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Abstract: The dynamics of the mid-channel bars (MCBs) in the Three Gorges Reservoir (TGR) were
substantially impacted by the large water-level changes due to the impoundments of the TGR.
However, it is still not clear how the morphology of the MCBs changed under the influence of
water level and hydrological regime changes induced by the impoundments and operation of the
TGR. In this work, the MCBs in the TGR were retrieved using Landsat remote sensing images from
1989 to 2019, and the spatio-temporal variations in the number, area, morphology and location of
the MCBs during different impoundment periods were investigated. The results showed that the
number and area of MCBs changed dramatically with water-level changes, and the changes were
dominated by MCBs with an area less than 0.03 km2 and larger than 1 km2. The area of MCBs
decreased progressively with the rising water level, and the number generally showed a decreasing
trend, with the minimum number occurring at the third stage when the water level reached 139 m,
resulting in the maximum average area at this period. The ratio of length to width of the MCBs
generally decreased with the changes in hydrological and sediment regimes, leading to a shape
adjustment from narrow–long to relatively short–round with the rising of the water level. The water
impoundments of the TGR led to the migration of the dominant area from the upper section to the
middle section of the TGR and resulted in a more even distribution of MCBs in the TGR. The results
improve our understanding of the mechanisms of the development of MCBs in the TGR under the
influence of water impoundment coupled with the annually cyclic hydrological regime and longer
periods of inundation and exposure.

Keywords: mid-channel bars; morphological change; spatial distribution; different impoundment
periods; Three Gorges Reservoir

1. Introduction

The mid-channel bar (MCB) is formed by favorable hydrological conditions in the
river. It is a stable island above the river’s water level, formed by the gradual development
and shaping of the river siltation over a long period [1,2]. The development of MCB is
influenced by exogenous materials such as sediment, the transport capacity of flowing
water and the sediment concentration, as well as by dam construction and reservoir
regulations [3–6]. The dynamics of MCBs were significantly impacted by the water-level
changes due to the impoundment of the TGR. [7,8]. On the one hand, some original
MCBs in the Yangtze River were submerged, while some new MCBs were formed from the
inundation of low-lying lands and point bars by the reservoir, due to the rising of the water
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level [9,10]. On the other hand, some MCBs were periodically exposed and submerged due
to the annually cyclic hydrological regime induced by the TGR operation. Therefore, the
morphology of the MCBs in the TGR changed significantly under the influence of these
hydrological regime changes, which are expected to have an important impact on channel
stability, water–land interactions and biological diversity [11–13].

Over the past century, great efforts have been made to investigate the formation
and development processes of MCBs in bifurcated channel stretches, using field obser-
vations [14], remote sensing [5], theoretical generalized models and mathematical mod-
els [15–17]. Many experiments have also been conducted to explore the morphological
dynamics of MCBs [18–20]. However, most of the studies are based on ideal environmental
conditions, including constant flow, slope, etc. Furthermore, many other environmental
factors affecting the development of MCBs were not considered [21,22]. In recent years, the
rapid development of numerical simulation technology, remote sensing and spatial analysis
in geographic information science has provided an opportunity to monitor and model the
dynamics of MCBs at multi-spatial and multi-temporal scales [23,24]. Schuurman et al. [15]
generated datasets of water depth, flow and sediment transport of MCBs based on physical
models, and further developed a conceptual network model describing the interactions of
MCBs, sub-branches and river channels. Liu et al. [25] investigated the proportion of river-
ine sand partitioning when MCBs reached their stable equilibrium form, using an analytical
hydrodynamics method. Rasbold et al. [26] identified the development signatures of MCBs
based on the theory of sedimentology. Adami et al. [22] used wavelength, migration rate
and height to investigate the spatio-temporal variations of the morphological dynamics of
the MCBs in the Alpine Rhine over the last 30 years.

As the longest river in China, the Yangtze River has an important strategic position and
a role in boosting the development of the cities along its length [27]. The morphological
development of MCBs in the Yangtze River is of great significance in maintaining the
stability of the river and enhancing the function of the “golden channel” [28]. However, the
construction of the Three Gorges Dam (TGD) has significantly changed the hydrological and
sediment regimes downstream of the TGD over the last 30 years, altering the hydrological
conditions for the development of the MCBs [28–30]. Based on long-term observations,
multi-temporal remote sensing data and model simulations, many studies have been
conducted to monitor the changes in the MCBs in the middle and lower reaches of the
Yangtze River [31,32]. The results showed significant morphological changes in the MCBs
after the TGD operation [5,33], and revealed the process [28] and mechanism for the
development of MCBs [33] downstream of the TGD. In contrast, under the influence of
the annually cyclic hydrological regime and of longer inundation and exposure periods
induced by the TGR operation, the morphological development process of MCBs in the
TGR and their response to hydrological and sediment regime changes differs greatly from
those downstream of the TGD [34]. However, due to the lack of relevant studies, it is still
not clear how the morphology of the MCBs changes under the influence of water level and
hydrological regime changes induced by the impoundments and operation of the TGR.

Therefore, this study was carried out to fill the knowledge gap. The main objectives of
this study were to: (1) retrieve the MCBs from Landsat images and construct datasets of
morphological changes of MCBs in the TGR; (2) investigate the spatio-temporal variations
in the numbers, areas, morphology and locations of the MCBs during different impound-
ment periods. The study helps to reveal the mechanisms for the development of MCBs in
the TGR; it also offers a scientific basis for the planning, optimal utilization and ecological
restoration of the MCBs in the TGR.

2. Materials and Methods
2.1. Study Area

The Three Gorges Reservoir (TGR) is located in the lower section of the main waterway
in the upper reaches of the Yangtze River, which is a typical mountainous river. It extends
from Jiangjin District in Chongqing to Yichang City in Hubei Province, from west to east
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(Figure 1). The topography of the Three Gorges Reservoir Area (TGRA) is dominated by
mountains and hills. The TGRA has a subtropical monsoon climate with an average annual
temperature of 17–19◦ and annual precipitation of 1000–1800 mm [35]. After the official
operation of the TGR, it formed a narrow-valley reservoir with a total length of 660 km and
a surface area of 1084 km2. The geographical location of the TGR is between 28◦56′ and
31◦44′ east (longitude) and between 106◦16′ and 111◦28′ north (latitude), which includes
25 districts and counties in Hubei and Chongqing municipalities.
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2.2. Division of Impoundment Periods

The upper reaches of the Yangtze River were successfully intercepted by the TGD in
1997, raising the reservoir water level to approximately 66 m above sea level. The TGR
began storing water in steps from 139 m in June 2003, to 156 m in October 2006 and 175 m
in November 2009. It was officially operated after one year of experimental water storage,
in 2009 [36]. Thus, based on the construction phase and the changes in the water levels of
the TGD (Figure 2), five stages were identified to investigate the morphological changes in
the MCBs.
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2.3. Data Collection

The spatial information of the MCBs was retrieved using multi-temporal Landsat im-
ages. Since the TGR had been in operation for more than twenty years from the interception
of the Yangtze River, three criteria were employed to ensure data consistency regarding the
spatial-temporal resolution and retrieval accuracy for the MCBs. Firstly, images with less
cloud cover were used where possible [5,23]. Secondly, images acquired during the dry
season (i.e., November to March) were used, to reduce the difference in water levels during
the different stages. Lastly, due to the influence of the 16-day-long revisit cycle of the
Landsat satellite, it was difficult to obtain images with the same water levels for different
strips. Therefore, images with similar water levels were obtained as far as possible.

A total of 36 images were collected, with an spatial resolution of 30 m, following
these criteria. These images, spanning the 39th–42nd strips of the Landsat satellite were
obtained from the Chinese Geospatial Data Cloud (http://www.gscloud.cn/). The data pre-
processing, including single-band extraction, false color synthesis and geometric correction,
etc., was carried out using ENVI 5.3 software. Many previous studies proved that these
images can be used to monitor the landscape dynamics with reasonable accuracy [5,23,24].
Detailed information on the collected image data is shown in Table 1. The data on the water
level, sediment and siltation of the TGR were obtained from the Yangtze River Sediment
Bulletin (http://www.cjw.gov.cn/zwzc/bmgb/) and Yangtze River Three Gorges Group
(https://www.ctg.com./sxjt/sqqk/index.html).

Table 1. Detailed information on the collected remote sensing images.

Impoundment
Period Sensor Acquisition Date Number Resolution Data Sources

Stage 1 Landsat5 TM
24 January 1993, 29 January 1994,

1 November 1995, 17 November 1995,
26 December 1995, 5 February 1996

6 30 m Geospatial Data
Cloud

Stage 2 Landsat5 TM

5 November 2000, 17 January 2001,
10 February 2001, 12 March 2001,

27 December 2001, 8 January 2002,
28 November 2002

7 30 m Geospatial Data
Cloud

Stage 3 Landsat5 TM

24 January 2004, 7 December 2004,
6 January 2005, 2 February 2005,
7 December 2005, 2 January 2006,

4 February 2006

7 30 m Geospatial Data
Cloud

Stage 4 Landsat5 TM

3 February 2007, 1 March 2007,
22 February 2008, 23 March 2008,

15 November 2008, 21 November 2008
2 December 2008, 3 February 2009

8 30 m Geospatial Data
Cloud

Stage 5 Landsat8 OLI

22 January 2015, 17 December 2015,
25 January 2016, 15 November 2016,

22 December 2017, 31 December 2017,
14 January 2018, 12 February 2018

8 30 m Geospatial Data
Cloud

2.4. Retrieval of MCBs from Landsat Images

MCBs were retrieved from Landsat images using auto-classification coupled with
manual inspection and digitization. They were initially auto-retrieved using the modified
normalized difference water index (MNDWI) developed by Xu [37]. This index was
derived from the normalized difference water index (NDWI), which highlighted the water
information in the image by normalizing the spectral difference between the green band
and the mid-infrared band [38]. The MNDWI has been proved to be an effective method
for retrieval of the MCBs with reasonable accuracy [5,23]. The MNDWI was calculated as:

MNDWI =
ρGreen − ρMIR

ρGreen + ρMIR
(1)

http://www.gscloud.cn/
http://www.cjw.gov.cn/zwzc/bmgb/
https://www.ctg.com./sxjt/sqqk/index.html
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where ρGreen and ρMIR are the reflectances of the green band and mid-infrared
band [37], respectively.

Due to differences in the spectral features among different images, some MCBs were
misclassified as other landscapes, while some other landscapes were misclassified as MCBs
since they had similar spectral features. Thus, the automatically retrieved vector data of
MCBs need to be manually modified and verified by combing them with the observed
data such as water levels, hydrological data and land use data. Such modification can
significantly improve the retrieval accuracy of MCBs from Landsat images.

2.5. Classification of MCBs

A field survey showed that the areas of MCBs varied greatly in the TGR, and previous
studies found that MCBs with different sizes had different responses to the changes in the
hydrological and sediment regimes [5]; thus, all the MCBs were reclassified into 4 types
based on different areas: small MCBs with an area less than 0.03 km2 (SMB), medium
MCBs with an area less than 0.1 km2 (MMB), medium–large MCBs with an area less than
1 km2 (MLMB) and large MCBs with an area greater than 1 km2 (LMB).

2.6. Analysis Method for the Dynamics of MCBs
2.6.1. Index of Area and Shape

The area and perimeter of a single MCB can be directly calculated from the vector
data of MCBs using ArcGIS software. The length and width changes of MCBs can reflect
their adjustment to the changes in hydrological and sediment regimes [39]. The ratio of
length to width (LWR) was used as a comprehensive index to investigate the morphological
characteristics of, and changes in, MCBs [5,23]. This was calculated as:

LWR =
L
W

(2)

where L and W are the length and width of the MCB, respectively.

2.6.2. The Coefficient of Variation (CV)

The CV was used to measure the spatial variability of the morphological characteristics
of MCBs. It has been proved to be a useful indicator for investigating the variations in
spatial features and is widely used in landscape ecology [5]. It was calculated as:

CV =
1
x

√
1
n

n

∑
i=1

(xi − x)2 (3)

where xi, x and n are the LWR of each MCB, average LWR and number of MCBs, respectively.

2.6.3. The Gravity Center Shifting Model

The gravity center shifting model was used for investigating the spatial change trends
of MCBs during different impoundment stages [40].

Xs =
n

∑
i=1

(Asixi)/
n

∑
i=1

Asi (4)

Ys =
n

∑
i=1

(Asiyi)/
n

∑
i=1

Asi (5)

where Xs and Ys are the latitude and longitude of the gravity center of all the MCBs at
stage s, respectively, Asi is the area of the ith MCB at stage s, xi and yi are the latitude and
longitude of the geometric center of the ith MCB, respectively, and n is the total number
of MCBs.
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The following equation was used for calculating the shifting distance of the gravity center:

Ds′−s =

√
(Ys′ −YS)

2 + (Xs′ − XS)
2 (6)

where Ds′−s is the shifting distance of the gravity center, Xs′ and Ys′ are the latitude and
longitude of the gravity center of all the MCBs at stage s′, respectively, and Xs and Ys are
the latitude and longitude of the gravity center of all the MCBs at stage s, respectively.

3. Results
3.1. Variations in Area and Number of MCBs

Retrieved results from Landsat images showed significant variations in the area and
number of MCBs in the TGR (Figure 3). The area and number presented different trends
with respect to the changes in water level during different impoundment periods. The
number of MCBs ranged between 89 and 150, with an average of 113 in the TGR; 90 MCBs
were located in the main stream and accounted for 79.7% of the total number, and the
remaining MCBs were located in tributaries (Figure 3a).
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The number and area of MCBs changed dramatically with water-level changes
(Figure 3). The maximum number of MCBs occurred at stage 1 under the natural hy-
drological regime. The number decreased sharply to 89 at stage 3 when the water level
reached 139 m, while it increased to 103 at stage 4 when the water level rose to 156 m and
slightly declined to 99 at stage 5 when the water level increased to 175 m. The number
trend for MCBs in the main stream differed greatly from that in tributaries. It decreased
progressively from 139 at stage 1 to 54 at stage 5, in the main stream. The number slightly
increased from stage 1 to stage 2 and then slightly decreased in stage 3 in tributaries, while
it sharply increased from a minimum of 11 at stage 3 to a maximum of 45 at stage 5.

The area of MCBs in the TGR varied greatly from 0.2 to 1134 (×10−2 km2), with the
average area ranging between 31.69 (×10−2 km2) at stage 4 and 44.42 (×10−2 km2) at
stage 3. The average area in the main stream was much higher than that in tributaries, with
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maximum values of 54.19 (×10−2 km2) and 6.4 (×10−2 km2), respectively (Figure 3c). The
total area decreased progressively from a maximum of 4910.56 (×10−2 km2) at stage 1 to a
minimum of 3214.6 (×10−2 km2) at stage 5, with the rising of the water level, and the most
obvious changes occurred between stage 2 and stage 4 (Figure 3b). The total area in the
main stream presented a similar trend to that in the whole reservoir. The total area changed
slightly from stage 1 to stage 4 in tributaries, and then increased sharply to a maximum of
288.07 (×10−2 km2) at stage 5.

The area and number changes in MCBs for the different classes are presented in
Figure 4. In terms of the number, the MCBs in the TGR were dominated by SMBs followed
by MMBs, accounting for 55.6% and 20.9% of the total number on average, respectively.
In contrast, the MCBs were dominated by LMBs followed by LMMBs in terms of area,
accounting for 80.2% and 14.8% of the total area on average, respectively. The number
and area variations in the MCBs differed greatly for different sizes, with the most obvi-
ous changes in number and area appearing in SMBs (Figure 4a) and LMBs (Figure 4b),
respectively. The number of SMBs dramatically decreased from stage 1 to stage 3, then
increased sharply to stage 5, which was the main reason for the sharp change in the total
number in tributaries from stage 4 to stage 5. The numbers of MMBs, LMMBs and LMBs
generally showed a similar decreasing trend as the water level rose. The trend for area
changes in MCBs in the TGR was determined by that of LMBs generally, due to the domi-
nant role of LMBs in the total area. MMBs presented a similar trend to LMMBs regarding
area, with an increase from stage 1 to stage 2 and a significantly decreasing trend from
stage 2 to stage 5.
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3.2. Morphological Changes of MCBs

The temporal variation of the LWR is presented in Figure 5. The LWR of MCBs in the
TGR ranged between 2.09 and 3.05, with an average of 2.56. The changing LWR generally
indicates a morphological adjustment of MCBs following the changes in hydrological
and sediment regimes induced by the operation of the TGR. The LWR increased from
stage 1 to a peak at stage 2, and then decreased from stage 2 to a minimum at stage 5.
This suggests that the morphology of MCBs tended to change from a narrow–long shape
to a short–round shape with the rising of the water level. On average, LMMBs had the
highest LWR followed by MMBs, while the lowest LWR was observed for SMBs, generally
indicating that the LMMBs and MMBs tended to be a narrow–long shape, while the SMBs
tended to be a short–round shape. The LWR variation of MCBs differed greatly among the
different classes, with the most obvious change occurring in LMBs, suggesting that the
effect of impoundment on the morphology of LMBs was more pronounced than the effect
on SMBs, MMBs and LMMBs. The effect for LMBs was relatively small from stage 1 to
stage 2, resulting in only slight changes in LWR, while a significant effect appeared at stage
3 when the water level rose to 139 m. MMBs showed similar trend to LMMBs regarding
the LWR, with an increase from stage 1 to stage 2 and a decreasing trend from stage 3 to



Water 2021, 13, 3427 8 of 16

stage 5. Compared to LMBs, MMBs and LMMBs, SMBs had a more stable LWR with lower
fluctuations probably due to the fact that SMBs often had a shorter development time and
a short–round morphology.
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The LWR stability of the MCBs is shown in Figure 6. Generally, the CV decreased
with an increase in the area of the MCB, indicating that larger MCBs tended to have a more
stable morphology, and vice versa. The MCBs in the river, with natural hydrological and
sediment regimes, often showed large morphological changes due to the large variations
in erosion and siltation, resulting in a higher CV at stage 1. However, the conversion from
natural river to man-made reservoir resulted in a rise in the water level, which significantly
weakens the hydrodynamic conditions, leading to the CV changing from being scattered to
being more clustered, as the water level rose from stage 1 to stage 5, as can been seen in
Figure 6. This change was more evident for the LMBs.

3.3. Spatial Distribution of MCBs in TGR

The spatial distributions of the number and area of MCBs in the TGR are shown in
Figures 7 and 8, respectively. It can be seen that the MCBs were unevenly distributed
spatially. They were mostly distributed in the upper section of the TGR at 300 km from the
TGD, accounting for 96.7% and 99.4% of the total number (Figure 7a) and area (Figure 8a)
at stage 1. The distributions of the MCBs at the second stage (Figures 7b and 8b) were
generally similar to those at stage 1. The number and area of MCBs in the upper section
of the TGR were reduced mainly due to the influence of human activities such as sand
mining, which contributed mostly to the number decrease in MCBs from stage 1 to stage 2.
A total of 41 MCBs with a total area of 1068.03 (×10−2 km2) disappeared in the section of
TGR from 250 to 500 km from the TGD (Figure 7c), due to the inundation occurring when
the water level rose to 139 m at stage 3. The number of MCBs changed dramatically in the
whole reservoir as the water level increased from 139 m to 156 m at stage 4 (Figure 7d).
In the section from the dam to 400 km from the dam, 40 new MCBs formed following the
inundation of low-lying mountain tops by the reservoir, while the area changed slightly
(Figure 8d), and meanwhile 26 MCBs disappeared in the section from 400 to 660 km from
the dam due to the inundation when the water level rose, leading to a drastic decline
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in the area. After the official operation of the TGR in 2009, 26 new MCBs formed in the
section from 200 to 350 km from the TGD (Figure 7e), resulting in the number proportion
increasing from 6.3% at stage 3 to 48.5% at stage 5, and the area proportion increasing
to 44.1% (Figure 8e). However, 21 MCBs with a total area up to 1287.11 (×10−2 km2)
disappeared in the section from 500 to 660 km from the TGD due to the inundation when
the water level rose to 175 m. The spatial variation of MCBs during the different stages was
caused mainly by the rising water level and the expansion of the inundation area created
by the water impoundments of the TGR. The results suggest that water impoundments
at the TGR had led to the migration of the dominant area from the upper to the middle
section of the TGR, resulting in a more even distribution of MCBs in the TGR.

3.4. Gravity Center Migration of MCBs

The weighted gravity center by area of the MCBs was compared during different
impoundment periods, and the migration routes are presented in Figure 9. Generally,
the spatial location of the gravity center of the MCBs varied obviously with the water
level changes during different water impoundment periods. The gravity center migrated
2.04 km south-westwards after the interception of the Yangtze River at stage 2. It continued
to move south-westwards with the rising of the water level, with migration distances of
25.68 km and 9.39 km when the water level reached 139 m at stage 3 and 156 m at stage 4,
respectively. The migration direction of MCBs was consistent with the tail direction of the
TGR, which was significantly associated with the expansion of the inundation area towards
the tail direction of the TGR induced by the rising water level. However, many new MCBs
formed in the middle section of the TGR, owing to the inundation of low-lying mountain
tops by the reservoir, induced by the water level rising to 175 m at stage 5. This resulted
in a notable migration of the gravity center to the middle section of the TGR. As can been
seen from Figure 8, the gravity center moved 70.63 km north-eastwards from stage 4 to
stage 5, which was opposite to the migrations from stage 1 to stage 4.
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4. Discussion

The Yangtze River had a natural hydrological and sediment regime before the con-
struction of the TGD, where the MCBs developed with a relatively stable balance between
erosion and siltation [37]. However, the construction of the TGD has significantly changed
the hydrological and sediment regimes of the Yangtze River over the past decades, which
has seriously disrupted this balance. Many previous observations and studies found
tremendous riverbed erosion in the middle and lower reaches of the Yangtze River, mainly
due to the intercepting of sediment and discharging of clear water since the initial im-
poundment of the TGD [30,32,41]. The degree of erosion became weaker as the distance
from the TGD increased [5,23,28]. The MCBs in the TGR varied dramatically under the
influence of notable changes in the hydrological and sediment regimes of the TGR in-
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duced by the weakened hydrodynamic condition and rising water levels from stage 1 to
stage 5 [36,42]. The surface area of the TGR has expanded as the water level rose since the
initial impoundment of the TGD [42,43]. This resulted in a large portion of the previous
MCBs being submerged, contributing to a subsequent reduction in the areas of the exposed
MCBs. Meanwhile, many new MCBs formed from the inundation of point bars and low-
lying mountain tops by the reservoir (Figure 10). A large number of new MCBs appeared,
especially in the area of the TGR with the largest fluctuations in water level, in Kaizhou
county (Figure 11).

Water 2021, 13, x FOR PEER REVIEW 12 of 17 
 

 

 
Figure 9. Gravity center migration of MCBs during different impoundment periods. 

4. Discussion 

The Yangtze River had a natural hydrological and sediment regime before the con-
struction of the TGD, where the MCBs developed with a relatively stable balance between 
erosion and siltation [37]. However, the construction of the TGD has significantly changed 
the hydrological and sediment regimes of the Yangtze River over the past decades, which 
has seriously disrupted this balance. Many previous observations and studies found tre-
mendous riverbed erosion in the middle and lower reaches of the Yangtze River, mainly 
due to the intercepting of sediment and discharging of clear water since the initial im-
poundment of the TGD [30,32,41]. The degree of erosion became weaker as the distance 
from the TGD increased [5,23,28]. The MCBs in the TGR varied dramatically under the 
influence of notable changes in the hydrological and sediment regimes of the TGR in-
duced by the weakened hydrodynamic condition and rising water levels from stage 1 to 
stage 5 [36,42]. The surface area of the TGR has expanded as the water level rose since the 
initial impoundment of the TGD [42,43]. This resulted in a large portion of the previous 
MCBs being submerged, contributing to a subsequent reduction in the areas of the ex-
posed MCBs. Meanwhile, many new MCBs formed from the inundation of point bars and 
low-lying mountain tops by the reservoir (Figure 10). A large number of new MCBs ap-
peared, especially in the area of the TGR with the largest fluctuations in water level, in 
Kaizhou county (Figure 11). 

 
Figure 10. Schematic diagram of impacts of water-level rising on MCBs of the TGR. Figure 10. Schematic diagram of impacts of water-level rising on MCBs of the TGR.

Water 2021, 13, x FOR PEER REVIEW 13 of 17 
 

 

 

  
  

Figure 11. MCBs formed by the flooding of low-lying mountain tops: (a) Three Gorges Reservoir Area, (b) in Zhongxian 
and (c) in Kaizhou. 

Human activities such as sand mining caused an unsaturated sediment transporta-
tion capacity of the flow of the TGR (Figure 12) before stage 3, which led to poor stability 
of the riverbed and MCBs in the TGR. In addition, the conversion from river to reservoir 
weakened the hydrodynamic condition when the water level reached 139 m at stage 3. 
The flow rate slowed and a great deal of sediment was trapped in the reservoir, and the 
water level was the dominant influence on the MCBs [43]. The morphology of the natu-
rally developed MCBs often took typical forms such as oval, bamboo-leaf and sickle-
shaped forms. However, the morphology of MCBs changed greatly as the water level rose, 
regulated by the man-made dam [6,7]. Due to the coupled effect of natural hydrological 
and sediment regimes and water-level changes regulated by the TGD, the MCBs in the 
fluctuating backwater zone of the TGR were more affected by siltation than those in the 
perennial backwater zones. Thus, more attention and protection should be paid to MCBs 
in fluctuating backwater zones. 

(a) 

(b) (c) 

Figure 11. MCBs formed by the flooding of low-lying mountain tops: (a) Three Gorges Reservoir Area, (b) in Zhongxian
and (c) in Kaizhou.



Water 2021, 13, 3427 13 of 16

Human activities such as sand mining caused an unsaturated sediment transportation
capacity of the flow of the TGR (Figure 12) before stage 3, which led to poor stability of
the riverbed and MCBs in the TGR. In addition, the conversion from river to reservoir
weakened the hydrodynamic condition when the water level reached 139 m at stage 3.
The flow rate slowed and a great deal of sediment was trapped in the reservoir, and
the water level was the dominant influence on the MCBs [43]. The morphology of the
naturally developed MCBs often took typical forms such as oval, bamboo-leaf and sickle-
shaped forms. However, the morphology of MCBs changed greatly as the water level rose,
regulated by the man-made dam [6,7]. Due to the coupled effect of natural hydrological
and sediment regimes and water-level changes regulated by the TGD, the MCBs in the
fluctuating backwater zone of the TGR were more affected by siltation than those in the
perennial backwater zones. Thus, more attention and protection should be paid to MCBs
in fluctuating backwater zones.
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However, limitations and uncertainties associated with the remote sensing image
data may exist and need to be improved in future work. In the data acquisition stage, we
did our best to collect Landsat images with similar times and water levels to reduce the
potential effect on the morphology, numbers and areas of the retrieved MCBs. However,
it is very difficult to obtain ideal image data, mainly due to the influence of cloud cover,
the difference in spectral features and the revisit cycle of the Landsat satellite, leading to
a certain degree of uncertainty in the analysis and results. Thus, more remote sensing
images need to be employed and collected from other platforms to reduce the influence of
acquisition times, spectral differences and water levels. In the context of the “storing clean
water and discharging sandy water” operation schedule [7,8], the influence of the annually
cyclic hydrological regime and the longer inundation and exposure induced by the TGR
operation, the water level of the TGR fluctuated dramatically between 145 and 175 m, with
increase periods from September to January in the following year, and decrease periods
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from January to September. The present study only investigated the dynamics of MCBs
from October to January. It will be necessary to further investigate the changes in MCBs
during the year.

Due to the coupled effect of natural hydrological and sediment regimes and water-level
changes regulated by the TGD, the development mechanism of MCBs in the fluctuating
backwater zones differed from that in the perennial backwater zones, and this was mainly
influenced by water-level changes regulated by the TGD. This was not explored in this study.
Nevertheless, the scientific findings help to reveal the mechanisms of the development of
MCBs in the TGR and can also offer a scientific basis for planning, optimal utilization and
ecological restoration of the MCBs in the TGR.

5. Conclusions

This work investigated the spatio-temporal variations in the number, area, morphol-
ogy and location of MCBs in the TGR during different impoundment periods, using
Landsat images. The results showed that the number of MCBs ranged between 89 and
150 with an average of 113, and the area varied greatly from 0.2 to 1134 (×10−2 km2)
with an average of 31.69. The number and area of MCBs changed dramatically with the
water-level changes induced by the impoundments and operation of the TGR. The total
area of MCBs decreased progressively from stage 1 to stage 5, with the most significant
changes occurring between stage 2 and stage 4. Although the number showed a decreasing
trend, the minimum number appeared at stage 3, which was dominated by the change in
the number of SMBs. The number and area variations of MCBs differed greatly among
MCBs with different sizes, with the most obvious changes appearing for SMBs and LMBs,
respectively. The LWR of MCBs in the TGR ranged between 2.09 and 3.05 with an average
of 2.56. It generally decreased as the water level rose, suggesting that the morphology
of MCBs tended to change from a narrow–long shape to a short–round shape. The LWR
variation of MCBs differed greatly among different sizes, with the most obvious changes
occurring in SMBs, suggesting that the effect of impoundment on the morphology of SMBs
was more pronounced than the effect on MMBs, LMMBs and LMBs. The MCBs were
unevenly distributed spatially. They were mostly distributed in the upper section of the
TGR at stage 1, under a natural hydrological regime. The water impoundments of the TGR
led to the migration of the dominant area from the upper to the middle section of the TGR,
resulting in a more even distribution of MCBs in the TGR and the migration of the gravity
center of MCBs from the upper to the middle section of the TGR.

This study showed the enormous impacts of the operation of the TGD on the morpho-
logical dynamics of MCBs. While the mechanisms of the development of MCBs in the TGR
are complex, it will be necessary to investigate these changes further in the future.
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