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Abstract: Proper performance of water distribution networks (WDNs) plays a vital role in customer
satisfaction. The aim of this study is to conduct a sensitivity analysis to evaluate the behavior of
WDNs analyzed by a pressure-driven analysis (PDA) approach and the classification technique by
using an appropriate artificial neural network, namely the Group Method of Data Handling (GMDH).
For this purpose, this study is divided into four distinct steps. In the first and second steps, a real
network has been analyzed by using a Pressure-Driven Analysis approach (PDA) to obtain the
pressure, and α coefficient, the percentage of supplied flow. The analysis has been performed by
using three different values of the design peak coefficient k*. In the third step, the Group Method of
Data Handling (GMDH) has been applied and several binary models have been constructed. The
analysis has been carried out by using input data, including the real topology of the network and
the base demand necessary to satisfy requests of users in average conditions and by assuming that
the demand in each single one-hour time step depends on a peak coefficient. Finally, the results
obtained from the PDA hydraulic analysis and those obtained by using them in the GMDH algorithm
have been compared and sensitivity analysis has been carried out. The innovation of the study is to
demonstrate that the input parameters adopted in the design are correct. The analysis confirms that
the GMDH algorithm gives proper results for this case study and the results are stable also when
the value of each k*, characteristic of a different time hour step, varies in an admissible technical
range. It was confirmed that the results obtained by using the PDA approach, analyzed by using a
GMDH-type neural network, can provide higher performance sufficiency in the evaluation of WDNs.

Keywords: water distribution networks; PDA; sensitivity analysis; GMDH algorithm; artificial neural
network; binary model

1. Introduction

Concern regarding urban water distribution networks has led to increasing awareness
and demand for evaluating WDNs to increase their performance and customer satis-
faction [1]. The variation in demand can differ hourly, daily, weekly, seasonally, and
annually [2,3]. Therefore, assessing water network systems and providing appropriate
solutions to increase the level and efficiency of public supply services has been one of the
most significant challenges in water engineering over many years. Reviewing previous
studies shows that urban water demand is more complex than irrigation, commercial,
industrial, and energy demands [4]. Raúl Baños et al. investigated the uncertainty of de-
mand and the influence on the models in terms of resilience Indexes for Water Distribution
Networks [5]. The capability of the system to provide the requested demand to all users
has been investigated by Farmani et al., who also included demand uncertainty in their
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approach [6]. The analysis of a network in different conditions has been used in the ap-
proach to calibrate hydraulics in both demand-driven analysis (DDA) and pressure-driven
analysis (PDA)-based models. Tabesh et al. use a genetic algorithm, analyzing different
scenarios of lowest, normal, maximum, and fire consumption [7].

Hence, many studies have been conducted and a wide variety of assessment methods
in this area have been introduced. Muranho et al. evaluated the technical performance of
water distribution networks using EPANET software. They explored new performance
assessment tools. Based on their outcomes, they made several recommendations for
evaluation WDNs using new analysis tools [8].

Artificial intelligence approaches have been used successfully for modeling and in-
creasing WDN performance in recent years. Many studies show that these approaches
are reliable system modeling techniques for the evaluation of WDNs [9–16]. The data for
these approaches could be both measurement data and the results obtained by hydraulic
models, or the analysis of networks in real conditions. Fiorini et al. investigated almost 100
different scenarios obtained by a PDA analysis of a real urban water distribution network
using the artificial intelligence approaches. Their study demonstrates the capability of
the GMDH model to describe the network behavior by assuming input parameters used
for the design [17]. Oyebode and Ighravwe used several artificial intelligence techniques
to propose the best-predicted model of urban water consumption. The results obtained
demonstrated the effectiveness of evolutionary computation techniques [18]. Candelieri
et al. evaluated urban water distribution networks using Bayesian optimization to learn
optimal control schemes. Their results showed that the proposed Bayesian optimization
framework provided more accurate answers compared with other frameworks [19].

By reviewing these previous studies, the importance of improving the level of per-
formance of water distribution networks to increase customer satisfaction is clear. Fur-
thermore, it is important to evaluate model stability when input parameters change, as by
changing the value of one input parameter the effective variation of the model results in
terms of output must be evaluated. In this study, the factor perturbation method of Veltri
et al. and Mc Cuen [20–22] is incorporated to estimate the model error due to the variability
of input parameters.

This study focuses on the real network application of the PDA approach to perform
the network analysis and the GMDH algorithm to classify the network results.

As in a real network, the input parameters adopted in the design could be a little
different, it is possible that if their values change, a big variation in the Epanet output and
the GMDH model results could occur.

A practical procedure consisted of four distinct steps of hydraulic analysis using the
PDA approach, peak coefficient modification, GMDH application, and sensitivity analysis
is presented. The analysis is carried out on the Spezzano Albanese network, a town in
Calabria, a region in Southern Italy. The proposed methodology is applied to demonstrate
its high capability in the prediction and evaluation of water distribution networks with
the two consecutive analyses including the first by PDA approach and then by the GMDH
algorithm that is the novelty of this study.

2. Methodology

Despite many studies having been conducted in evaluating water distribution net-
works, more studies are required nowadays according to the importance of the issue and
the existence of unknown dynamic factors in WDNs [23–27]. For this purpose, a numeri-
cal analysis with the EPANET software and GMDH algorithm as one of the appropriate
artificial neural networks has been employed in this study. The flowchart of the study is
presented in Figure 1.
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Figure 1. Flowchart of the study.

An analysis in an extended period has been carried out on the following: the output
for each time step has been obtained multiplying the base demand for the corresponding
peak coefficient k*. In fact, in a real network, these values are not fixed, and they could
change with the user requests. k* values can be obtained by monitoring outflow discharge
from each tank, however, there is always a variability of the results for different seasons or
depending on climate conditions. Thus, the literature values are assumed for the design.
k* values assumed in the analysis are those of a typical pattern proposed for a similar
town. Low values characterize night flow and high values, those between 12:00 p.m. and
2:00 p.m. correspond to peak conditions. k* = 1 represents the average condition.

According to Figure 1, the research is based on four steps.
In the first one, the hydraulic parameters of the water distribution network of Spezzano

Albanese in Southern Italy including the base demand, pressure, and α (the percentage
of real supplied flow) are calculated for three different values of peak coefficient, k*i. To
obtain these values, an iterative procedure by using software Epanet has been adopted. This
approach allows defining which nodes work in PDA conditions for each k* value assumed.

The index ‘*’ defines the adopted design values. The i index indicates the assumed
values for each analyzed condition of the extended period simulation and it is i = 0.3, 1.0,
and 1.8, respectively, for the night (k*0.3 = 0.3), the average conditions (k*1.0 = 1.0), and the
peak conditions (k*1.8 = 1.8). In the second step, for each value of k*i an analysis with a
PDA approach has been carried out by varying k*i in a defined range.

The new values k*j,i are obtained calculating them as follows in Equation (1):

k∗j,i = j× k∗i (1)

The j index is to take into account the variability of k*i from the design value adopted
and it is considered as j = 80%, 85%, 90%, 95%, 100%, 105%, 110%, 115%, and 120%. In this
case, the procedure furnishes the number of nodes working in PDA conditions: in these
nodes, the user request is partially satisfied.
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In the third step, by using all datasets, binary models have been developed to find
the best model for evaluating the case study. For this purpose, by changing the control
parameters of the algorithm, many models are constructed and developed for finding the
best model with maximum accuracy. Finally, in the fourth step, the results are compared
and assessed, and sensitivity analysis has been completed. In this step, a sensitivity analysis
based on the sensitivity function for train, test, and total is carried out by varying k*0.3 = 0.3,
k*1.0 = 1.0, and k*1.8 = 1.8.

As the results change depending on the input values, the aim and innovation of the
paper are to demonstrate that the output of the model does not change significantly. The
model is stable, and the k* values adopted in the design of the network are correct for man-
agement purposes. More details of each step will be presented in the following sections.

2.1. Pressure Driven Analysis (PDA)

The PDA analysis for a water network is necessary when the head at each node is
inadequate to furnish the requested nodal demand QBD.

The real delivered demand Qreal for each user depends on the real head value cal-
culated as the totality of elevation (z) and piezometric height (p/γ), i.e., the ratio among
pressure (p) and a specific weight (γ). Here Hs, the service head, is defined as the sum of
ground level and p/γmin based on Equation (2):

Hs = z + p/γmin = z + Hb + Pms + Pp + PD (2)

where:

• Z is the elevation of ground level;
• p/γmin is the lowest piezometric head essential to deliver the demand to the users; it

depends on the height of building Hb;
• Hb is the height of each supplied building;
• Pms represents the minimum pressure essential in each point of the building, usually 5 m;
• Pp indicates the head losses along the riser column;
• PD represents the head losses between a network node and the base of each building.

Furthermore, Hmin is the head necessary to serve users at a ground level based on
Equation (3):

Hmin = z + Pms, (3)

If the head is higher than the service head Hs, Qreal is equal to QBD. If the head is
lower than Hmin there is no service and Qreal = 0. In the other cases, Qreal can be calculated
by using Equation (4)

Qreal = α QBD, (4)

The value of α is calculated as the ratio among Qreal and QBD: it represents the
percentage of supplied flow and it can be obtained using the relations indicated below [28]
and according to Figure 2:

α = 0 if H ≤ Hmin (5)

α =

(
Hs−H

Hs−Hmin

) 1
β

if Hmin< H < Hs (6)

α = 1 if H ≥ Hs (7)

where β can be calculated using a calibration model and is related to head loss along pipes.
The values of this parameter are between 1.5 and 2 and generally, it is assumed as being
equal to 2.



Water 2021, 13, 1116 5 of 18

Water 2021, 13, x FOR PEER REVIEW 5 of 18 
 

 

where β can be calculated using a calibration model and is related to head loss along pipes. 

The values of this parameter are between 1.5 and 2 and generally, it is assumed as being 

equal to 2. 

 

Figure 2. The relation among supplied flow and head at each node [28]. 

2.2. Sensitivity Analysis 

The use of sensitivity analysis allows evaluation of the effect on the calculated results 

when one of the input parameters changes. The change can reflect a different value esti-

mate either due to an error or a variability under the particular conditions. By changing 

the value of one input parameter, the effective variation of the model results in terms of 

output can be evaluated. 

The analysis objective evaluates how a model output, depending on n parameters, 

alters when one of these parameters changes. 

There are two approaches to evaluate how the parameter variation influences the 

overall result: direct differentiation and perturbation by factor method. 

By assuming a function F* depending on n parameters (x*1, …, x*n), i.e., F* = f(x*1, …, 

x*n), the variation of the function, depending on xj parameter, can be calculated by direct 

differentiation as shown in Equation (8): 

*

xm

m

F
S =

x




, (8) 

By using the factor perturbation method, the input dataset used to obtain model re-

sults can be indicated as (x*1, … x*m, …, x*n) and F* = f(x*1, … x*m, …, x*n) is the value of 

calculated function value obtained by the model. When a single parameter changes a new 

value of F = f(x*1, …, x*m + xm, …, x*n) can be calculated: the parameter variation can be 

expressed as xm/x*m = (xm − x*m)/x*m.  

The function xjS , expressing the variation of F* when x*m changes, can be calculated 

through the finite differences method according to Equation (9): 

* * * * * * * *

1 m m n 1 m n
xm

m m

F(x ,....,x +Δx ,....x ) F (x ,....,x ,....x )ΔF
S = =

Δx Δx

−
, (9) 

The value of the sensitivity function is S = (F − F*)/F*. Low S values indicate that the 

model output changes slightly when an input parameter changes: the solution is stable, 

and it is not sensitive to input data variation. 

S can be represented as a function of (xj − xj*)/xj* which is the variation of the parameter 

xj* as a percentage of the estimate value xj* adopted to evaluate F*. 

Figure 2. The relation among supplied flow and head at each node [28].

2.2. Sensitivity Analysis

The use of sensitivity analysis allows evaluation of the effect on the calculated results
when one of the input parameters changes. The change can reflect a different value estimate
either due to an error or a variability under the particular conditions. By changing the
value of one input parameter, the effective variation of the model results in terms of output
can be evaluated.

The analysis objective evaluates how a model output, depending on n parameters,
alters when one of these parameters changes.

There are two approaches to evaluate how the parameter variation influences the
overall result: direct differentiation and perturbation by factor method.

By assuming a function F* depending on n parameters (x*1, . . . , x*n), i.e., F* = f(x*1,
. . . , x*n), the variation of the function, depending on xj parameter, can be calculated by
direct differentiation as shown in Equation (8):

Sxm =
∂F∗

∂xm
, (8)

By using the factor perturbation method, the input dataset used to obtain model
results can be indicated as (x*1, . . . x*m, . . . , x*n) and F* = f(x*1, . . . x*m, . . . , x*n) is the
value of calculated function value obtained by the model. When a single parameter changes
a new value of F = f(x*1, . . . , x*m + ∆xm, . . . , x*n) can be calculated: the parameter variation
can be expressed as ∆xm/x*m = (xm − x*m)/x*m.

The function Sxj, expressing the variation of F* when x*m changes, can be calculated
through the finite differences method according to Equation (9):

Sxm =
∆F

∆xm
=

F(x ∗1 , . . . , x∗m+∆x∗m, . . . x∗n
)
−F∗(x ∗1 , . . . , x∗m, . . . x∗n

)
∆xm

, (9)

The value of the sensitivity function is S = (F − F*)/F*. Low S values indicate that the
model output changes slightly when an input parameter changes: the solution is stable,
and it is not sensitive to input data variation.

S can be represented as a function of (xj − xj*)/xj* which is the variation of the
parameter xj* as a percentage of the estimate value xj* adopted to evaluate F*.

2.3. Group Method of Data Handling Algorithm

In recent decades, artificial intelligence has been developed to overcome both complex
and uncertain problems [29–35]. In recent decades, extensive studies have been conducted



Water 2021, 13, 1116 6 of 18

on the application of artificial intelligence in various industry sectors and applied sci-
ences [36–44]. The Group Method of Data Handling (GMDH) type of neural network is
one of the artificial intelligence approaches that are appropriate for dealing with complex
systems and was first proposed by Ivakhnenko [45–47]. A GMDH-type neural network is
one of the machine learning techniques that can be very useful for mathematical modeling,
including classification and mapping between input and output vectors. This technique
is a linear regression that not only uses the development of modeling but also applies a
natural selection such as that in evolutionary algorithms that is unlike other regression
methods. Furthermore, a GMDH-type neural network is a type of self-organizing network.
Polynomial Neural Network, or PNN, is one of the basic algorithms used to build GMDH
models [48,49]. The input data enter the first layer of GMDH and the output of this layer
is considered as input data for the second layer and this process continues. If the results
of layer (n + 1) are better than the results of layer (n), the algorithm has reached conver-
gence and the optimization process stops. Equation (10) shows a relationship between the

approximate function of
∧
f with output

∧
y and output y with the least possible error [50,51].

∧
y =

∧
f(xi1, xi2, xi3, . . . . . . . . . xim)

i = (1, 2, 3, . . . . . . . . . , n)
, (10)

The general formula of the GMDH basic neural network is that of Equation (11) [52].

y = a +
m

∑
i=1

bi xi +
m

∑
i=1

m

∑
j=1

cij xi xj+
m

∑
i=1

m

∑
j=1

m

∑
k=1

dijk xi xj xk+
m

∑
i=1

m

∑
j=1

m

∑
k=1

m

∑
l=1

eijkl xi xj xk xl, . . . . . . . . ., (11)

Equation (11) works based on input and output data, hence y represents output, and
m is considered the number of data for values of x1, x2, x3, . . . , xm. Generally, the second-
order and quadratic form of this polynomial is considered based on Equation (12) [53].

∧
y = G(x i, xj) =a0 + a1 xi + a2 xj + a3 x2

i + a4 x2
j + a5 xi xj, (12)

where ai are the unknown coefficients and are calculated based on regression techniques.
It means that, for determining the total error (E), the difference between the actual output

(y) and predicted output
(∧

y
)

should be minimized for each pair of input variables xi and
xj according to Equation (13) [53].

E =
∑M

i=1 (y i −Gi (x i, xj))
2

M
→ min, (13)

3. Case Study

The methodology has been used on a real case related to the water distribution
network of Spezzano Albanese (CS, Italy), a little town in the northern zone of Calabria.
The network, involving 88 pipes, 49 nodes, and 1 tank, is shown in Figure 3. The total base
demand circulating Qm in the network in steady-state conditions is 29.00 L/s for about
8500 users, according to the real data acquired. The value of Hmin varies from 300 to 353 m
and Hs varies from about 315 to 368 m. In the analysis, the value of p/γmin = 20 m has
been assumed for each node. These input data are related to winter conditions because
during the summer Q can vary significantly with the seasonal fluctuant.
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Figure 3. The water network of Spezzano Albanese (CS, Italy).

The water distribution system includes a total length of 13,500 m and the pipe diame-
ters differ in the range of 60–200 mm. The tank volume is 200 m3.

In an analysis of a network in an extended period, k*i is the peak coefficient, which
is the ratio between the real demand Qreal in each single one-hour time step and the base
demand Qm.

The chosen values of k*i coefficient adopted in the analysis are shown in Table 1 and
they are those of a typical pattern (Figure 4) proposed for a similar town: k*0.3 = 0.3 de-
scribes night condition, k*1.0 = 1.0 is characteristic of the average conditions and k*1.8 = 1.8
is the peak condition.

Table 1. k*i values and corresponding Qreal.

Scenario Qreal (L/s)

k*0.3 = 0.3 9.7
k*1.0 = 1.0 29.0
k*1.8 = 1.8 52.2
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Applying a GMDH approach, three functions, F*i-Train, F*i-Test, and F*i-Total can be
calculated and their values for each value of k*i can be obtained.

To investigate the sensitivity of the model, nine simulations using the k*j,i value have
been conducted for each scenario. Values of k*j,i are shown in Table 2:

Table 2. k*j,i values assumed in each scenario.

j (%) k*j,i = j × k*i k*j,0.30 k*j,1.0 k*j,1.8

80% k*0.8,i 0.240 0.800 1.440
85% k*0.85,i 0.255 0.850 1.530
90% k*0.9,i 0.270 0.900 1.620
95% k*0.95,i 0.285 0.950 1.710

100% k*1,i 0.300 1.000 1.800
105% k*1.05,i 0.315 1.050 1.890
110% k*1.1,i 0.330 1.100 1.980
115% k*1.15,i 0.345 1.150 2.070
120% k*1.2,i 0.360 1.200 2.160

Hence, 27 simulations, nine for each k*j,i value were conducted, and then the hy-
draulic parameters in the network including the base demand, the pressure, and alpha
were measured.

By analyzing these data using the GMDH algorithm, the aim is to obtain a good
performance of the model. By changing k*i values according to sensitivity analysis, the
aim of the study is to evaluate if corresponding calculated GMDH results are good and
stable and very similar to the ones obtained with the design adopted k*i values.

4. Modelling by GMDH

In the first step of the study, the calculated hydraulic parameters after evaluating
WDNs by a PDA approach were modeled by the GMDH algorithm. To evaluate and ensure
modeling performance, the results of each model were checked with the confusion matrix,
which is one of the best performance indexes to evaluate a binary classification. The basic
form of a confusion matrix and its relationships (Accuracy and Error) are shown in Figure 5
and Equations (14) and (15) [53,54].

Accuracy =
TP + TN

TP + FP + TN + FN
, (14)

Error =
FP + FN

TP + FP + TN + FN
= 1−Accuracy, (15)
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90% k*0.9, i 0.270 0.900 1.620 

95% k*0.95, i 0.285 0.950 1.710 

100% k*1, i 0.300 1.000 1.800 

105% k*1.05, i 0.315 1.050 1.890 

110% k*1.1, i 0.330 1.100 1.980 

115% k*1.15, i 0.345 1.150 2.070 

120% k*1.2, i 0.360 1.200 2.160 

Hence, 27 simulations, nine for each k*j,i value were conducted, and then the hydrau-

lic parameters in the network including the base demand, the pressure, and alpha were 

measured. 

By analyzing these data using the GMDH algorithm, the aim is to obtain a good per-

formance of the model. By changing k*i values according to sensitivity analysis, the aim 

of the study is to evaluate if corresponding calculated GMDH results are good and stable 

and very similar to the ones obtained with the design adopted k*i values. 

4. Modelling by GMDH 

In the first step of the study, the calculated hydraulic parameters after evaluating 

WDNs by a PDA approach were modeled by the GMDH algorithm. To evaluate and en-

sure modeling performance, the results of each model were checked with the confusion 

matrix, which is one of the best performance indexes to evaluate a binary classification. 

The basic form of a confusion matrix and its relationships (Accuracy and Error) are shown 

in Figure 5 and Equations (14) and (15) [53,54]. 
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In each modeling, 75% of the dataset (37 data) is considered as a training dataset and
the remaining 25% (12 data) is used as the testing dataset [55–58]. In addition, to obtain the
best model, the control parameters of the GMDH must be determined in the best possible
way. The Selection Pressure (SP), Maximum Number of Layers (MNL), and Maximum
Number of Neurons in a Layer (MNNL) are the control parameters that are determined
by suggestions of experts and trial and error methods. The dimensionless parameter SP
was considered equal to 0.6 as suggested by some studies and it has a significant effect
on the sensitivity of modeling error [59,60]. It is worth mentioning that the two classes
(labels) are assigned and considered for the dataset (all nodes), hence labels “0” and “1” are
considered for nodes with H < Hs and H≥Hs, respectively. In each scenario, several binary
classification models are developed and the best models for each scenario are selected.
Figures 6–8 indicate the results for k*0.30 = 0.3, k*1.0 = 1, and k*1.8 = 1.8, respectively. It is
worth mentioning that the accuracy of each class for output and target is shown in the
extra columns and rows in the confusion matrices.

By modeling different trial and error techniques, the best structure of the binary
classification model with k*0.3 = 0.3 was determined when the SP, MNL, and MNNL are
equal to 0.6, 15, and 5, respectively. According to the results of binary classification for the
first scenario with k*0.3 = 0.3, this developed model was able to identify and determine a
very suitable mapping between input and output data. The model structure assumes the
MNL and MNNL equal to 5 and 15, correspondingly. The developed model could correctly
predict and classify 18 nodes H < Hs with the label “0”. Additionally, 28 and 3 nodes could
be predicted and classified correctly and wrongly, respectively. Finally, this model could
predict and classify the total dataset with an accuracy equal to 93.9%.

The best structure of the binary classification model with k*1.0 = 1.0 was determined as
the SP, MNL, and MNNL equal to 0.6, 15, and 10, respectively. Compared to the structure
of the best model with k*1.0 = 1.0, there is no significant change and only the value of
MNNL has changed. The best-developed binary classification model could predict with
100% accuracy for training data and 83.3% accuracy for testing data. Consequently, the
total accuracy of this model was 95.9% that 47 nodes were correctly predicted and only
2 nodes were wrongly predicted.
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In the last scenario with k*1.8 = 1.8 after many modelings, the results showed that the
structure of the best model was similar to the structure of the best model for k*1.8 = 1.8.
The accuracies of training and testing data were 91.9% and 91.7%, respectively. This model
could predict 22 nodes (H < Hs) with the label “0” as correct with 100% accuracy in all data.
Additionally, from 27 nodes (H ≥ Hs) with the label “1”, 23 nodes were correctly predicted,
and the rest was predicted incorrectly. Therefore, this model was able to predict the total
amount of data with 91.8% accuracy. Finally, it was found that the binary classification
approach can provide suitable performance capacity in predicting the performance of
water distribution networks for k*0.3 = 0.3, k*1.0 = 1.0, and k*1.8 = 1.8.

5. Results and Discussion

In the first step, the behavior of the water distribution network of Spezzano Al-
banese in Southern Italy was analyzed with the PDA approach acquiring data to perform
the GMDH model. The developed models were constructed for three scenarios (k*i).
Tables 3 and 4 show the three structures of best classification models for the three scenarios
and a comparison of their results, respectively. It is necessary to mention that in this section
to conduct a sensitivity analysis, the F* is used to present the results of accuracy of Train,
Test, and Total for modeling with k*0.3 = 0.3, k*1.0 = 1.0, and k*1.8 = 1.8. Furthermore, the F
is considered for Train, Test, and Total to show the results of accuracy for modeling with
the different values of k*j,i.

Table 3. Comparison of the three structures of best classification models for three scenarios.

No. Scenario k*i Selection Pressure (SP) Maximum Number of
Layers (MNL)

Maximum Number of Neurons
in a Layer (MNNL)

1 0.3 0.6 15 5
2 1 0.6 15 10
3 1.8 0.6 15 10

Table 4. Values of F*i,Train, F*i,Test and F*i,Total assuming k*0.3 = 0.3, k*1.0 = 1.0 and k*1.8 = 1.8.

No. Scenario k*i F*i-Train F*i-Test F*i-Total

1 k*0.3 = 0.3 94.6 91.7 93.9
2 k*1.0 = 1.0 100 83.3 95.9
3 k*1.8 = 1.8 91.9 91.7 91.8

After determining the structures of best classification models for the three scenarios
with k*0.3 = 0.3, k*1.0 = 1.0, and k*1.8 = 1.8, the best model for each k*i is modeled varying
this value: the change in the percentage of ki* is between 80% and 120% with units of 5%.

Assuming the different values of k*j,i, F*j,i-Train, F*j,i-Test, F*j,i-Total were calculated.
Furthermore, the values of sensitivity functions (F*j,i − Fi*)/Fi* for each of them (Train,
Test, Total) were also calculated.

5.1. Scenario k*0.3

The values of F*j,0.3-Train, F*j,0.3-Test, F*j,0.3-Total, and sensitivity function (F*j,0.3 − F*0.3)/F*0.3
for Train, Test and Total obtained varying k*0.30 = 0.30 in the range are shown in Table 5
and in terms of sensitivity plot in the Figure 9a–f.
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Table 5. Values of F*j,0.30-Train, F*j,0.30-Test, and F*j,0.30-Total by varying k*0.30 in the fixed range.

k*j,0.3 % F*j,0.3-Train
F*

j,0.3-Train−F*
0.3-Train

F*
0.3-Train

F*j,0.3-Test
F*

j,0.3-Test−F*
0.3-Test

F*
0.3-Test

F *j,0.3-Total
F*

j,0.3-Total−F*
0.3-Total

F*
0.3-Total

0.24 80 97.3 0.03 83.3 −0.09 93.9 0.00
0.255 85 94.6 0.00 91.7 0.00 93.9 0.00
0.27 90 97.3 0.03 83.3 −0.09 93.9 0.00
0.285 95 100 0.06 91.7 0.00 98.0 0.04

0.3 100 94.6 0.00 91.7 0.00 93.9 0.00
0.315 105 94.6 0.00 91.7 0.00 93.9 0.00
0.33 110 94.6 0.00 83.3 −0.09 91.8 −0.02
0.345 115 91.9 −0.03 83.3 −0.09 89.8 −0.04
0.36 120 94.6 0.00 91.7 0.00 93.9 0.00

Water 2021, 13, x FOR PEER REVIEW 12 of 18 
 

 

Table 5. Values of F*j,0.30-Train, F*j,0.30-Test, and F*j,0.30-Total by varying k*0.30 in the fixed range. 

k*j,0.3 % F* j,0.3 − Train 
* *

j,0.3-Train 0.3  -Train

*

0.3-Train

F F

F

−  F* j,0.3 − Test 
* *

j,0.3-Test 0.3  -Test

*

0.3-Test

F F

F

−  F *j,0.3 − Total 
* *

j,0.3-Total 0.3  -Total

*

0.3-Total

F F

F

−  

0.24 80 97.3 0.03 83.3 −0.09 93.9 0.00 

0.255 85 94.6 0.00 91.7 0.00 93.9 0.00 

0.27 90 97.3 0.03 83.3 −0.09 93.9 0.00 

0.285 95 100 0.06 91.7 0.00 98.0 0.04 

0.3 100 94.6 0.00 91.7 0.00 93.9 0.00 

0.315 105 94.6 0.00 91.7 0.00 93.9 0.00 

0.33 110 94.6 0.00 83.3 −0.09 91.8 −0.02 

0.345 115 91.9 −0.03 83.3 −0.09 89.8 −0.04 

0.36 120 94.6 0.00 91.7 0.00 93.9 0.00 

  

(a): Value of F*j,0.3-Train depending on k*j,0.3 (b): Sensitivity Function for Train Classification – scenario k*0.3 

  

(c): Value of F*j,0.3-Test depending on k*j,0.3 (d): Sensitivity Function for Test Classification – scenario k*0.3 

  

(e): Value of F*j,0.3 − Total depending on k*j,0.3 (f): Sensitivity Function for Total Classification – scenario k*0.3 

Figure 9. Values of F*j,0.30 − Train, F*j,0.30 − Test, and F* j,0.30 − Total and sensitivity function for the scenario with k*0.30. 

Figure 9. Values of F*j,0.30-Train, F*j,0.30-Test, and F*j,0.30-Total and sensitivity function for the scenario with k*0.30.



Water 2021, 13, 1116 13 of 18

The values of each F*j,0.3 (Train, Test, Total) are good: all values are higher than 91.9%
for Train, 83.3% for Test, and 89.8% for Total. This confirms the quality of the results and
the model accuracy. The sensitivity function assumes values that confirm the stability of
the model results because the sensitivity function is always lower than 10%. If the input
value of k*i is slightly different, due to an error or variability in a real case, the models
furnish very similar results.

5.2. Scenario k*1.0

The values of F*j,1.0-Train, F*j,1.0-Test, F*j,1.0-Total and sensitivity function (F*j,1.0 − F*1.0)/F*1.0
for Train, Test and Total obtained varying k*1.0 = 1.0 in the range are shown in Table 6 and
in terms of sensitivity plot in Figure 10a–f.

Table 6. Value of F*j,1.0-Train, F*j,1.0−Test, and F*j,1.0-Total by varying k*1.0 in the fixed range.

k*j,1.0 % F*j,1.0-Train
F*

j,1.0-Train−F*
1.0-Train

F*
1.0-Train

F*j,1.0-Test
F*

j,1.0-Test−F*
1.0-Test

F*
1.0-Test

F*j,1.0-Total
F*

j,1.0-Total−F*
1.0-Total

F*
1.0-Total

0.8 80 94.6 −0.05 91.7 0.10 93.9 −0.02
0.85 85 100 0.00 91.7 0.10 98 0.02
0.9 90 97.3 −0.03 91.7 0.10 95.9 0.00

0.95 95 100 0.00 91.7 0.10 98 0.02
1 100 100 0.00 83.3 0.00 95.9 0.00

1.05 105 97.3 −0.03 91.7 0.10 95.9 0.00
1.1 110 94.6 −0.05 83.3 0.00 91.8 −0.04

1.15 115 97.3 −0.03 91.7 0.10 95.9 0.00
1.2 120 97.3 −0.03 83.3 0.00 93.9 −0.02
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By assuming k*1.0 the values of each F*j,1.0 (Train, Test, Total) are also good. The
F*j,1.0 values are higher than 94.6% for Train, 83.3% for Test, and 91.8% for Total. This is
in agreement with the k*0.3 case and confirms the goodness of both the results and the
model accuracy.

The sensitivity function assumes values that confirm the stability of the model results
because the sensitivity function is always lower than 10% and, in the case of Train and
Total, are below 5%.

5.3. Scenario k*1.8

The values of F*j,1.8-Train, F*j,1.8-Test, F*j,1.8-Total and sensitivity function (F*j,1.8 − F*1.8)/F*1.8
for Train, Test and Total obtained varying k*1.8 = 1.8 in the range are shown in Table 7 and
in terms of sensitivity plot in Figure 11a–f.

Table 7. Values of F*j,−0-Train, F*j,1.80-Test, and F*j,1.80-Total by varying k*1.80 in the fixed range.

k*j,1.8 % F*j,1.8-Train
F*

j,1.8-Train−F*
1.8-Train

F*
1.8-Train

F*j,1.8-Test
F*

j,1.8-Test−F*
1.8-Test

F*
1.8-Test

F*j,1.8-Total
F*

j,1.8-Total−F*
1.8-Total

F*
1.8-Total

1.44 80 94.6 0.03 91.7 0.00 93.9 0.02
1.53 85 94.6 0.03 83.3 −0.09 91.8 0.00
1.62 90 97.3 0.06 91.7 0.00 95.5 0.04
1.71 95 97.3 0.06 83.3 −0.09 93.9 0.02
1.8 100 91.9 0.00 91.7 0.00 91.8 0.00

1.89 105 97.3 0.06 83.3 −0.09 93.9 0.02
1.98 110 97.3 0.06 83.3 −0.09 93.9 0.02
2.07 115 91.9 0.00 83.3 −0.09 89.8 −0.02
2.16 120 91.9 0.00 83.3 −0.09 89.8 −0.02
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The results of the analysis are confirmed for the k*1.8 scenario. F*j,1.8 values for Train,
Test, and Total are all higher than 89.8%. These results do not differ from previous ones
and confirm the quality of the results and the model accuracy.

6. Conclusions

In this study, a novel sensitivity analysis was presented to evaluate the behavior
of WDNs analyzed by the PDA approach and the classification technique by using an
appropriate artificial neural network, namely the GMDH. Through the analysis, the de-
sign peak coefficient k*, a significant parameter for customer adequacy in water supply
networks, was successfully evaluated in terms of binary classification. For practical ap-
plication, the proposed methodology was applied to the water distribution network of
Spezzano Albanese in Southern Italy using a PDA approach to analyze the network and
the classification technique by the GMDH algorithm to test the results.

The results applying the proposed methodology show that the GMDH results and the
Epanet output for each scenario do not change significantly. It means that the model is stable,
and the k* values adopted in the design of the network are correct for management purposes.

The accuracy of the best developed binary models for k*0.3 = 0.3, k*1.0 = 1.0, and
k*1.8 = 1.8 were 93.9%, 95.9%, and 91.8% for all data, respectively. It was found that
the binary classification approach demonstrates its high capability in the prediction and
evaluation of WDNs. The comparison between the best classification models for the
different values of each k*i showed the high capability of the model in predicting the
performance of water distribution networks and the sensitivity analysis confirms that the
results are stable.

For future works, other researchers and engineers can use a combination of EPANET
software and the GMDH algorithm to evaluate the behavior of other real WDN with differ-
ent characteristics with sensitivity analysis. Finally, the network behavior could be evalu-
ated with other binary classification algorithms before subsequently comparing results.
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