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Abstract: The field of eDNA is growing exponentially in response to the need for detecting rare and
invasive species for management and conservation decisions. Developing technologies and standard
protocols within the biosecurity sector must address myriad challenges associated with marine
environments, including salinity, temperature, advective and deposition processes, hydrochemistry
and pH, and contaminating agents. These approaches must also provide a robust framework
that meets the need for biosecurity management decisions regarding threats to human health,
environmental resources, and economic interests, especially in areas with limited clean-laboratory
resources and experienced personnel. This contribution aims to facilitate dialogue and innovation
within this sector by reviewing current approaches for sample collection, post-sampling capture and
concentration of eDNA, preservation, and extraction, all through a biosecurity monitoring lens.

Keywords: eDNA; eRNA; marine biosecurity; invasive species

1. Introduction

Biological invasions have followed human activities for centuries [1], with cross-
regional transfer of non-indigenous species (NIS) having amplified rapidly over the last
few decades [2,3]. In the marine realm, this is largely attributed to the massive increase
in seaborne trade beginning in the 1950s [4,5], which has served as the major pathway
for marine biological invasions [1,6,7]. Continued growth in global maritime traffic and
an associated 3- to 20-fold increase in global invasion risk is predicted for the next few
decades [8]. Disrupting a potential invasion at the earliest stage of propagation is key,
since downstream eradication in highly dynamic marine environments is difficult at best.
Although managing the spread of unwanted organisms remains a high priority for re-
gional, national, and international jurisdictions (e.g., Marine Strategy Framework Directive;
European Union (EU) Invasive Species Regulation; New Zealand Biosecurity Act), a lack
of operational tools and technologies for early detection has been a long-term hurdle [9].
Molecular methods have been used for decades to aid environmental monitoring [10].
The use of tissue or blood samples from an individual to obtain a genetic signal alleviates
issues surrounding taxonomic identification, while still relying on visual detection and
collection of specimens at the sampled area [11]. More recently, the application of DNA and
RNA (collectively termed nucleic acids (NAs)), recovered from environmental samples and
referred to as environmental DNA (eDNA) and RNA (eRNA), is increasingly advocated for
to be used in biodiversity assessments (e.g., [12–14]). The non-invasive manner of sampling
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and non-reliance on visual observations, combined with the advancements of molecu-
lar techniques [15,16], has resulted in a rapid expansion of research to determine if this
novel monitoring method meets surveillance and management needs in marine (e.g., [17]),
freshwater (e.g., [18]), and terrestrial (e.g., [19]) systems. As with any detection system,
balance must be struck between precision, accuracy and sensitivity of methods, logistical
requirements, and associated costs. These considerations must further be balanced within
the larger framework of resource management decisions [20–22].

The sensitivity of NA-based techniques has led to the unprecedented ability to char-
acterize organismal assemblages across multiple trophic levels (e.g., [23,24]), detect and
monitor rare species in complex environments (e.g., [25]), expand the known range of or-
ganisms (e.g., [26]), and identify potential threats (e.g., [27,28]) that have eluded traditional
sampling approaches (e.g., electrofishing, imaging, settlement plates, dive surveys, plank-
ton tows). While these examples demonstrate the immense benefits of using NA-based
methodologies for screening environmental samples, several comparison studies have
revealed apparent limitations in signal detection [29,30] that can originate from a variety
of error sources within the workflow—from sample collection through to processing and
bioinformatics (e.g., [31–34]). These limitations can be particularly problematic in trying
to meet the demands of high quality assurance/quality control standards in areas such
as biosecurity [18,22,35], involving the detection, monitoring and management of pests,
diseases, and nuisance species that can cause problems for humans, animals, plants, or the
environment (https://www.marinebiosecurity.org.nz/what-are-marine-pests/; accessed
on 13 April 2021).

There is an ever-growing body of research aimed at methodological comparisons of
NA-based technologies, starting with sample collection techniques through data analyses
pipelines. However, no agreement has been reached on best practices for sample collec-
tion and processing (e.g., [36] and references therein). Given the explosive growth in the
use of eDNA and the emergence of eRNA [37] in myriad environmental contexts, the
establishment of a fully standardized protocol throughout the sample collection and pro-
cessing pipeline is a challenging task, particularly in light of the reporting of inconclusive
or contradictory results [35]. Nevertheless, the development of best practice guidelines
for each environment that address biosecurity surveillance needs is desirable, especially
for the steps encompassing sampling through to the extraction of NAs. Here, we review
the challenges for using NAs within a marine environment, and the current methods for
sample collection, post-sampling capture and concentration of eDNA, preservation, and
extraction through a biosecurity monitoring lens. We end with an outlook on how emerging
methodologies can shape the future of invasive species detection. See Table 1 for common
definitions, as used in the context of this manuscript.

Table 1. Common definitions as used in the context of this manuscript.

Term Definition

Acid washing
A common practice for decontaminating surfaces and apparatus
from organismal material that may contaminate various steps in
the pipeline (from sample collection through molecular analyses).

Bead-beating
Mechanical way to disrupt cells; filters are placed into a tube

containing beads and lysis buffer, and placed on a shaking bead
beater for a fixed amount of time.

Bioinformatics Suite of software tools used to analyze genetic data.

Capture efficiency How well a method retains genetic material—for example,
material or pore size can affect utility of a filter.

cDNA
The DNA strand that is complementary to RNA; part of the

intermediate step between genomic DNA and protein, used as a
measure of gene activity.

https://www.marinebiosecurity.org.nz/what-are-marine-pests/


Water 2021, 13, 1113 3 of 24

Table 1. Cont.

Term Definition

Concentrate
Through filtration, the contents of a sample are distilled into a

smaller volume, thereby increasing the chances of capturing rare
or low-abundance organisms.

Cross-contamination
When genetic material from target or non-target species

contributes inaccurately to molecular analyses, due to inadequate
decontamination of surfaces and apparatus.

Decontamination
Sterilization of surfaces and apparatus from organismal material
that may contaminate various steps in the pipeline (from sample

collection through molecular analyses).

Degradation
The breaking down of genetic material (DNA/RNA) through

enzymatic action (DNA/RNAses) or abiotic factors (e.g.,
temperature, UV light).

Diluted bleach

A common practice (10–50% for >10 min) for decontaminating
surfaces and apparatus from organismal material that may

contaminate various steps in the pipeline (from sample collection
through molecular analyses).

Dissolved eDNA/RNA Free-floating, naked nucleic acid (DNA/RNA) in the water
column (i.e., not contained within or adsorbed to any particles).

DNA
Deoxyribonucleic acid; central storage of genetic information for
organisms (except RNA viruses). In eDNA, analyses targeted for

gene presence of species (single or multiple species).

DNAse Deoxyribonuclease; group of enzymes that can degrade DNA,
thereby affecting quality and quantity.

False positive
An instance where a sample should have been negative, but the

result was positive; contamination from improper sample
handling can lead to a false positive.

False negative An instance where a sample should have been positive, but the
result was negative; inhibitors can lead to a false negative.

"Fit-for-purpose”
The concept that a pipeline (sample collection through data

analysis) needs to be formulated for each particular sampling
context. In contrast to “one-size-fits-all”.

Inhibitors

A variety of substances of known (e.g., tannins, humics) and
unknown type that can be co-extracted with nucleic acids and

hinder the performance of downstream enzymatic reactions (e.g.,
the amplification steps in quantitative polymerase chain reaction

(qPCR) and metabarcoding).

Metabarcoding
A genetic method that amplifies homologous gene(s) across

species in order to gain perspective into the taxonomic
constituents of a community.

Molecular signal
Results derived from any number of assays (e.g., qPCR,

metabarcoding) that detect and possibly quantify genetic
material.

Niskin bottle A columnar sampling bottle that can be triggered to capture a
whole water sample from a desired depth in the water column.

“one-size-fits-all”
The concept that one pipeline (sample collection through data

analysis) can be formulated and used in all field and experimental
contexts. In contrast to “fit-for-purpose”.
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Table 1. Cont.

Term Definition

Particle size

Refers to an array of particle types that may be encountered in the
water column: whole cells, broken/damaged cell pieces, and

naked nucleic acids from lysed cells. Any of these forms can be
free-floating or adsorbed to other (non-)organic material.

Plankton tow

Vertical or horizontal pull of a specialized net to filter and
concentrate water column contents into a smaller volume, thereby

increasing the chances of capturing rare or
low-abundance organisms.

Precipitation Concentration and purification of nucleic acids (DNA/RNA)
through chemical means.

Preservation
Near-immediate immobilization of a sample (through a
combination of buffers/freezing and transport/storage

conditions) to maintain integrity of genetic material.

qPCR

Quantitative polymerase chain reaction; also called real-time PCR,
because the amplification of a genetic target can be monitored

during the reaction, and a determination of copy numbers of that
target can be made. This is in contrast to PCR, which cannot be

monitored in real time and produces a qualitative
(positive/negative) result.

RNA Ribonucleic acid; intermediate step between genomic DNA and
protein, used as a measure of gene activity.

RNAse Ribonuclease; group of enzymes that can degrade RNA, thereby
affecting quality and quantity.

Settlement plates

Artificial structures (e.g., plastic polymer material) deployed in
aquatic environments for passive sampling of marine biofouling;

can be used to study recruitment of sessile taxa and
non-indigenous species surveillance.

Snap-freeze
A method to immediately preserve genetic material after sample
filtration; the filter is housed in a tube and submerged in liquid

nitrogen or on dry ice.

Sterility

Maintaining a clean/aseptic environment throughout the entire
pipeline to eliminate cross-contamination of organismal genetic
material between samples at all stages (sample collection through

processing and molecular manipulations).

Total eDNA/eRNA Environmental DNA/RNA in all forms (whole and partial cells,
free NAs in solution (dissolved) or adsorbed to particles).

Van Dorn Large chamber water sampler that allows for sampling from one
depth or a composite of several depths.

2. Applications of Molecular Tools for Marine Biosecurity Surveillance

Targeted and multispecies molecular techniques are increasingly promoted for marine
biosecurity applications [18,38–41], including early (pre- and post-border) detection of
unwanted organisms, identification of putative NIS, surveillance of high-priority pest
species, determination of the source and pathways of invasion, as well as the genetic
structure of founding populations [42]. One advantage of using molecular approaches
for surveillance purposes is their sensitivity in detecting and identifying NIS when pop-
ulations (and therefore concentrations of expelled NAs) are sparse; however, there are
numerous considerations to take into account (reviewed extensively in [43]). This aspect,
for instance, brings an additional challenge for sampling representativeness, requiring
increased field replication [44], sample volumes [45,46], or both, to reduce the risk of false
negative results [31,47]. The ability to effectively concentrate NA material over large spa-
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tial/temporal scales would provide a valuable trade-off for achieving desirable sensitivity
at an economical level, both cost- and timewise (Figure 1).
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Figure 1. Potential sources of detection errors (false negatives or false positives) and uncertainties within the primary steps
of the molecular surveillance workflow, from sample collection through to nucleic acid (NA) extraction. (Figure created
with BioRender.com).

The genetic material most routinely recovered from an environmental sample is
DNA [48], while RNA is used to provide additional insights into the ecology of alive and
viable organisms within biosecurity contexts [49–53]. The stability of DNA, which can
persist for extended periods in the environment, depending on the conditions (days to
years [54–56]), enables easier handling of samples until extraction. However, the influence
of varying abiotic factors on the persistence of eDNA complicates the sampling design and
interpretation of results, e.g., in the context of the current presence and affinity of a viable
population of target (pest) species [57–59]. On the other hand, RNA is a fragile molecule
that degrades rapidly (typically hours to days [12]). The fast degradation of RNA allows
better approximation of the signals from alive and viable organisms in a sample [49]. The
fate and prevalence of particle-bound eRNA is currently not well understood, questioning
the applicability of eRNA for routine monitoring purposes [12].

The variable states that NAs are found in the environment, ranging from free-floating
molecules to molecules bound to larger complexes (inorganic particles, cell debris, organic
floc, tissues, scales), or even intact organisms and their propagules, introduces another
level of complexity for effective NA capture from a sample [44]. The decisions to be made
at this step (e.g., optimal filter type, pore size, need for pre-filtration or precipitation) are
often impeded by poor knowledge of target NA fractions and their variability (spatial
and temporal) in the environment. A variety of factors within the marine context can
influence this variability and detectability: salinity, temperature, advective and deposition
processes, hydrochemistry and pH, and contaminating agents (e.g., [60–63]). Inherent
biological factors, such as cellular degradation (influenced by cell health) can also affect
detectability [62]. All of these influences need to be taken into consideration when optimiz-
ing protocols around “sampling windows” as part of any sampling approach, from grab
samples to passive sampling devices.

Another challenging aspect for biosecurity practitioners and the broader application
of molecular techniques is related to the complexity of sample collection and handling
protocols [21,22,64]. Thus, the exceptional sensitivity of molecular detection requires an
abundance of caution to prevent cross-contamination at every stage of the workflow and
avoid false positive detections—the major concern of biosecurity managers hesitant to
implement molecular surveillance [18,35]. Furthermore, the nature of the sampled material
makes it prone to degradation (e.g., [65]). This can be prevented by minimizing handling
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time in the field and stabilizing the material as soon as possible after collection, in a
cost-efficient and preferably non-toxic way (Figure 1).

In the following sections, we review the current methods available for (i) sample
collection, (ii) post-sampling capture and concentration of NAs (including filter types),
(iii) preservation, and (iv) extraction and subsequent storage, all within the utility of the
marine biosecurity surveillance sector. The major existing gaps are addressed in the context
of future perspectives. We do not consider sampling design in this review, as it is case-
specific and difficult to generalize. A fit-for-purpose sampling strategy should ultimately
be developed for each coastal location, taking into account parameters like harbor size, local
hydrodynamic peculiarities (exposure, tidal regime), proximity to introduction pathways,
potential sources of inhibitory contaminants, and historical detection of target species.

3. Sample Collection

Testing for the presence of invasive species via NAs within the biosecurity sector
ideally requires inexpensive technology that is easy to use across all skill levels, is not prone
to cross-contamination, and consistently leads to robust and reliable results. Identifying
equipment that meets these criteria will help with its adoption into sustained monitoring
frameworks. This rapidly growing field has predominantly incorporated existing methods
for sample collection (e.g., [66]); however, there have been calls from management entities
for fit-for-purpose technology (e.g., [67]), especially since many traditional methods pose
constraints for eDNA sampling [21,43].

Marine biosecurity surveillance targets a whole range of organisms representing
different taxonomic groups, functional traits, and lifestyles—from sediment-dwelling or
biofouling invertebrates to algae and fish inhabiting the water column. Also, in the case
of untargeted surveillance (e.g., passive “screening” for new incursions), the life form,
behavior, abundance, and peculiarities of NA distribution of the organisms are generally
unknown. Therefore, it is difficult to develop a sampling protocol that is generalized
across the multiple habitats in which an incursion may occur. Sampling different environ-
mental matrices, such as seafloor sediments, biofouling of infrastructure, and the water
column (which is a rather complex environment in itself), may not always be possible
due to logistical constrains (e.g., accessibility of sampling sites in busy ports), health and
safety risks (e.g., sample collection by SCUBA divers from open coast hard bottoms), and
associated cost and time efforts (Table 2). A few studies have compared the efficiency of
targeting different matrices for biodiversity assessment and species detection [66,68–70].
Some studies have found important differences between, e.g., sediments and water at
different depths [71–73]. A comprehensive biosecurity surveillance program should ideally
consider collecting representative samples from different habitat types, enabling detection
of a wide range of organisms (e.g., [74]). However, in the context of often limited and con-
sistently diminishing monitoring resources, it is important to find a meaningful trade-off
between cost-efficiency and the extent of surveillance effort ([75] and references therein).
Surface water samples are usually logistically easier to collect and are standardizable at
larger scales [76]; thus, they can be considered an efficient alternative for obtaining signals
from both planktonic and benthic communities [75,77]. Hereinafter, we focus on methods
relevant for waterborne NAs (unless stated otherwise).



Water 2021, 13, 1113 7 of 24

Table 2. Considerations in the nucleic acid (NA) surveillance workflow with regards to choice of biological matrix to sample,
as well as possible approaches to collection, concentration, and preservation.

Field Workflow
Considerations
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Soft sediment Post-sampling concentration
(water samples)

Benthic samplers Centrifugation
Scuba diving Precipitation (chemical)
Hard bottom Filtration
Scuba diving Preservation

Settlement plates Snap-freezing
Biofouling on artificial

structures Preservation buffers

Scuba diving Desiccation
Settlement plates

Water column Color
key

Whole water samples Yes
In-situ filtration No

Plankton nets
Neutral/context
depen-
dent

The majority of studies targeting waterborne NAs have employed sampling with
bottles, carboys, or buckets (or some combination), and have been amended with a filtration
step for sample concentration when needed [58,78]. Plankton net tows have been used
for concentrating material from a large volume of water [30,42,53,70,79], an approach that
is desirable for detecting low concentrations and overcoming the patchiness of targets
(e.g., [80]). However, the configuration of these nets renders them highly prone to cross-
contamination across sampling sites/dates, given the propensity of cells and particles to
stick in the numerous crevices. Furthermore, the nylon used in constructing plankton nets
is often not conducive to repeated, bleach-based sterilization (von Ammon, Pochon, and
Zaiko, personal observations). Alternatively, the plastics used for Niskin bottles and van
Dorn samplers (both utilized for capturing whole water from discrete depths) are better
suited for sterilization via diluted bleach (e.g., [81]) or acid washing (e.g., [82]); however
neither of these devices allow for in situ concentration of particles.

The use of sterile disposable bottles can be economically feasible depending on sample
size; however, this is not an option for bulk water collection devices and downstream
filtration apparatus. More commonly, sampling containers and equipment are rigorously
sterilized with bleach [83–85] or acid [82,86,87] and rinsed several times with deionized
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water, followed by site-specific water to remove sterilizing agents. False positives can occur
with any breach in the protocol (e.g., reduced sterilization times, improper concentrations).
Nucleic acid/contaminant removal is of the utmost importance for NA sampling; however,
the above measures can be cumbersome in a biosecurity context, where considerable time,
effort, and oversight are needed to ensure proper decontamination steps are carried out.

Recent gear adaptations provide promising alternatives for reducing sample handling
and associated contamination. Adrian-Kalchhauser and Burkhardt-Holm [64] modified
a commercially available telescoping water sampler to combine the capability of discrete
depth sampling with the ability to use a new bottle for each deployment. This technique
still requires decontamination of the main apparatus between samples. However, the
water mass is collected in a separate disposable vessel, and is not subjected to a re-useable
chamber (e.g., van Dorn or Niskin bottle). The Smith–Root eDNA backpack sampler [88]
is a “fit-for-purpose” system for sampling waterborne eDNA. The unit monitors and
regulates the pressure and flow of water across a collection filter. Partially biodegradable
filtration units can be used to self-preserve the filter via desiccation, and this has been
shown to be comparable to ethanol preservation, even over long storage periods [88]. The
use of a negative-pressure inline filtration system means that the water sample can be
taken up directly by the intake tubing to the filter, while all pumping occurs downstream
of the filtering unit. This approach drastically reduces the chance for cross-contamination
between sampling events. Newly configured autonomous platforms are in development
and offer great promise towards more comprehensive sampling approaches (Mesobot, [89];
3G Environmental Sample Processor (ESP), [90]).

One prominent disadvantage of many environmental NA sampling systems and
strategies is that they offer only point measures for species detection; thus, there is
a move towards systems that might aggregate an eDNA signal over time to provide
a window into biosecurity threats across a wider time span. One such device is the
continuous, low-level aquatic monitoring (Continuous Low-Level Aquatic Monitoring,
C.L.A.M.; https://aqualytical.com/, accessed on 13 April 2021) system that allows for a
time-integrated sample (up to 36 h), with the option to tow or allow the device to drift to
also capture spatial coverage. The device employs filtration and media sequestering steps
for sampling totals and dissolved eDNA. Other lower-tech, cost-effective, and environ-
mentally friendly aggregate strategies are also emerging. One such approach is to deploy
passive eDNA samplers that capture eDNA to a physical matrix, such as montmorillonite
clay [91], artificial reef structures [92], or settlement plate arrays [24,93]. Such strategies
could lead to longer-term, low-cost surveillance of eDNA in many systems, perhaps with
a reduction in the need for laborious filtering (see below) and a decrease in the use of
disposable plastics. Unfortunately, due to its instability, the collection of eRNA is likely to
always require sterile, specialized equipment.

Collectively, these new technologies are addressing many of the criteria needed for
sampling waterborne NAs within a biosecurity framework. Easy-to-operate enclosed
systems greatly minimize the opportunity for cross-contamination between samples. Fur-
thermore, immediate in situ fixation steps eliminate any lag times to sample preservation
(described below). Taken together, these aspects help streamline areas in the pipeline where
false positive or false negative information can originate. Gaps in knowledge for these
types of collection systems include: (1) robustness and reproducibility of different filter
types and fixatives across diverse taxonomic groups and varied aquatic environments
(e.g., turbid waters, hydrological influences); (2) utility in saltwater environments; and (3)
incorporation of pre-filtration steps to allow for greater volumes to be processed, in order
to increase detectability of rare taxa.

4. Post-Sampling Capture and Concentration of eDNA

Most commonly, waterborne NAs from environmental samples are concentrated
via filtration. Filter types and pore sizes have been tested for a variety of target organ-
isms (e.g., [82,94–100]). However, unsurprisingly no “one-size-fits-all” consensus has

https://aqualytical.com/
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emerged. Environmental DNA studies have reported using filters ranging in pore size from
0.22 microns [57,85,101] to as large as 20.00 microns [102], although many publications
state pore sizes of one micron or less [94,103]. Ideally, the smallest pore size would be
used in order to capture all sub-cellular particles. However, capturing adequate material
(particle size and abundance) to maximize meaningful molecular signals downstream must
be balanced with the time it takes to filter large volumes of water and the increased chance
of clogging, which reduces the volumes that can be filtered. Too much material can poten-
tially introduce inhibitory substances (e.g., humic compounds, suspended sediment) or
potentially swamp out the molecular signal from rare targets [104,105]. A limited number
of studies have shown that larger pore filters can be as informative as smaller pore filters
in detecting even rare targets [106,107]. Results from these studies are promising; however,
it is unclear how they will translate across a broad range of trophic levels, particle sizes,
and environmental variability.

More data are needed on the amount and type of NA material captured and lost
when using various pore sizes, to select the optimal combination of time and signal
detection efficiency for particular biosecurity applications. As we move towards increasing
that body of data, one option is to filter sequentially through multiple pore sizes. This
approach avoids the impact of unpredictable episodic disturbances (e.g., influx of particles
after a storm surge; highly dynamic marine and estuarine systems; seasonal variability
in allochthonous material) on a standardized sampling pipeline that is limited to one
pore size. This strategy also increases the opportunity for capturing a broad range of
taxa from different NA fractions, and avoids rapid clogging of the small pore size filter
(e.g., [108,109]).

Some studies have employed sequential filtration to assess the optimum pore size
for capturing eDNA, and in some cases the remaining effluent harbored a significant
amount of eDNA. For common carp (Cyprinus carpio), Turner et al. [94] determined that the
molecular signal (via qPCR) was most abundant from fractions captured between 1 and
10 microns. However, they also confirmed a large pool of predominately non-target eDNA
in their ethanol-precipitated (an alternative to filtration), 0.2 micron filtrate, a fraction that
would have remained unexploited in a broad-scale taxa study or monitoring program.
Moushomi et al. [110] used qPCR to demonstrate greater copy numbers of nuclear and
mitochondrial targets of Daphnia magna (a small, planktonic freshwater crustacean) in
eDNA that was ethanol-precipitated and extracted from the 0.2 micron filtrate, versus that
extracted from the filter itself. Notably, the eDNA decay rate was lower in the effluent
compared to material in the <1.0 to 0.2 micron fraction. These studies suggest that sub-
cellular material can be a significant and more stable source of information, and should be
explored in future studies.

As an alternative to filtration, Turner et al. [94] and Moushami et al. [110] incorporated
ethanol precipitation steps to retrieve eDNA from effluent samples, but this step is limited
to small volumes, and can be problematic for seawater samples, due to inherent salt interfer-
ence (discussed below). However, Sassoubre et al. [86] were able to successfully precipitate
eDNA from mesocosm tanks housing two species of marine fishes, and they demonstrated
significantly greater genetic copy numbers (via qPCR) for both species in unfiltered tank
water (55% and 26%) compared to the cumulative values from three size fractionations (10.0,
1.0, and 0.2 micron filters), plus the remaining effluent. These results warrant additional
study to test the reproducibility of this approach for NA-based monitoring.

The majority of studies on environmental NA states and particle sizes to date have
been carried out in freshwater environments or have involved a limited number of target
species. Extrapolation to a biosecurity framework is complex, given the desire to construct
a robust pipeline that maintains an ability to detect newly introduced species, which may
include a broad array of taxa that shed particles of different size (e.g., subcellular, colonial),
type (e.g., epithelial, slime, waste products), and abundance, depending on organism
dimensions, behavior (including seasonality), or physiological state (e.g., egg and veliger
release, aging population). In addition, it remains unclear how long the various particle
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types stay in suspension, which will affect surveillance decisions. Perhaps casting a wider
net at this point in time (i.e., analysis of multiple filtered and precipitated fractions) will
limit the potential of missing key species, while simultaneously working towards the
development of comprehensive databases and new technologies.

In terms of filter type, cellulose-nitrate filters are most commonly used in eDNA
studies, and have been shown to consistently perform well for eDNA capture and extrac-
tion [84,111]. However, the current body of literature for filter performance does not yet
adequately address areas of interest for the biosecurity realm. It should also be taken into
consideration that not all filters are available in all desired pore sizes, with some having
regionally limited access or imposed additional costs (e.g., the dangerous goods tax on
importing cellulose nitrate filters; authors’ personal observation).

To optimize the filtration step for biosecurity applications, available filter types need
to be tested for their efficiency in capturing a wide range of NA fractions in waters with
varying levels of organic matter and fluctuating water quality parameters (e.g., pH, salinity).
Ultimately, we need to balance capture efficiency (range of NA fractions in the presence
of organic substances), assess compatibility with eRNA applications, and determine the
feasibility of filters in an enclosed engineered system for reduced cross-contamination,
thereby diminishing the risks of false positive signals that are highly undesirable and costly
for managers and industry.

5. Preservation

Rapid preservation of NAs, particularly eRNA, during field sampling is critical. The
method used ideally needs to exhibit robust performance across a variety of sample
characteristics, including low-to-high biomass, a broad pH range, and the presence of
inhibitors. Among current studies, cold storage is commonly used to minimize any loss
of genetic information between field sampling and lab processing [112–116]. However,
the use of ice, dry ice, or liquid nitrogen for snap-freezing, or cooling facilities requiring
electricity and specialized equipment, all present practical limitations in the field and
for transportation. Preservation solutions can be better suited, and preferably should be
simple, cost-effective, sterile, and without requirements for special permits (i.e., non-toxic).

A cheap, room-temperature preservation option for whole water is isopropanol [117]
or ethanol [97,118–120]. Yamanaka et al. [121] found that the preservation of whole water
with benzalkonium chloride was successful in recovering 92% of eDNA (up to 8 h). While
cheap and effective, these chemicals require the transport of large volumes, which can be a
limiting factor when sampling at sea or remote coastal locations. More commonly, samples
are preserved after concentration via filtration, using 20% DMSO buffer [122], RNAlater
(Qiagen, Germantown, MD, USA), Longmire’s buffer [123], or cetrimonium bromide (CTAB;
Sigma-Aldrich, St. Louis, MO, USA) buffer [95]. Ammonium salts, dimethyl sulfoxide
(DMSO), and RNAlater showed high precipitation, leading to inhibition of real-time PCR
assays (qPCR), while CTAB and Longmire’s successfully preserved filtered eDNA at 20 ◦C
over a two-week period [95]. Salt-saturated DMSO (DESS) buffers containing EDTA have
also been suggested as a preservative [124]. Some preservation solutions have been shown
to be biased toward taxonomic groups [125] or species [126], while Longmire’s buffer even
appeared to enhance eDNA recovery, likely by increasing cell lysis efficiency [127,128].
This could suggest Longmire’s buffer as the best option for sample preservation at ambient
temperature conditions.

A few studies indicate that snap-freezing of whole water samples instantly after
collection outperforms other preservation methods [125,126]. This is true for one-off
analyses, but where samples may be used repeatedly, the issue of freeze–thaw-induced
degradation becomes important. In our own experience, even one cycle of freeze–thawing
can reduce the eDNA signal. The effect of multiple defrosting episodes on eRNA is
largely unknown, but is expected to be substantial as well. Therefore, where possible, it
is preferable to avoid freezing samples in the field and instead keep them chilled if they
can be delivered to the lab within a reasonably short time (up to ~24 h [119,129]), where
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they can be immediately processed for filtration and NA extraction (or storage). When
specifically targeting eRNA, samples need to be filtered expeditiously and snap-frozen,
or stored in expensive RNA-compatible preservation buffers (e.g., RNAlater, LifeGuard,
DNA/RNA-Shield, etc.) in the field. Quaternary ammonium salts have been reported to
be efficient preservation buffers in some [130,131] but not all [132] RNA studies.

Recent technologies have explored desiccating, self-preserving, and fully encapsulated
filter membranes (e.g., Smith-Root self-preserving eDNA Filter Packs), which could achieve
higher detection sensitivity on field samples than with buffer preservation [88]. Sterivex
and Acrodisc syringe filters work with similar technologies using silica desiccant. Syringes
are then chilled at 0 ◦C and stored at −10 ◦C or lower until extraction. There is, however, a
large knowledge gap in how these approaches perform for eRNA.

6. Extraction of Nucleic Acids

Extraction of high-quality NAs from environmental samples is paramount for suc-
cessful, molecular-based marine biosecurity surveillance. A plethora of NA extraction
methods have been developed since the inception of DNA isolation in 1869 [133]. The two
fundamental steps for extracting NAs are (1) cell lysis and extraction of intracellular NAs
into aqueous solution—this is done either enzymatically by incubation with hydrolyzing
enzymes (e.g., proteinase K; Sigma-Aldrich, St. Louis, MO, USA [134,135]); mechanically
through bead-beating, freeze-thawing or grinding [136,137]; or chemically, using detergents
(e.g., sodium dodecyl sulfate (SDS; Sigma-Aldrich, St. Louis, MO, USA), guanidinium
thiocyanate (Sigma-Aldrich, St. Louis, MO, USA), or CTAB (Sigma-Aldrich, St. Louis,
MO, USA)) that solubilize cell membrane components [138–140]—and (2) purification
and isolation of NAs from the aqueous phase. This is done via washing with detergent
and/or organic solutions (e.g., phenol–chloroform–isoamyl (PCI) [141]), precipitation with
isopropanol, ethanol, or polyethylene glycol [142,143], as well as filtration through gels,
silica columns, magnetic beads, or ion-exchange resins [142,143].

While traditional lab-based NA isolation protocols using SDS, CTAB, or PCI are
the least expensive, and have been successfully applied for monitoring aquatic biodi-
versity from both pelagic and benthic aquatic environments [94,138,144–146], they are
time-consuming and include the use of toxic chemicals that restrict their application to
specialized personnel and labs only [36]. Additionally, traditional lab-based protocols are
often modified by laboratories to improve the characterization of either specific groups
of organisms or sample types, and therefore no single such protocol will ever fit all the
situations required by marine biosecurity surveillance programs. Commercial kits are
now most commonly used in eDNA studies [36,124]. They present significant advantages
over traditional lab-based protocols, including ready-to-use QC/QAed reagents, stan-
dardized extraction procedures, and PCR inhibitor removal solutions, with an absence
of dangerous chemicals and relatively low cost and time per sample. In the biosecurity
context, standardization is critical [35], and therefore the use of NA extraction kits is highly
desirable, as they ensure an appreciable degree of consistency, which can be optimized
through the automation of extraction using robotics [147]. Despite these advantages, no
universal extraction kit that performs best for all sample types and research goals has been
developed; there exist numerous DNA or RNA kits designed for specific applications, but
a comparatively much smaller selection of kits enabling the co-extraction of both DNA and
RNA from environmental samples [145].

Lear et al. [148] undertook a comprehensive data mining of 584 research articles, focus-
ing on “extracellular DNA”, and recommended the use of specific kits for DNA extraction
of organisms in environmental samples, as follows: (1) Qiagen DNeasy PowerSoil and/or
PowerMax kits from soil, sediment, feces and leaf litter; and (2) Qiagen DNeasy Blood
and Tissue kits and/or DNeasy PowerWater kits for extraction of DNA from water and
ice. Other researchers have also compared a number of commercial kits, with the leading
contenders being Qiagen DNeasy Blood and Tissue and the PowerWater kits (see [149]
for review). Hinlo et al. [150] found the DNeasy kit gave better DNA yields, however
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PowerWater has an additional step to remove downstream enzyme inhibitors. This means
that even though the nucleic acid yield may be higher for the Qiagen DNeasy Blood and
Tissue kit, for samples high in naturally-occurring PCR inhibitors, PowerWater may give
greater sensitivity and accuracy. Therefore, judicious selection of a commercial kit best
suited to the environmental sample can significantly improve outcomes. Comparable
estimates of biodiversity have been described from these two kits; however, representation
should be investigated prior to committing to a strategy [29,82].

A significant challenge for environmental NA studies arises from the co-purification of
naturally occurring enzyme inhibitors. The most well-described of these are humic, tannic,
and fluvic acids [151–154]. At high concentrations, these inhibit polymerases, preventing
downstream detection of target sequences and potentially interfering with metabarcoding
studies. Two approaches are generally employed to prevent inhibitory molecules from
biasing environmental nucleic acid surveys: using nucleic acid extraction systems that
remove inhibitors (e.g., PowerWater or other inhibitor removal kits, [150,155]), or the use
of downstream polymerase enzymes that are resistant to inhibition. A new technique built
around hydroxyl-coated magnetic beads offers the promise of rapid, inhibitor-free, high-
yield nucleic acid isolation from environmental samples. In a pioneering study undertaken
by Yuan et al. [156], this method increased yield from approximately 10% for traditional
methods to over 90% from wastewater treatment plant-activated sludge when magnetic
beads were used. Yuan et al. [156] was able to fine-tune the eDNA fraction captured using
magnetic beads by combining with sample filtration to examine free DNA, intracellular
DNA, or DNA absorbed to extracellular particles. Sanches and Schrier [157] combined
glass-fiber filters and magnetic beads to capture eDNA from estuarine samples that they
argue contain some of the highest levels of inhibitory molecules for any environment.
However, with only these studies to date, further work on volume limits, ratio of magnetic
beads to sample, and nucleic acid purity all require further investigation.

For marine biosecurity applications, a fundamental problem with available kits, apart
from surety of supply, relates to the actual amount of biofouling or sediment material
that can be processed, ranging from 0.25 g (DNeasy PowerSoil; Qiagen, Germantown,
MD, USA) to 10 g (DNeasy PowerMax; Qiagen, Germantown, MD, USA), with the latter
being approximately four times more expensive than the former. Therefore, biosecurity
researchers often face the difficult choice of either increasing the replication of homogenized
(e.g., freeze-dried or bead-beaten) samples; extracting DNA from only 0.2 g, using the
cheaper kit unless kits can be modified (e.g., [83]); or processing fewer samples while
maximizing the recovery of rare species from larger amounts of starting material, using the
more expensive kit. A combination of approaches may be employed, which increases the
difficulty of performing statistical analyses.

Another significant problem for long-term biosecurity surveys is the proprietary na-
ture of reagent recipes, as well as the systematic fine-tuning of available commercial kits
that offer no guarantee for extended consistency in protocols and results. The recent discon-
tinuation of the former DNeasy PowerSoil kit (now PowerSoil Pro; Qiagen, Germantown,
MD, USA) is a good example [147]. Nevertheless, while non-commercial protocols can
be easier to maintain through time, and provide higher amounts of extracted material,
they are much more likely to introduce contamination in the workflow and generally yield
much lower NA quality compared with commercial kits, which are able to more effectively
remove PCR inhibitors. Therefore, one could argue that quality is more important than
quantity for minimizing false positive/negative results, and that the use of commercial kits
with appropriate replication and sample isolation workflow is the best approach for routine
marine biosecurity surveillance efforts. Integration of an internal positive control (IPC)
into any extraction protocol (to assess extraction efficiency and impacts from inhibitors)
needs to be considered as part of a routine pipeline to ensure a robust downstream dataset
(e.g., [158,159]).

Methods for isolating eRNA are broadly similar to those targeting eDNA; however, the
generally acknowledged (though recently challenged) view of increased eRNA susceptibil-
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ity to degradation makes this area more challenging [12,50,160]. eRNA recovery rates have
been reported to range from 70% to as little as 5% of the original concentration [161,162].
This is reportedly due to the rapid degradation that can occur during standard enzymatic
treatment with DNAse (to avoid cross-contamination from carry-over genomic DNA)
and the reverse transcription process (used to generate cDNA), both of which involve
long exposures to the elevated temperatures needed for enzyme activation/de-activation.
Without actively inhibiting or excluding environmental RNAses through using standard
RNA handling precautions, reliable and reproducible capture of eRNA will be difficult
and inconsistent.

In the current era of rapidly evolving molecular and analytical technologies, it is
particularly important to build robust and quality-assured baselines (e.g., in the form of
eDNA/eRNA sample and data archives) for ensuring continuity and intercalibration of
ever-emerging tools [163]. Therefore, it is important to ensure that extracted NAs remain
stable, and there is no or minimal degradation over time. Post-extraction stabilization of
NAs can be achieved through deep-freezing or appropriate buffering. Ideally, curated
cryopreservation archives should be established for long-term sample storage and back-ups.
Moreover, access to such archives would also allow retrospective refinement of biodiversity
information if required for conservation or biosecurity purposes.

7. Outlook

Several factors that can introduce variation and uncertainties when sampling NA
within a marine biosecurity context still need to be adequately addressed [47,163], in order
to ensure that the produced data meet the requirements for precision and accuracy, and are
balanced with logistical and economical constraints. First, the effects of salinity, advective
and deposition processes, peculiar hydrochemistry, and contaminating agents may compro-
mise the capture of NAs. Second, unique workflow requirements are needed for optimized
eRNA-based surveillance, which has recently been advocated as a promising alternative
for biodiversity science [50], and more specifically, for biosecurity surveillance [12,49,69].
Third, there is a need for simplistic, yet robust and sensitive, non-toxic collection pro-
cedures (e.g., minimal sample volumes, enclosed filtration and subsequent elution and
extraction of material, passive sampling options) that do not compromise sample integrity
(e.g., through degradation or contamination) in the hands of non-laboratory personnel. In
a marine biosecurity context, optimized fit-for-purpose and time-efficient technologies for
sampling and purifying NAs from environmental samples would transform our ability
to undertake cost-effective surveillance, aid in early detection of potential threats, and
revolutionize biosecurity management potential (Figure 2). Refinement and validation of
NA-based methods to fit these criteria will enhance molecular surveillance by biosecurity
practitioners and citizen science programs.

In order to address the outstanding challenges of molecular (NA-based) biosecurity
surveillance, we should proactively explore and embrace methodological advances in
environmental genomics and those technologies emerging in adjacent fields (e.g., chemical,
biotechnological, or medical applications). For example, nanofibers and nanoparticles used
for immobilizing and the delivery of DNA [164–166] can be explored for applicability in
eDNA/eRNA sampling devices. Selective binding and stabilization of waterborne NAs
would be beneficial for both snapshot and time-integrated sample collection, with the latter
of particular interest for biosecurity applications, as it would allow for increased detection
probabilities of weak molecular signals from new incursions in highly dynamic coastal envi-
ronments. The concept of time-integrated (or “passive”) sample collection is well-exploited
for cost-effective monitoring of nutrients and contaminants in water [167,168]. However,
such technology has not yet been extended to NA capture. There is a range of common
compounds with promising properties for NA adsorption from ambient water, including
clay minerals, silica, and alumina [91,169–172], as well as less conventional substrates
that show potential for NA binding, e.g., functionalized graphene, gold nanoparticles,
polyamidoamines [165,173,174]. The use of marine invertebrates, such as sponges [175], as
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natural samplers and bioaccumulators, is also an area of promise for ongoing, low-cost,
surveillance, and is worthy of being explored further.
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Recent advances in the field of microfluidics has resulted in the development of several
approaches for separating, sorting, concentrating, and characterizing microparticles [176].
Non-membrane-based approaches are finding application in biomedical, industrial, and
environmental fields, and allow for the separation of particles with particular charac-
teristics [177–179]. These approaches use the motion of suspended particles in fluids to
concentrate and separate them out based on size, shape, and density (inertial microfluidic
devices), allowing for much larger volumes of liquids to be processed, but require informa-
tion about target particle characteristics (e.g., size, shape, density). For most marine pests,
the size/density characteristics of the suspended material harboring NAs remains unclear
and needs to be better characterized. Nevertheless, these new technologies offer the po-
tential for greatly increasing water sample volumes and NA capture, thereby significantly
increasing our chances of detecting low-abundance species.

We also see value in developing sequence-specific hybridization of NAs, based on
substrates enriched with custom synthesized biomolecules (e.g., peptide nucleic acids) to
bind with high specificity to NA strands originating from a target species (e.g., NIS or
pathogen). Peptide nucleic acids are synthetic polypeptide backbones with nucleic acid
bases attached as side chains, that can form Watson–Crick pairings with complementary
DNA. The artificial, synthetic, polyamide backbone increases resistance to degradation by
nuclease and protease enzymes in the environment [180]. Protein−nucleic acid interactions
are an important field of modern molecular biology, and have been extensively explored for
developing DNA machineries and biomedical applications [181,182]. However, there are
significant hurdles to overcome to identify materials suitable for highly dynamic biological
and physico-chemical aquatic environments. There is a requirement for high specificity for
target organism(s), and resilience to changes in environmental conditions and non-organic
contamination, as well as the potential to recover genetic material for downstream analyses
(NA extraction and quantification).

Targeted eDNA capture can be achieved via DNA enrichment techniques, using
methods recently developed to remove non-target DNA from a DNA mixture in order to
increase the probability of detecting the target [183]. DNA complementary to the targets
is synthesized with biotin attached, and then bound to streptavidin-labelled magnetic
beads that can be held by magnets. The DNA capture beads are commonly known as
“baits”. Baits were recently used to isolate low concentrations of ancient Pleistocene human
DNA from soil samples collected from cave floors [184], and DNA target enrichment has
been used to increase the DNA barcoding regions for the metagenomic characterization of
aquatic invertebrate communities and remove non-target organisms, such as bacteria [183].
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The performance of these approaches for environmental applications, however, should
be thoroughly examined before they can be considered for biosecurity surveillance. For
example, it is important to assess their specificity for different fractions of environmental
NAs (versus binding non-target compounds); sensitivity or ability to absorb NAs at low
concentrations; cumulative capacity—that is, the ability to accumulate NAs over a sustained
period of time; saturation and magnitude of NA signal/integrity loss over time; and
compatibility with common NA isolation procedures and analytical workflows. It is also
crucial to carefully evaluate the cost-efficiency of these techniques, as it might determine
the attractiveness of their uptake for routine biosecurity applications.

As biosecurity depends on finding rare NA signals, and those from biologically viable
taxa, there is a strong need for more improvements in the eRNA sampling pipeline. To
that end, challenges unique to eRNA need to be taken into consideration throughout the
myriad steps that cross-cut aspects of collection, concentration, and preservation. The
increase in time and financial resources need to be weighed against the benefits of the
information that can be gleaned from eRNA. Furthermore, it would be advantageous for
eRNA-specific characteristics to be tested and included in the design of deployable systems
that are easy to use (few manipulations) by all skill levels, yet remain reliable and not
conducive to contamination or impacts from environmental variables. With increasing
efficiency in laboratory processing, eRNA detection limits can improve and are promising
to deliver sensitive information about the living fraction of the sampled biomass.

Recent technological advances now mean that the gap between sample collection and
laboratory-based diagnostics is narrowing, with many assays now looking to circumvent
or simplify the extraction step. Such advances are often driven by the development of new
in situ diagnostic approaches that offer rapid, user-friendly, sensitive, and cost-effective
field-ready tools (point-of-care or point-of-need tests). Among the most promising ap-
proaches are loop-mediated isothermal amplification (LAMP [185]) and recombinase poly-
merase amplification (RPA), both of which involve the rapid amplification of DNA/RNA
using an isothermal amplification reaction with similar sensitivities and specificities to
laboratory-based PCR assays [186,187], as well as the CRISPR/Cas13-based SHERLOCK
system [188,189]. These approaches do not require thermal cycling and operate at much
lower temperatures, with the end-point analysis of amplified products in the field possible
using lateral flow (LF) strips, similar to those used in pregnancy test kits [190]. These assays
have already been developed and applied to a number of pests, diseases, and ecological
monitoring [187,188,191,192], but have not yet been widely applied in the marine biosecu-
rity context. The assays are particularly useful for rapid field-based diagnostics, since once
established, the tests themselves require minimal technical skills and laboratory infras-
tructure. However, extraction of high-quality nucleic acids is still needed, and represents
a bottleneck in the widespread adoption of RPA and LAMP for point-of-care tests [193].
Several new, simple, and rapid extraction methods have been developed [194–196], but
have not been widely tested for environmental applications.

The emergence of simple, low-cost biosecurity tools also opens up the prospect of
engaging the wider community and citizen science groups to undertake monitoring and
surveillance [9]. A time when NA-based surveillance data might be collected by school
children, community groups, and local agencies directly using devices that produce geospa-
tially tagged genotype or sequence data in the field is becoming a reality. Currently, devices
such as the Nanopore Flongle [197,198] provide such capability, and this will only become
more portable and integrated with our mobile devices in the future. As data acquisition
becomes more routine, the emergent challenges will fall to issues of data veracity, stor-
age, and integrity, all towards building databases that will serve biosurveillance interests
in the future. As has happened with the acquisition and storage of image data, cloud-
based repositories for these emerging perspectives on our natural world, akin to tools
like iNaturalist (https://www.inaturalist.org/; accessed on 16 April 2021) or Find-A-Pest
(http://www.findapest.nz/; accessed on 16 April 2021), will be vital.

https://www.inaturalist.org/
http://www.findapest.nz/
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8. Concluding Remarks

There is much promise emerging around the targeting and capture of NAs in biose-
curity monitoring. Technological advances make the capture, extraction, and detection of
even early incursions increasingly realistic at time scales where management actions can
make a difference to the establishment and spread of NIS. However, standardization and
QA/QC protocols for eDNA/eRNA applications are crucial for the biosecurity sector. Data
on species presence/absence, which is not properly caveated with an understanding of the
limitations of the technology, particularly around its accuracy and precision, may trigger
unwarranted management responses [35], cause widespread reluctance of the uptake of the
technology by stakeholders, or contribute to the ongoing propagation of unwanted pests.

The nature of the type of data generated is inherently complicated, which means the
research community must work closely with biosecurity surveillance managers to ensure
protocol steps are feasible, and that data-associated caveats are clearly understood and
communicated. This robust approach is particularly important in New Zealand, where
the current biosecurity strategy calls for building a team of 5 million (New Zealand’s
current population) to aid in protecting the country from the spread of unwanted organ-
isms (https://www.mpi.govt.nz/protection-and-response/biosecurity/biosecurity-2025
/biosecurity-2025/; accessed on 16 April 2021). In support of these efforts, we envision
a (semi)autonomous pipeline that adheres to and expands on minimum reporting guide-
lines and sampling conduct recommendations, as outlined in Goldberg et al. [129], while
overcoming the variability and compromises inherent to environments with a scarcity of
clean laboratory resources and experienced personnel. Coupled with systematic efforts
and flexibility, a transparent level of standardization between researchers and end-users
can be achieved that meets the over-arching goal of protecting human health, economic
interests, and environmental resources within the biosecurity sector.
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