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Abstract: Even in countries with extensive sanitation systems, outbreaks of waterborne infectious
diseases are being reported. Current tendencies, such as the growing concentration of populations in
large urban conurbations, climate change, aging of existing infrastructures, and emerging pathogens,
indicate that the management of water resources will become increasingly challenging in the near fu-
ture. In this context, there is an urgent need to control the fate of fecal microorganisms in wastewater
to avoid the negative health consequences of releasing treated effluents into surface waters (rivers,
lakes, etc.) or marine coastal water. On the other hand, the measurement of bacterial indicators
yields insufficient information to gauge the human health risk associated with viral infections. It
would therefore seem advisable to include a viral indicator—for example, somatic coliphages—to
monitor the functioning of wastewater treatments. As indicated in the studies reviewed herein,
the concentrations of somatic coliphages in raw sewage remain consistently high throughout the
year worldwide, as occurs with bacterial indicators. The removal process for bacterial indicators
and coliphages in traditional sewage treatments is similar, the concentrations in secondary effluents
remaining sufficiently high for enumeration, without the need for cumbersome and costly concentra-
tion procedures. Additionally, according to the available data on indicator behavior, which is still
limited for sewers but abundant for surface waters, coliphages persist longer than bacterial indicators
once outside the gut. Based on these data, coliphages can be recommended as indicators to assess the
efficiency of wastewater management procedures with the aim of minimizing the health impact of
urban wastewater release in surface waters.

Keywords: fecal indicator; somatic coliphages; sewage treatment; water safety; surface water; marine
coastal water

1. Introduction

To guarantee access to water and sanitation for all is goal number six of the 2030
Agenda of United Nations for Sustainable Development [1]. Sanitation, defined by the
WHO as the provision of facilities and services for the safe disposal of human urine and
feces, is still a pending problem in terms of controlling the impact of human residues on
health. Although sanitation also includes the safe treatment of animal waste, given that
human and animal feces share many microbes, including pathogens, this review is focused
on the management of human fecal waste.

The importance of sanitation lies in the fact that waterborne pathogens are still one
of the major public health concerns worldwide [2]. The global burden of disease in 2015
due to unsafe water resources has been estimated as 1.2 million deaths and 71.7 million
disability-adjusted life years (DALYs), including 1.1 million deaths and 61.1 million DALYs
from diarrheal diseases [3]. Although the problem affects mainly low- and medium-income
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countries [4,5], water-related infections are not negligible in high-income nations such
as the USA [6,7], Australia [8], and in Europe [9–13], where differences between eastern
and western countries have been observed. The vast majority of waterborne pathogens
are transmitted by the fecal–oral route and can re-infect humans through water used
for drinking, recreation (bathing), irrigation (contaminating food), and shellfish farming
(contaminating food). The aim of sanitation is to ensure the absence or minimize the
presence of waterborne pathogens found in fecal remains in all these water resources.

Sanitation requires waste to undergo some sort of management. “On-site” sanitation
services, which include septic tanks and dry toilets (pit latrines, composting dry toilets,
urine-diverting dry toilets, etc.), if not managed correctly, contribute to the contamination of
water sources by filtration to groundwater or through soil surface run-off to surface water
bodies. “Off-site” sanitation involves the transport of wastewater through underground
sewers. Sanitary sewers only carry wastewater generated in houses (black and grey waters)
and small industries, whereas combined sewers, which are the majority, include additional
water run-off (rain) from city streets and parks. Both kinds of wastewaters are referred to
as municipal wastewater or sewage.

Habitually, raw wastewater and wastewater treatment plant (WWTP) effluents are
discharged into water bodies (rivers, lakes, and seas) or soil. Otherwise, WWTP effluents
are processed further to obtain reclaimed waters, which have a range of applications. The
amount of treated urban wastewater is highly variable, being over 80% in high-income
countries [14].

As mentioned, rivers, lakes, and seas are widely used as receiving waters for raw
wastewater and WWTP effluents. The direct inflow of untreated or only partially treated
wastewater often severely impairs the microbial quality of rivers and seawater. Even when
good sanitation systems for urban wastewater are in place, spill-offs caused by failures
across the service chain and overflow due to rain events result in the discharge of untreated
fecal waste in the urban environment [15]. Consequently, even in regions with state-of-the-
art wastewater treatment, such as Europe [16,17] and the USA [18], high levels of microbial
fecal pollution, including pathogens, are found in surface and groundwater bodies. The
association of this fecal contamination with waterborne infectious disease outbreaks is well
documented [19–23].

Considering all the above, the aim of this review is to emphasize that the improvement
in the microbial quality of treated wastewater needs further verification and that viral
indicators, such as coliphages, should be included in wastewater management to monitor
the treatment performance.

2. Worsening Prospects in the Near Future

A number of predictions for the coming years signal the need for reinforcing sani-
tation, including in wealthy countries with modern wastewater treatment facilities. The
concentration of populations in large urban conurbations, climate change, aging of existing
infrastructures, and emerging pathogens will increase the complexity of urban wastewa-
ter management.

More than half of the world population currently lives in urban agglomerations, a
proportion expected to increase to almost seventy per cent in 2050, which will no doubt
create severe sanitary challenges [24,25].

Foreseen climate changes, including a higher incidence of intense rainfall that pro-
duces water run-off and overflows in off-site sanitation services, are expected to increase
the failure rate of sanitation systems even in developed countries [26–29]. Moreover, water
scarcity due to climate change and the pressures arising from dense urban populations [30]
will increase the need for water reclamation and reuse.

Due to aging and inadequate asset management, the wastewater collection infrastruc-
tures of many cities around the globe are in a state of rapid decline, resulting in the leakage
of untreated sewage, with negative impacts on human and environmental health [31].
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As recently evidenced by the emergence of SARS-CoV-2 [32], the appearance of
new pathogens in the coming years cannot be ruled out. The emergence of a fecal–oral-
transmitted pathogen, due to effective sanitation procedures and drinking water manage-
ment, can be more easily controlled than a pathogen transmitted by air [33]. Nevertheless,
a lack of immunity in the population will aggravate the effects of such outbreaks. An
important cause of the emergence and re-emergence of infectious diseases is the growing
resistance to anti-infective drugs. Fecal pollution is a major factor responsible for the
abundance of antibiotic resistance genes in anthropogenically impacted environments [34].

Consequently, there is consensus that the achievement of “sanitation for all” will
require a combination of different approaches involving various scales of technologies
and services [25,35] and that even high-income countries need to take fecal microbial
contamination into greater account in sanitation decision-making [36]. In light of the
aforementioned facts, in 2020, the European Union decided to revise the Urban Wastewater
Treatment Directive (Document Ares (2020)3769112) to protect both the environment and
human health [37].

3. Pathogens and Fecal Indicators in Municipal Sewage

Assessment of sanitation processes and the contribution of raw or treated sewage
to surface and underground water pollution first requires the effective monitoring of
pathogens and microbes indicative of fecal contamination in sewage and treated waters, as
well as their fate once released into the environment.

Sewage may contain microorganisms from several origins, but the immense majority
derive from the microbiota in human feces [38], with minor input from the gut microbiota
of animals living in sewer systems, such as rats and cockroaches. When combined with
surface run-off water, urban sewage can contain microbiota from other sources, such as soil,
pet feces, and environmental waters, but the human microbiota is still predominant [38].

Feces represent by far the greatest input of microbes into sewage: for a healthy
individual producing an average of 100–200 g wet weight of feces per day, it contains
an estimated 1.0 × 1013–2.0 × 1013 bacteria [39]. Considering that the average daily
contribution to sewage per person in high-income countries is 150–400 L of water, a
liter of sewage will contain concentrations of 2.5 × 1010 to 1.0 × 1011 bacteria. Slightly
higher concentrations of virus-like particles, ranging from 1011 to 1013 per liter, have been
detected in raw sewage [40,41]. Genomic studies indicate that most of these viral particles
correspond to bacteriophages [41].

The majority of human intestinal microbiota are anaerobic bacteria, such as Bacteroides
and Bifidobacterium, many of them still uncultivable by current methods [39]. An initial
qPCR-determined estimate of the concentration of Bacteroides, the dominant genus of
bacteria in feces and raw sewage [42], supports the aforementioned number of total bacteria
in the colon content. As detailed below, the contributing concentrations of bacteria used as
indicators of fecal contamination, such as E. coli, enterococci, and sulfite-reducing clostridia,
are several (3 or 4) log10 units lower.

Many pathogens, particularly viruses, as recently evidenced with SARS-CoV-2 [43],
can be found in high concentrations in the urine and feces of infected individuals and hence
are detected in sewage [44]. However, only those whose transmission via the fecal-oral
route has been unequivocally established are considered worthy of attention from the
sanitation and public health point of view. The number of pathogens, even in epidemic
situations, is several log10 units lower than the number of bacteria and bacteriophages in
the microbiota, the numbers depending on the sanitary status of the population, geographic
region [45], and the season of the year [46]. Data on the numbers of fecal–orally transmitted
pathogens reported in the scientific literature are available in previous reviews [38]. In
theory, pathogen detection would seem to be an ideal option for managing sanitation and
determining the microbiological quality of waters contaminated by sewage. However, such
an approach is still neither practical nor feasible in routine testing due to geographic and
temporal variations in prevalence, difficulties in detecting infectious pathogens, and the
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uncertain ratios between infectious and non-infectious units determined by nucleic acid
amplification, which vary in different settings and conditions [47].

The great majority of microbes of fecal microbiota, including pathogens and traditional
fecal indicators, do not replicate outside the gut. Only a few genera of Proteobacteria,
such as Aeromonas and Pseudomonas, replicate in sewers [48], but pathogens and indicators
can survive transportation in sewer systems, wastewater treatments, and in nature. Sur-
vival occurs at different rates, resulting in variability in microbe proportions or relative
concentrations as they are distanced in space and time from the polluting source.

4. Bacterial and Viral Fecal Indicators in Raw Sewage

For more than 100 years, fecal indicator bacteria (FIB), which are nonpathogenic
bacteria of the intestinal microbiota, have been employed to assess both water quality
and the efficiency of water treatments and management, and they are now included in
guidelines and regulations all over the world. FIB are a diverse group of taxa whose
selective detection and enumeration are made feasible by their phenotypic traits. They
include total coliforms, thermostable coliforms (also reported as fecal coliforms), E. coli,
enterococci (also reported as fecal streptococci or intestinal enterococci), and spores of
sulfite-reducing clostridia [49,50]. Presence/absence and quantitative (colony forming
units, CFU) culture-based methods standardized by regulatory agencies, as well as equiva-
lent accredited methods developed by private companies as user-friendly kits, are available
worldwide [50,51]. The resistance of FIB to treatments and their persistence in the environ-
ment are similar to those of bacterial pathogens [51], but their value as surrogate indicators
of viruses and parasites has been questioned [52–54].

Efforts have been made over the last few decades to find fecal indicators that more
closely mirror the behavior of viruses and parasites. Bacteriophages that infect enteric
bacteria have been proposed as indicators of fecal pollution and/or viruses and are in-
creasingly being included in water quality guidelines [55,56]. Feasible and cost-effective
presence/absence and quantitative (plaque-forming units, PFU) methods standardized
by regulatory agencies are available [57–60]. Moreover, fast and user-friendly methods
that can be adapted for ready-to-use kits are being developed [61]. Both standardized [59]
and fast methods are easily adaptable to 100 mL of water [62], thus avoiding the need to
concentrate phages from volumes of up to 100 mL water samples.

Helminth eggs are also used as a parasite indicator for the management of wastewaters,
mostly in low-income countries, where these parasites are still quite prevalent, with values
ranging from <1 to 103 per liter [49]. In contrast, in high-income countries, they are virtually
absent, even in raw sewage.

Concentrations (CFUs and PFUs) of fecal indicators reported worldwide for 100 mL of
incoming raw sewage at WWTPs are found in the following ranges: fecal coliforms/E. coli
106–108; enterococci 105–107; spores of sulfite-reducing clostridia 104–106; somatic col-
iphages 5 × 105–107 and F-specific coliphages 105–106 [49,63–68]. Concentrations of indica-
tors in sewage collected in a given site vary according to various factors such as the fecal
contribution to the sewage, occurrence of rain, and the time of day of sampling. Neverthe-
less, the relative proportions among the different indicators tend to remain constant.

Besides their concentrations, other features of fecal indicators in raw sewage, both
bacterial and viral, are worthy of mention. Firstly, their concentrations in a given sewage
collecting site show no seasonality [69,70], and secondly, their relative concentrations do
not display geographical differences [67,71].

However, overflows in combined sewers (more rarely in sanitary sewers) due to heavy
rainfall or snowmelt are responsible for a very high percentage of the fecal microbial load
of the receiving waters, even when the overflows are modest in volume [72,73]. On the
other hand, many sewer systems have significant accumulations of in-pipe deposits known
as silt. Acting as a stockpile of pollutants, silt may exacerbate the detrimental impact
of both combined and sanitary sewer overflows [74]. Field evidence indicates that 90%
of the pollution load discharged from storm sewage overflows may be derived from silt
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erosion [74]. In rural areas, zoonotic pathogens in surface run-off can also constitute a
health risk [75], but this subject is not dealt with in the current review.

Though data are scarce, the proportions of bacterial and viral indicators in silt [76], com-
bined sewage overflows [77] and urban coastal areas affected by sewage overflows [73,78]
differ from those of raw sewage. As the relative concentration of coliphages is usually
higher [77,78], albeit not always [73], they have interesting potential as additional indicators
for the assessment of microbial fecal contamination in wastewater.

5. Removal of Pathogens and Indicators by Typical Sewage Treatment Plants

Wastewater treatment aims to produce an effluent that will do as little harm as possible
to humans and nature when discharged to the surrounding environment, and cause
minimal pollution compared to untreated wastewater. Acceptable levels of impurity will
depend on whether the treated water is going to be reused or on the location of its disposal
(surface water, groundwater, bathing or recreational zones, marine coastal water, etc.).

Most of the wastewater treatments currently used worldwide, including in member
states of the European Union, where the procedures have to conform to the Urban Wastew-
ater Treatment Directive, have been designed to remove particles and chemicals (mainly N
and P). However, they also remove fecal microbes, both pathogens and indicators, which
are mostly retained in sludges [79].

Commonly employed treatments comprise primary sedimentations plus one of the
following: flocculation-aided sedimentation, activated sludge digestion, activated sludge
digestion plus precipitation, and to a lesser extent, up-flow anaerobic sludge blanket
processes and trickling filters. In all of them, microorganism die-off seems to play a minor
role in the count reduction of pathogens and indicators, which accumulate in the resulting
sludges that are subsequently treated.

In well-operated plants, the numbers of bacterial indicators, coliphages and pathogens
undergo a similar decline. Reported reductions in the concentrations of naturally occurring
infectious pathogens range from 0.3 to 3.0 log10 units, that is, from 50% to 99.9 %, depending
on the treatment [80–87]. Thus, secondary effluents are still a source of pathogens, but the
amounts vary depending on the season, epidemiological status of the population and the
number of people served by the treatment facility.

Both bacterial and coliphage indicators are removed in ranges similar to pathogens,
that is, from 0.3 to 3.0 log10 units, depending on the treatment [56,71,86,88–91]. Conse-
quently, the ratios between bacterial and coliphage indicator concentrations, and between
both types of indicators and naturally occurring pathogens in secondary effluents remain
similar to those found in raw sewage. Coliphages and the most frequently used bacterial
indicators are found in secondary effluents in numbers that can be detected without con-
centration using available procedures. Thus, the most frequent somatic coliphage values in
secondary effluents range from 103 to 105 PFU per 100 mL [71,81,87,92].

As indicated earlier, secondary effluents are mostly discharged into surface waters
when they are ecologically compatible with the surrounding environment and not intended
for reuse after water reclamation treatment. However, some sensitive receiving water
bodies, such as those used for bathing and shellfish collecting and farming, may require
the effluents to undergo further processing prior to discharge, in which case chemical
disinfection is common practice. According to most reports, such additional disinfection
has a greater inactivation effect on bacterial than on bacteriophage indicators [93–95]. Of
course, these observations do not refer to water reclamation and reuse, essential practices
in the future to ensure a water supply for all, but which fall outside the scope of this review
due to their large scale.

6. Coliphages in Wastewater-Receiving Surface Waters

As indicated previously, rivers, lakes, estuaries and seas commonly receive raw
wastewater and WWTP effluents. Even in regions with state-of-the-art wastewater treat-
ment, such as Europe [16,17] and the USA [18], high levels of microbial fecal pollution,
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and hence coliphages, occur in surface water bodies. The coliphage densities in a given
site of contaminated surface water are determined by the distance from outfalls, effluent
volumes, the degree of dilution, sedimentation and inactivation of fecal microorganisms by
natural stressors.

Intestinal microbes are excreted as aggregates, a fraction of which are found asso-
ciated with particles in sewage [96]. On the other hand, in most natural conditions and
environments, including WWTPs, coliphages, as viruses do, tend to adsorb to surfaces
of solid particles [97,98], although attachment is variable due to environmental factors
and the heterogeneity of different bacteriophage groups [98]. This behavior greatly affects
the removal of coliphages from surface waters, as suspended solids facilitate their sed-
imentation. Moreover, viruses and bacteriophages adsorbed to surfaces tend to be less
sensitive to anthropogenic and natural stressors and survive longer than when suspended
in water [99,100]. Accordingly, coliphage concentrations detected in sediments outnumber
by several orders of magnitude those in overlaying waters, both marine [101–103] and
fresh [104–106]. The same applies for epilithic biofilms [106]. Increased river flow caused,
for example, by storm events can re-suspend the sediments and detach phages from solids,
thus reincorporating the coliphages into the water column [73,107].

Inactivation of coliphages in surface waters and sediments depends on different fac-
tors, both abiotic and biotic. The former include temperature, exposure to sunlight, the pres-
ence of natural photosensitizers and mineral and organic matter in the water [55,56,108–117].
Biotic factors such as predation and degradation caused by enzymes released by au-
tochthonous microorganisms seem to play a minor role [109,118]. Although the results
of some studies are ambiguous, the great majority of reports allow some general conclu-
sions to be drawn. Coliphage numbers decline significantly faster when temperatures,
salinities and sunlight exposure are higher. Most inactivation experiments report that
coliphages mimic the abatement of viruses better than FIB, which generally decay faster.
According to these observations, it can be predicted that the proportions of these groups of
microorganisms change with the aging of polluted water.

A significant amount of information on coliphages and their relationship with FIB
and pathogens has been collected in the last 30 years. The concentrations of coliphages in
surface waters and their correlation with FIB and pathogens depends on several factors:
firstly, the source of the coliphages, which are discharged into surface waters in treated or
untreated urban wastewater and surface run-off, mostly of animal origin [60]; secondly, the
level of inactivation, which depends on the distance from outfalls, the degree of dilution,
sedimentation, and the age of the contamination; and finally, the diversity of methods
used for detection and enumeration [56,109,119]. Table 1 summarizes the data obtained
from various studies performed in a wide range of situations and sites. The reported
concentrations of somatic coliphages are very diverse, because they correspond to areas
with different contributions of fecal contamination, types of water, climate and distance
from the pollution source. The studies also differ in the indicators and viruses they target
and the methods applied. However, some general trends can be observed regarding
somatic coliphages and FIB (E. coli /fecal coliforms), these parameters being reported in
most of the studies. Numbers of coliphages and FIB are usually greater in freshwater than
in seawater sites. The ratio between the numbers of E.coli/fecal coliforms and somatic
coliphages is similar in wastewaters at freshwater sites, and both indicators are with high
concentrations. This ratio diminishes in freshwater sites with lower concentrations of fecal
contaminants, seawater, sites with aged fecal contamination and in dry periods. Data on
infectious human viruses and other FIB are insufficient to make meaningful comparisons,
though there is some evidence that compared to traditional indicators, coliphage densities
are more strongly associated with viral pathogens.
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Table 1. Concentrations of E. coli/fecal coliforms and somatic coliphages in surface waters. a Values of indicator bacteria and somatic coliphages are expressed as intervals or geometric
means. In brackets percentages of positive samples, b values in MPN or CFU detected by methods according to national regulations, c ISO 10705–2 [57], d USEPA Method 1602 [59],
e standard methods for the examination of water and wastewater [120].

Samples Somatic Coliphages
Method Number of Samples Geographical Location E. coli

CFU/100 mL a,b
Somatic Coliphages

PFU/100 mL a Reference

Fresh water (river) ISO c 392 Spain, France, Colombia,
Argentina 5.0 × 103 (100) 6.2 × 103 (100) [67]

Coastal and brackish water USEPA d

(strain C3000)
12 USA >4.0 × 102 (100) 0.5. to 3.3 × 102(100) [121]

Freshwater (river) ISO 25 South Africa 1.1 × 102–3.9 × 104 1.0 × 102–7.7 × 103 [122]

Freshwater (river) ISO 90 Great Britain 3.5 × 103 7.0 × 103 [123]

Coastal water APHA e 20 Malaysia 1.5 × 102–2 × 104 4-35 [124]

Sea water APHA 61 Brazil <1–8.4 × 103 (58) <1–3.4 × 103 (32) [125]

Sea water ISO 806 Spain 30.1 (95) 32.8 (72.6) [126]

Fresh and sea water ISO 139 Nine European countries 1.0 × 102 (90) 1.7 × 102 (92) [65]

Freshwater (river) ISO 96 France 2.5 × 102 (100) 3.0 × 103 (100) [127]

Fresh and marine ISO 290 Nine European countries 3.0 × 102 (85) 1.1 × 102 (72.5) [128]

Fresh water (lake) USEPA 581 USA 2.0 × 103 (100) 2.0 × 102 (96.4) [129]

Estuarine water (lake) USEPA 222 USA 77 (100) 30 (93.7) [130]

Fresh water (river) ISO 23 Japan 10–3.2 × 104 (100) 30–1.2 × 103 (100) [73]



Water 2021, 13, 1110 8 of 13

The available data provide useful insights into the relationships between coliphages
and FIB in surface waters and their potential significance, which should help in decision-
making in the management of surface water quality to protect human health. What
seems clear is that coliphages provide complementary information to that afforded by FIB.
The identification of risk-based thresholds for coliphages from different hazards (treated
wastewater or animal feces) or from mixed contamination of diverse sources and ages is an
important subject for future research.

7. Conclusions

Although the treatment of wastewater before its release into the environment is a
general practice in high-income countries, outbreaks of waterborne infectious diseases
are still relatively frequent. Such health risks are expected to worsen in the future, due
to the pressures arising from the growing concentration of populations in large urban
conurbations, climate change, the aging of existing infrastructures and emerging pathogens.
To meet this challenge, it is recommendable that wastewater management focuses more
attention on the fate of pathogens.

At present, if effluents from municipal wastewater treatment plants are not treated
further for water reclamation, they are usually discharged into the environment. Bacterial
and coliphage indicators of water quality exhibit different degrees of resistance to water
reclamation treatments and to environmental persistence [42,71]. On the other hand, the
determination of either fecal coliforms or enterococci in water bodies does not provide
sufficient information about the associated human health risk, especially regarding viral
infections [56,131]. The concentrations of somatic coliphages in raw sewage remain consis-
tently high throughout the year worldwide, as occurs with bacterial indicators. Moreover,
the removal of bacterial indicators and coliphages in traditional sewage treatments is
similar. Somatic coliphage concentrations in secondary effluents remain high enough for
enumeration, without the need for cumbersome and costly concentration procedures. Addi-
tionally, coliphages persist longer than bacterial indicators once outside the gut, according
to the available data on indicator behavior, which are still limited for sewers but abundant
for surface waters.

Consequently, coliphages are being introduced in regulations for water reclama-
tion [37,132] and bathing water quality [109]. Considering the current status quo, it seems
judicious to include coliphage testing in the management of wastewater treatment plants,
especially as coliphages can be enumerated faster than bacterial indicators [61,62,133],
allowing decisions to be taken within one working day.
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