lands, woodlands, and water areas were reduced by 40%, 20%, and 20%, respectively,
on the basis of the NG scenario.

The EP scenario was set to protect the ecological security, which is one of basic STATE
policies in China. In this scenario, green mountains and green waters were protected (i.e.,
ecological lands such as woodlands and grasslands), and the conversion of ecological lands
to built-up lands was strictly restricted. Therefore, under the EP scenario, the adjustments
of conversion probabilities of croplands to other land types focused on (1) reducing the
rate of conversion of croplands to built-up lands by 30% and adding the reduced part
to the conversion of croplands to woodlands; (2) reducing the rate of conversion of both
grasslands and woodlands to built-up lands by 50%.

After the scenarios were set up, the Markov chain model was used to estimate the
land demand of each land-use type under the three scenarios (Table 3), with a step size of
10 years.
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Table 3. The land demand of each land-use type under the three scenarios.

Year Scenario Cropland Woodland Grassland Water
Area

Built-Up
Land

Unused
Land

2020 / 173,528 250,238 75,297 6746 81,268 484

2030
NG 162,957 235,043 88,627 8364 91,944 623
EP 162,957 243,227 89,995 8364 82,393 623
CP 175,565 232,285 88,627 7974 82,485 623

2050
NG 134,735 212,102 108,011 11,322 120,543 848
EP 146,668 230,356 114,399 10,673 84,592 873
CP 179,905 201,947 109,825 9993 85,013 878

Unit: number of pixels.

3.3. Spatialization of Epigenetic Factors in Land Use

The spatial distributions of three deuterogenic factors (i.e., RC, POP, and GBR) were
obtained according to future land-use types. According to the previous study [6], the RC
factor was spatialized based on the Table 2. For the POP and GBR variable, the spatial
distributions of them were derived by constructing multiple linear regression models,
according to the Quanzhou statistical yearbook in 2020. The multiple regression model
has been widely used in studies on population spatialization, and has shown good perfor-
mances [64,65]. In this study, in addition to the six land-use types, topographic factors (i.e.,
DEM, slope, and distance to river) were also taken into account in the regression modeling.
These factors have been proven to have significant effects on the spatial distribution of the
population [66]. Therefore, the general forms of the spatialized multiple regression model
of POP and GBR in this study are as follows:

POP, GBR =
n

∑
j=1

ajxj + α× DEM + β× Slope + δ× DR + B0 (4)

where POP and GBR represent the total population and the total general budget revenue
in a region, respectively; aj is the regression coefficient of jth land-use type; α, β, and δ are
the regression coefficients of DEM, Slope, and DR (distance to river), and B0 represents
the intercept. In this study, the POP, GBR, land-use types, and topographic factors of 88
township-level administrative regions in this study area were used for regression modeling.
Notably, according to the principle of no land, no population, the B0 was set to 0.

However, the results of the POP and GBR simulations for the study area are necessarily
in error with their real statistics. Therefore, in order to ensure that the simulated POP and
GBR within the study area are equal to the actual statistical data, Equation (2) was used to
adjust the model regression coefficients, thus making the model more reasonable.

µi =
pr

ps
ai, (5)

where µi represents the adjusted regression coefficient of ith variable; Pr is the real statistical
values, and Ps is the simulated values for the study area. The adjusted spatialization models
of POP and GBR in Jinjiang Basin are expressed as follows:

POP = 9.60 · x1 + 2.21 · x2 + 15.46 · x3 + 9.53 · x4 + 25.38 · x5 + 116.94 · x6
−3.55 · DEM− 2.29 · Slope− 3.14 · River

(6)

GBR = −6.62 · x1 − 6.03 · x2 + 0.56 · x3 + 24.41 · x4 + 23.58 · x5 + 38.76 · x6
5.03 · DEM + 7.71 · Slope + 0.06 · River

(7)

where x1, x2, x3, x4, x5, and x6 represent the croplands, woodlands, grasslands, water
areas, built-up lands, and unused lands, respectively. The decision coefficients—R2—of
the spatialization models of POP and GBR reached 0.867 and 0.530, respectively, which
indicated that these two spatialization models had a good goodness of fit.



Water 2021, 13, 3239 9 of 24

3.4. Flood Risk Determination Methods
3.4.1. Triangular Fuzzy Number-Based AHP (TFN-AHP)

Compared to the traditional AHP, the TFN-AHP applies the fuzzy set theory [67]. In
applications, the TFN-AHP used triangular fuzzy numbers instead of the crisp numbers
in the judgment structure matrix to express the importance degree between factors [68].
The triangular fuzzy number is defined as P = (l, m, u), where the l and u represent the
minimum and maximum possible values, while m is the most promising value [69]. The
membership function of the P = (l, m, u) is expressed as follows [70]:

µ( x|P̃) =


0

(x− l)/(m− l), l ≤ x ≤ m
(u− x)/(u−m), m ≤ x ≤ u

0

, (8)

The judgment matrix and the weights of factors determined by TFN-AHP are shown
in Tables S2–S6 (Supporting Information), respectively.

3.4.2. Criteria Importance through Intercriteria Correlation (CRITIC)

The CRITIC, as a method of determining the objective weights, was proposed by
Diakoulaki et al. in 1995 [71]. This method is conducted based on two concepts (i.e., the
contrast intensity and the conflict in the decision criteria) [72]. The contrast intensity is
represented by the standard deviation, which reflects the variable differences between
classes. The larger the standard deviation, the greater the difference in variables between
classes. The conflict in the decision criteria, which is based on the correlation between
variables, decreases with increasing positive correlation of variables. Ultimately, the
objective weighting of each factor is determined by a combination of contrast intensity
and conflict. The conflict between the jth factor and other factors can be expressed as
follows [6]:

n

∑
k=1

(1− Rkj), (9)

where Rkj represents the correlation coefficient between the kth factor and jth factor. As-
suming that Cj denotes the amount of information contained in the jth factor, Cj can be
expressed as follows:

Cj = Sj

m

∑
k=1

(1− Rkj), (10)

where Sj is the standard deviation of the jth factor. Then, the weight of the jth variable can
be calculated as follows:

Wj = Cj/
m

∑
j

Cj, (11)

In this study, the weights of factors determined by CRITIC are shown in Table S7
(Supporting Information).

3.4.3. Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS)

The TOPSIS method, proposed by Hwang and Yoon et al. in 1981, attempts to
address multi-attribute decision problems without articulation preference information
representation [73]. This method is based on the concept that the ideal is the alternative
with all the best values of attributes, while the negative ideal alternative has the worst
levels of all attributes [30]. In fact, solving TOPSIS is a process that choosing alternatives
that are simultaneously closest to the positive ideal and farthest from the negative ideal [74].
Thus, this technique can provide a cardinal ranking of the alternatives, based on the full
use of attribute information. For more elaboration on the principles of the TOPSIS method,
please refer to Yang et al. [34].
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3.5. Processing

The workflow of dynamic assessment of the flood risk of Jinjiang Basin is illustrated
in Figure 3. Firstly, the demand amount of land-use types was estimated using the Markov
chain model according to the rules of scenarios setting (including NG, EP, and CP scenarios).
Then, based on 14 driving factors, the FLUS model was applied to simulate the land-use
changes. Further, based on the simulated land-use data, the RC was spatialized according
to Table 2, and the future POPs and GBRs were spatialized by using the multiple regression
models. Subsequently, based on the nine flood factors, the TFN-AHP and the hybrid model
of CRITIC and TOPSIS were employed to generate a subjective flood risk result and an
objective flood risk result of each year, respectively. Finally, the weighted average method
was used to combine the above subjective and objective results to obtain the final flood risk
map for each year under each scenario.
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4. Results
4.1. Land-Use Type Changes Based on Different Scenarios

Figure 4 depicts a quantified insight to the land-use changes, and Figure 5 shows
the spatial distribution of future land-use types under the three scenarios. Notably, these
quantitative comparisons are based on the situation of 2020. In the NG scenario of 2030,
the areas of grasslands, water areas, and built-up lands will increase by 2.27%, 0.27%, and
1.82%, respectively. By 2050, these values will reach 5.57%, 0.78%, and 6.68%, respectively.
However, apparent downward trends in areas of the croplands and the woodlands will
be detected, with decreases of 1.80% and 2.58% in 2030, and 6.60% and 6.49% in 2050.
Under the EP scenario, by 2030, the grasslands will increase the most (2.50%), followed
by water areas (0.27%) and built-up lands (0.19%). This ranking is also reflected in the
EP scenario of 2050, with proportions of increase in grasslands, water areas, and built-up
lands reaching 4.15%, 0.39%, and 0.37%, respectively. The croplands and the woodlands,
however, presented slightly decreased areas. From 2020 to 2030, they will decline by 1.80%
and 1.19%, respectively, and will decline 2.78% and 2.19% by 2050, respectively. Under the
CP scenario, only the woodlands will reduce over 2020–2050, while the other five land-use
types all show upward trends. In this scenario, woodlands will decline by 3.05% and
8.21% in 2030 and 2050, respectively. On the contrary, the croplands, grasslands, water
areas, built-up lands, and unused lands will increase by 0.35%, 2.27%, 0.20%, 0.21%, and
0.02%, respectively, by 2030. These values will be 1.09%, 5.88%, 0.55%, 0.64%, and 0.07%,
respectively, by 2050.
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4.2. The Spatialization Results of the Epigenetic Variables

The spatialization results of RC, POP, and GBR under the three scenarios are presented
in Figures 6–8, and Table 4 shows the quantified changes of POP and GBR. Under the NG
scenario, the total POP of Jinjiang Basin will increase from 4.23 million people in 2020 to
4.68 million people in 2030 and 5.44 million people in 2050. The average annual growth
rate of total POP in this scenario will reach 1.27% over 2020–2050. For the GBR in the NG
scenario, it maintains an average annual growth rate of 4.46% over 2020–2050, and the total
GBR of the region will reach 33.20 billion yuan by 2050. Compared to the NG scenario, a
lower rate of population and economic growth can be found under the EP scenario. In this
scenario, by 2050, the total POP and GBR of Jinjiang Basin will be 4.78 million people and
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23.43 billion yuan, respectively, with an average annual growth rate of 0.61% and 2.66%,
respectively. Similar to the EP scenario, both the population and the economy growth rates
in the CP scenario will be also slower than those in the NG scenario. By 2050, the total POP
of the basin will reach 4.97 million people, while the GBR of this basin will be 23.07 billion
yuan. The average annual growth rate of total POP and GBR in the CP scenario will
become 0.80% and 2.58%, respectively. Spatially, the densely populated and economically
developed areas are consistently distributed and are mainly located on built-up lands.
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Figure 6. Spatial distribution of future runoff coefficient (RC) in 2030 and 2050. NG, EP, and CP scenarios represent natural
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Table 4. The total POP and GBR in the Jinjiang Basin under the three scenarios from 2020 to 2050.
AAGR represents the average annual growth rate starting in 2020.

Variables 2020
2030 2050

NG EP CP NG EP CP

POP 4.23 4.68 4.48 4.55 5.44 4.78 4.97
AAGR / 1.02% 0.57% 0.73% 1.27% 0.61% 0.80%

GBR 13.86 23.18 20.67 20.50 33.20 23.43 23.07
AAGR / 5.28% 4.08% 3.99% 4.46% 2.66% 2.58%

POP is the population, whose unit is set as million people; GBR is the general budget revenue, whose unit is set
as billion yuan.
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Figure 8. Spatial distribution of future general budget revenue per unit area (GBR, billion yuan/100 m2) in Jinjiang Basin.
NG, EP, and CP scenarios represent natural growth, ecological protection, and cropland protection scenarios, respectively.
Subfigures (a), (b) and (c) are the GBRs under NG, EP and CP scenarios in 2050, respectively. Subfigures (d), (e) and (f) are
the GBRs under NG, EP and CP scenarios in 2030, respectively. Subfigures g is the GBR in 2020.
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4.3. Spatio-Temporal Characteristics of Future Flood Risk
4.3.1. Temporal Patterns of the Flood Risk

Figure 9 shows the spatial distributions of future flood risks and the statistical results
of each risk level in 2030 and 2050. Under the NG scenario, there is a substantial decrease
in the area of the low-flood-risk class and a significant increase in the area of the high-
flood-risk class over 2020–2050. By 2030, the total area of low and very low risk levels will
decline 85.60 km2, while that of high and very high risk levels will increase by 91.24 km2,
compared to 2020. By 2050, the total area of very low and low risk levels will decline by
364.20 km2, and the total area of very high and high risk levels will increase by 371.30 km2.
Therefore, if the Jinjiang Basin develops according to the NG scenario, the flood risk of the
area will grow significantly.
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Figure 9. Changes of future flood risk under the natural growth scenario (NG), cropland protectable 2030 to 2050 in
Jinjiang Basin.

Under the EP scenario, the areas of the five risk levels in the years of 2030 and 2050
were similar to those in 2020, with only minor changes. Compared to 2020, the total area
of very low and low risk levels in 2030 and 2050 will decrease by 23.46 km2 (0.40%) and
180.81 km2 (3.08%), respectively. The total area of very high and high risk levels will
increase by only 19.18 km2 (0.33%) by 2030 and 113.75 km2 (1.94%) by 2050, compared to
2020. Obviously, the degree of flood risk in Jinjiang Basin under the EP scenario will not
change a lot, indicating that the flood risk in the area is well controlled.

The areas of the flood risk levels under the CP scenario in 2030 and 2050, similar to the
EP scenario, do not change significantly compared to those of 2020. Under this scenario,
the total area of very low and low risk levels in 2030 and 2050 will decrease by 183.56 km2

(3.12%) and 191.87 km2 (3.27%), respectively. The total area of very high and high risk levels
will increase by only 79.6 km2 (1.35%) by 2030 and 90.96 km2 (1.55%) by 2050, compared to
2020. From the above changes, it can be seen that the CP scenario effectively avoids further
aggravation of flood risk in Jinjiang Basin.

4.3.2. Spatial Patterns of the Flood Risk

Figure 10 is the conversion map of flood risk from 2020 to 2050 in Jinjiang Basin, which
reveals the locations where flood risk will increase or decline. From this map, we can see
that the increased flood risk in future mainly occurs in the periphery of existing built-up
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lands. Figure 11 presents the spatial distribution of future flood risk under three scenarios
in the study area. It can be seen from Figure 11 that there is a clear regional variation of
flood risk in this area, decreasing from southeast to northwest. The zones characterized by
high and very high flood risk levels are mainly distributed in the southeast of the Jinjiang
Basin, while the low and very low zones are mainly located in the northwest of this study
area. In addition, these high-flood-risk areas can also be found near the main stream in
Jinjiang Basin.
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Figure 10. Dynamic changes in flood risk levels under three scenarios from 2020 to 2050 in the
Jinjiang Basin. The Roman numerals from 1 to 5 represent very low, low, moderate, high, and very
high, respectively. The Roman numeral on the left of “—” represents the flood risk level of 2020,
while that on the right represents the year 2030 or 2050. NG, EP, and CP scenarios represent natural
growth, ecological protection, and cropland protection scenarios, respectively.
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5. Discussion
5.1. Analysis of Simulation Results

By applying the proposed framework in the data of Jinjiang Basin, it is found that
the simulation results under the three scenarios are different. In the NG scenario, urban
expansion is fastest, with a 6.82% increase in built-up lands by 2050. This expansion comes
at the expense of other less profitable land uses (i.e., croplands and woodlands, which will
decline by 6.60% and 6.49% by 2050, respectively). Meanwhile, this expansion is also a
manifestation of increased human interference and urbanization as well as the main at-
tributes of the changes in the land-use pattern [75,76]. From a spatial perspective, the urban
expansion mainly occurs in the periphery of almost all of the existing conurbation. In this
context of rapid urbanization, demand for urban built-up land, such as transportation land,
residential land, recreational facility land, and industrial production land, will increase,
due to the flow of migrant workers into the city [77]. Among which, the increasing of
industrial production land can provide more employment opportunities for people, which
further promote growth in population size and economic aggregates [78]. As expected,
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the POP and GBR under the NG scenario will increase rapidly, with an average annual
growth rate of 1.27% and 4.46% from 2020 to 2050. The growths in POP and GBR directly
increase the exposed populations and assets to flooding, thus leading to an increase in flood
vulnerability. However, due to the unplanned growth, there is pressure on land, housing,
infrastructures, and the environment. Thus, it is difficult for infrastructure to keep pace
with this unplanned urbanized growth [76]. Then, the increase of flood vulnerability will
contribute to the higher risk of flooding. On the other hand, the decreasing woodlands and
increasing built-up lands result in the increase of RC, which in turn leads to the heightened
flood risk. As Liu et al. point out, such land-use changes can result in an increase of peaking
flows and the changes in rainfall–runoff processes [12]. Overall, vegetative surface being
removed, raw lands being replaced by impervious pavements, and the increased exposure
of POP and economy, because of the urbanized growth, have been the main reasons for the
flood risk increase in the NG scenario. Obviously, flood risk in this scenario is severe, with
a total increase of 371.30 km2 in the very high and high risk levels by 2050. Therefore, the
current land-use system (NG scenario) is considered to be unsustainable in the long term.

In the EP scenario, the woodlands will be protected effectively, with a decline of only
1.19% by 2030, and only 2.19% by 2050. At the same time, urban expansion slows down
significantly, with an increase in built-up lands of approximately only 0.37% noted in the
region. However, compared with the other two scenarios, this rate is significantly lower.
The slow urban expansion directly reveals the phenomenon of slowing population and
economic growth in this scenario. This is because the balance between socio-economic
development and ecological protection in the EP scenario results in lower population and
economic growth [79]. According to Table 4, the average annual growth rates of POP and
GBR will only become 0.61% and 2.66% over 2020–2050, respectively. This means that
no significant increase in flood vulnerability will occur. Further, the values of RC in the
study area also will not change significantly due to small reductions in woodlands and
built-up lands. The above two aspects can explain the fact that no significant increase in
flood risk occurs under the EP scenario. Interestingly, under the EP scenario, it can be
found that the flood risk level of large areas far away from the built-up land changes from
high to low (Figure 10). This finding confirms the effectiveness of ecological conservation
policies in mitigating increased flood risk. As highlighted by Villarreal-Rosas et al. for some
local government areas and beneficiaries, changes in flood protection were also driven by
increases in forest cover or spatial changes in demand [80]. In addition, most increased
flood risk in this scenario can be found in the northeast of the study area and along the
Jinjiang River, which is different from that in NG scenario (Figure 10). This may be due
to the fact that in the southeastern part of the study area, which is more developed, there
is little suitable space for urban expansion under the constraints of ecological protection
guidelines. However, in the northeastern part of the study area, where development is
relatively slow, there are more areas that are suitable for development without violating
ecological protection principles. As a result, most of the urban expansion will occur here in
the EP scenario (Figure 5), which leads to an increased risk of flooding. In summary, the
risk level of flooding tends to stabilize under the EP scenario, with only a small increase in
flood risk in the northeastern part of the study area. Therefore, the EP development pattern
is preferred.

In the CP scenario, the loss of croplands will have been effectively stopped and the
croplands area will increase. By 2030, the areas of croplands will increase 0.35%, and will
increase 1.09% by 2050, compared to 2020. However, there is a significant decline in the area
of woodlands, with a decrease of 8.21% by 2050, which may be attributed to the reclaiming
of woodlands. At the same time, the rate of urban expansion will slow down significantly,
with an increase of only 0.21% by 2030 and 0.64% by 2050, with an accompanying moderate
population and economic growth. According to Table 4, the average annual growth rate
of total POP and GBR in the CP scenario will become only 0.80% and 2.58%, respectively.
Thus, the vulnerability of flood will not increase substantially. This in turn leads to no
significant increase in flood risk over 2020–2050 in the CP scenario. According to Figure 9,
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the total area of very high and high risk levels will increase by only 90.96 km2 (1.55%) by
2050, compared to 2020. Similar to the EP scenario, these small increases in flood risk are
also mainly distributed in the northeastern part of the study area. From the perspective of
flood risk management, the CP scenario is advantageous.

5.2. Applications and Uncertainty of the Framework

To assess future flood risk reliably, a complex framework has to be applied, including
the linkage of future land-use simulation with spatialization technology of factor and flood
risk determination models. Furthermore, the socio-economic developments associated
with the future land-use changes under different scenarios have been considered in this
framework. Consequently, the deep uncertainty related to future dynamic changes in the
social development can be considered. This framework also provides a new idea for the
flood risk assessment at a basin scale, which reveals the dynamic changes of flood risk
at a spatio-temporal scale from future perspectives. The results under this framework
application are helpful for decision-makers to understand future flood characteristics and
verify the adequacy of current flood response measures. According to the differences in the
flood risk under future development pathways, policies can be given greater flexibility, thus
avoiding as much as possible nonessential flood prevention and the limiting of economic
development. This can be achieved by depicting plausible, potentially coherent, and
internally consistent storylines of different socioeconomic trajectories [81].

Uncertainties of the study are very essential as this is a new approach to assess the
future flood risk with respect to land-use changes [59]. To begin with, accurately simulating
the future land-use types is a challenging task because of the inherent uncertainty of a future
land-use model [82]. Considering that the number of potential futures is actually infinite,
predicting the future in a precise manner is less realistic [83]. In this context, the purpose
of determining the future flood risk under the different land-use scenarios is to explore
possible future directions and to consider a range of alternative pathways [84]. In addition,
another important driver for future flood risk is economic development, considered by
adjusted POP and GBR values [85]. These adjusted POP and GBR values were predicted
in this study by spatialization technology (a multiple linear regression model), according
to the land-use types and topographic factors. However, we cannot currently take into
account all the factors that affect future socio-economic development, such as investments
for technical improvements [85]. Consequently, the projected POP and GBR values in this
study have a small deviation from the real value, which can be reflected by comparing
their average annual growth rates in the past 10 years (2010–2020) with that in the future
NG scenario. According to the Quanzhou statistical yearbook and Table 4, the average
annual growth rate of GBR during 2010–2020 is 7.68%, while in NG scenario, the average
annual growth rate of GBR from 2020 to 2030 is only 5.28%. For the POP values, the average
annual growth rate of POP in 2010–2020 is 1.05%, while in NG scenario from 2020–2030, it is
1.02%. Therefore, the spatialization model’s calibration and optimization could be further
improved, although the internal spatial diversity of POP and GBR has been quantified
by these models. On the other hand, most studies have shown that land-use changes
have a direct impact on the runoff, peak flow and hydrograph [86–88]. However, due
to the data availability limitations, our approach required a simplifying assumption. In
this study, the six land-use types are distinguished with RC values ranging from 0.6 to 1
(Table 2) [6], as a flood conditioning factor to reflect the impact of land-use changes on
runoff (Figure 6). As a multicriteria decision assessment method, this quantification ignores
the spatial heterogeneity of RC within a particular land-use type, and also cannot reflect
other hydrological factors, such as peak flow.

In addition to the uncertainties, our study also highlights several limitations. Since
the purpose of this study is to propose a framework and explore the dynamics of flood risk,
not to predict future land-use changes, there is no focus on the driving causes of land-use
changes. The land-use simulation was based on the current state without considering
the changes of information such as traffic in the future. In addition, future flood risk
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management has not been taken into this framework, which may lead to an overestimation
of flood risk [13]. Moreover, future climate change factors are suggested to be taken into
account for a more realistic flood risk simulation in future studies.

6. Conclusions

By considering the effects of land-use changes, a dynamic future flood risk assessment
framework was proposed in this study, and applied in data from Jinjiang Basin. In the
construction of this framework, computational scenario-based land-use changes in 2030
and 2050 were simulated by FLUS model first. Subsequently, based on the connections
established among the POP and GBR with land-use types and topographic factors, multiple
linear regression was introduced to capture interior spatial distribution of POP and GBR,
thus replacing a lumped/overall value. Finally, on the basis of the spatialization results
and seven flood conditioning factors, future flood risk maps under three scenarios were
generated by the TFN-AHP and the novel hybrid model (CRITIC-TOPSIS). These results
of the framework application reveal the spatio-temporal changes of flood risk in Jinjiang
Basin under the three scenarios.

Overall, an increase of flood risk in the future is expected to occur Jinjiang Basin,
but the magnitude of the increase varies under the three scenarios. In the NG scenario,
built-up lands expand rapidly, whose area increases by 6.68% by 2050. The population
and economy maintain high growth rates, with an average annual growth rate of 1.27%
and 4.46%, respectively. In this scenario, the total area of very high and high flood risk
levels increases by 371.30 km2 by 2050, while that of very low and low flood risk levels
declines by 364.20 km2. In the EP scenario, woodlands will be protected effectively, with a
decline of only 2.19% by 2050. However, the area of built-up lands increases by only 0.37%,
and the POP and GBR increase at average annual growth rates of only 0.61% and 2.66%,
respectively. The total area of very high and high flood risk levels will increase by only
113.75 km2 by 2050. In the CP scenario, the loss of croplands will have been effectively
stopped, with an increase by 1.09% by 2050. Similar to the EP scenario, the rates of urban
expansion, population, and economic growth will slow down significantly in this scenario.
There is also no significant increase in total area of very high and high flood risk levels, with
an increase by only 90.96 km2 by 2050. It was also found that the high and very high flood
risk zones are mainly distributed in the southeast of the Jinjiang Basin and scattered near
the main river channels. The increased risk of flooding mainly occurs in the periphery of
existing conurbation. This flood risk information determined by the proposed framework
provides an insight into the spatial distribution of future flood-prone areas in the region. In
future studies, the impact of climate change as well as future flood management measures
deserve to be taken into account.
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