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Abstract: Climate warming can alter the thermal conditions of reservoirs. However, some hydraulic
interventions can be explored to mitigate this impact. This study investigates the long-term effects of
climate on the temperature and thermal structure of a monomictic reservoir that has had varying
operations from 1959 to 2016. Reservoir progressively operated through three distinct periods,
namely, (A) deep penstock withdrawal (DPW; 1959–1991), (B) purely selective withdrawal (SW;
1992–2001), and (C) combination of SW and vertical curtain (VC; 2002–2016). Although annual air
temperatures are increasing (+0.15 ◦C decade−1) in the long term, the reservoir’s surface water
temperatures have been found to be decreasing (−0.06 ◦C decade−1). Periods B and C produced
colder profiles and exhibited lower heat content and higher potential energy anomaly than Period A.
Furthermore, stronger thermoclines, as indicated by Brunt–Vaisala frequency, were observed in the
two latter periods. The results of this study show that varying operations bear a stronger influence on
the reservoir’s temperature and thermal structure than climate change itself. Mitigating the thermal
impacts of climate warming in reservoirs appears promising with the use of SW and VC.

Keywords: surface water cooling; reservoir cooling; climate warming; selective withdrawal; vertical
curtain; deep penstock withdrawal

1. Introduction

Climate warming, as typically indicated by a rise in air temperature, poses serious
impacts on the thermal condition of inland water bodies such as lakes and reservoirs. In
terms of surface water temperatures (SWTs), for example, long-term warming trends in
lakes have been found to be directly associated with rising trends in global air tempera-
ture [1–4]. Similar findings were detailed in the studies of Ficker et al. [5], Schneider and
Hook [6], O’Reilly et al. [7], Woolway et al. [8], and Woolway and Merchant [9] for various
lakes worldwide. The rise in SWT can result in (1) increased rates of evaporation [10,11],
(2) elevated rates of bacterial and phytoplankton activities [8], (3) enhanced thermal resis-
tance to vertical mixing [12], (4) shorter period of ice cover, specifically for dimictic lakes [1],
and (5) proliferation and invasion of warm-water aquatic species [11]. Because of their
direct response to climate forcing, lakes are identified as sentinels of global warming [13].

A number of recent studies have investigated the responses of reservoirs to climate
change. For example, Lake Dillon in Colorado, USA, exhibited a notable increase in SWT,
heat budget, and stability due to climate warming [14]. In Lake Qiandahou in China, the
increase in air temperature was associated with stronger dissolved oxygen stratification
and a decrease in oxycline depth [15]. Several studies have also used 2D modeling through
CE-QUAL-W2 (Portland State University, USA) to evaluate the effect of climate warming
on various reservoirs. For instance, the hypereutrophic Hodges Reservoir in the USA is
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projected to experience an increase in evaporation rates, stronger stratification, and overall
water column warming [16]. The Aidoghmoush Reservoir in Iran could be subject not only
to an increase in both surface and bottom water temperatures but also in its total dissolved
solids (TDSs) [17]. The water quality of the Hsinshan Reservoir in Taiwan is also projected
to deteriorate, with a reduction of dissolved oxygen concentrations at the bottom layer
and an increase in phosphorus concentration [18]. Interventions are, therefore, needed to
mitigate the effects of climate warming on reservoirs as they are significant sources of fresh
water in the world.

Reservoirs behave differently compared to natural lakes. While lakes are typically
restricted by surface outflows, reservoirs can deliberately discharge at several locations
throughout their depth [19]. Lakes also characteristically have lower flushing rates and
longer hydraulic retention periods than reservoirs [20]. The two types of inland water
bodies, therefore, generally have considerably different temperature dynamics and respond
differently to climate. In fact, one study revealed that the management operation of a
reservoir with multiple outlets is considered to be the main driver of the thermal conditions
of this water body [21]. Another study also showed that dynamic withdrawals in reservoirs
can potentially mitigate the effects of climate change [22]. Furthermore, reservoirs are
predicted from a conceptual model to have a robust capacity in mediating the effects of
climate, especially when some water management practices are implemented [20]. One
type of these management filters involves the use of variable withdrawal techniques and the
installation of hydraulic facilities that can modify the thermal structure of the reservoir [23].
Nowadays, selective withdrawal (SW) systems can be retrofitted in reservoirs that allow
warm water releases from the epilimnion, while vertical curtains (VCs) can be installed
in the upstream reaches to control the direct inflow of river water into the main reservoir
body. Determining the combined effects of these two facilities on the reservoir’s thermal
regime is particularly of high interest, as most available literature deal only with their
individual functions.

SW systems are installed primarily to address the problem of cold-water pollution.
Conventional hydropower dams usually abstract water from the reservoir’s deeper layer
(hypolimnion), and this process enables the release of cold water, which is detrimental
to the downstream aquatic ecosystem [24]. The installation of SW systems enables the
release of water from the warm layers of the reservoir to counter the effects of cold-
water pollution and avoid the low dissolved oxygen concentrations downstream. The
operation of an SW facility in reservoirs needs to be optimized so that suitable water
temperatures are maintained downstream [25,26] not only during summer but also during
cold seasons. In terms of the thermal structure of the reservoir, several studies that have
employed numerical simulations point out that surface releases through the SW system
would increase the thermal stability of the reservoir while bottom releases would induce
the warming of the entire water column [27–29]. One example of an SW facility is a
retrofit to an existing water supply and hydropower dam in the Ogouchi Reservoir in
Japan, allowing epilimnetic releases only [23]. The function of this facility is not limited to
regulating outflow temperatures; it also releases highly turbid water in the reservoir during
times of flood [30]. Long-term records of water temperature profiles are available for this
reservoir; these records can be utilized to evaluate and compare the actual reservoir’s
thermal responses when hypolimnetic withdrawals are made by penstock or through
epilimnetic outflows by SW.

VCs, on the other hand, are structures installed across the river mouths to prevent the
direct intrusion of river water into the reservoir [31]. A VC can also be installed in other
sections of the reservoirs than the river mouths. It has been called many names, such as
vertical weir curtain [32], floating curtain weirs [33], flexible curtain [34], and temperature
control device [35], among others. Some studies have discussed the effectiveness of the
curtain for regulating outflow temperature for fishery purposes [36], controlling algal
blooms [31,33], and mitigating the occurrence of cyanobacteria and metabolites [32]. In
the Ogouchi Reservoir, the curtains are installed across river mouths, and it was found
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that using them aided in lowering the SWT of the reservoir’s upstream section [37] and
modifying the temperature and velocity distributions before and after the VC [38]. How-
ever, the mechanism of this surface cooling phenomenon due to the VC and the effect of
combining the VC’s operation with SW to the reservoir’s thermal structure have yet to be
further elaborated.

The temperature and thermal structure of the reservoir govern turbidity current
dynamics and phytoplankton movement, which are greatly related to the sedimentation
and eutrophication of the water body [39] and its overall water quality status [40]. Therefore,
understanding the factors affecting the thermal conditions of the reservoir, such as climate
and reservoir operation, is key to water quality management. In this study, the influence of
climate on the temperature and thermal structure of a reservoir that has undergone varying
operation schemes is investigated. The Ogouchi Reservoir in Japan was chosen as the
study site as it had apparently experienced climate warming between 1959 and 2016, and
its operation had transitioned through three distinct periods within this duration with the
use of deep penstock withdrawal (DPW), purely SW, and a combination of SW and VC [23].
This paper attempts to answer how these different facilities affect the thermal condition
of the reservoir and what roles they play as climate warming happens in the reservoir. A
wealth of well-documented and comprehensive data is available for the study area, which
can robustly support the goals of this study by focusing on the analysis of actual long-term
data rather than relying solely on climate projections and numerical simulations.

2. Materials and Methods
2.1. Site Background

The Ogouchi catchment (Figure 1a), with an area of 263 km2, has six weather observa-
tion stations with more than 50 years of meteorological records. Three tributaries drain
towards the reservoir, and each has its own gauging station with almost the same length
of records as the weather stations. Figure 1b provides the reservoir bathymetry, where
the observation point for temperature and other water quality parameters is indicated.
Additionally, Figure 1c shows the location of the facilities, such as dam penstock, SW
facility, and VC, along the longitudinal section. This study points out three distinct periods
of operation, namely, (1) Period A for DPW operation for 1959–1991, (2) Period B for a
purely SW operation for 1992–2001, and, lastly, (3) Period C for the combined operation of
SW and VC for 2002–2016. More comprehensive details of the study site and the reservoir’s
operation history can be referred to in the paper of Duka et al. [23].

2.2. Climate Analysis

Daily values of air temperature and wind speed were obtained from the dam station,
while the rainfall values came from six observation stations (Table 1). While the dam
station contains all three meteorological parameters, the other five stations only have
precipitation records. These data are from the Automated Meteorological Data Acquisition
System (AMeDAS), which is managed by the Japan Meteorological Agency. The recent
values of these climatic drivers, from 2012 to 2016 (Figure 2) from the dam station, were
examined to highlight their typical daily variations, which were later on used as a basis to
identify the two seasons in a year, namely, summer half-year and winter half-year. Then,
air temperatures and wind speeds were analyzed based on their annual averages and the
averages for the two seasons using the dam station data; for rainfall, only the totals of the
annual event and extreme events (>50 mm d−1) were analyzed for their basin averages
using all six stations.
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Figure 1. Maps of (a) the Ogouchi catchment, (b) reservoir bathymetry, and (c) dam and reservoir 
profile. 

Figure 1. Maps of (a) the Ogouchi catchment, (b) reservoir bathymetry, and (c) dam and
reservoir profile.
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Table 1. Long-term observational data of climate and reservoir temperatures.

Parameters Station Elevation
(above msl) Period Covered Frequency

Air temperature (◦C) Dam 519 m 1959–2016 Daily

Precipitation (mm)

(1) Dam
(2) Ochiai

(3) Tabayama
(4) Kosuge

(5) Aoiwatani
(6) Sannose

519 m
1113 m
611 m
656 m

1217 m
1268 m

1959–2016
1959–2016
1959–2016
1959–2016
1965–2016
1965–2016

Daily
Daily
Daily
Daily
Daily
Daily

Wind Speed (m s−1) Dam 519 m 1977–2016 Daily

Water temperature
profile (◦C)

Upstream of
Dam Wall

1959–2001
2003–2016

Weekly
Daily

The annual average air temperature in the Ogouchi Reservoir is 15.4 ◦C, with a
maximum of 36.3 ◦C and a minimum of −12.8 ◦C between 1959 and 2016. The daily
variation in air temperature (Figure 2a) shows that peaks are prominent in August and the
lows in January. A typical year can be initially subdivided into a summer half-year (April to
September) and a winter half-year (October to March). The summer half-year is classified
when the air temperature is equal to or greater than the annual average air temperature,
while the winter half-year is when temperatures are below it. Figure 2b shows the typical
daily rainfall pattern, wherein the rainy season onsets in the late spring while the typhoon
season, bringing large amounts of rainfall, occurs in summer and autumn. Figure 2c
provides the recent typical daily wind speed, where cold winds are particularly strong
from November to March due to the prevalence of northwesterly winds [41]. Interestingly,
strong rain events are mostly concentrated during the summer half-year while stronger
winds occur during the winter half-year. This further justifies why this paper adopts the
two specific seasons in analyzing the interaction of climate with the thermal conditions of
the reservoir.
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Figure 2. Typical variation of (a) air temperature (11-day moving average), (b) rainfall, and (c) wind speed from 2012 to
2016 from the dam station.
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Long-term trends were evaluated using the Mann–Kendall (M–K) test [42,43] at a
significance level α of 0.05. A nonparametric estimate of the slope of the trend, called Sen’s
slope [44], is used in this study rather than that from regression based on the least-squares
method. The M–K test was performed for the long-term data; henceforth, the magnitude
of the slope is expressed in terms of Sen’s slope. For short-term trends, i.e., for every
period (A, B, and C), simple linear regression was carried out to determine the slopes of
meteorological parameters. Since the M–K test was not carried out for short-term trends,
the slope was only expressed using linear regression for simpler analysis.

2.3. Reservoir Temperatures

Weekly monitoring records of reservoir temperatures are available from 1959 until
2001, while daily records can be accessed from 2003 until 2016 (Table 1) from the Bureau of
Waterworks of the Tokyo Metropolitan Government [23]. Raw temperature values from
depths of 0, 10, 20, 30, and 70 m were examined. The temperatures at these depths were
averaged for the year and the two seasons. The long-term trends of SWT were subjected to
the M–K test and the subsequent results were compared with the trends in air temperature.
Differences among the three periods of operation were evaluated using Kruskal–Wallis and
rank-sum tests. It has to be clarified that the analysis in this paper consists only of a single
measuring station for water temperature. The availability of remote-sensed temperature
data for the free surface [45] could be useful to shed light on the temperature distribution
of the upper layer of the reservoir and establish the roles played by the tributaries.

2.4. Thermal Structure Indicators

To quantitatively define the thermal structure of the reservoir, this paper uses three
parameters, namely, heat content (Q), potential energy anomaly (PEA), and Brunt–Vaisala
Frequency (N2).

The formula for heat content with units of J is

Q =
zmax

∑
z0

mcvT (1)

where m is the mass (kg) of water at each defined layer z, cv is the specific heat of water
(4200 J/kg−K), and T (◦C) is the water temperature [21].

PEA [46] with units of J m−3, on the other hand, is calculated as

PEA =
1
H

∫ 0

−H
(ρ − ρ)gzdz (2)

where H (m) is the total depth of the reservoir, z (m) is the depth of water from the surface,
ρ (kg m−3) is water density at a certain layer and temperature, ρ (kg m−3) is the vertically
averaged potential density, and g (9.80 m s−2) is the acceleration due to gravity. PEA as
a measure of “difficulty in mixing” indicates the amount of energy needed to vertically
homogenize the water column [47].

Lastly, N2 (s−2) is given by

N2 = − g ∂ρ

ρ ∂z
(3)

as a measure of the strength of the buoyancy [48]. The weekly values of N2 were computed
for each layer from the surface to the bottom of the reservoir for all available data from
1959 to 2016. Contour plots were made to represent average stability in a year for each of
the three periods.

3. Results
3.1. Climate Trends

Results of the M–K test are provided in Table 2, where significant upward trends in air
temperature are observed for the year and winter half-year at +0.15 and +0.30 ◦C decade−1,
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respectively. The annual air temperature rise is consistent with the +0.12 ◦C decade−1

officially recorded increase in Japan between 1898 and 2016 [49]. The increase in air
temperature during the winter half-year corresponds with the warmer winter and autumn,
as evidenced by the documented rise of +0.11 and +0.13 ◦C decade−1, respectively. For
the Tokyo metropolitan area, where the catchment belongs, a study [50] revealed that the
annual mean temperature increased by about +0.30 ◦C decade−1 between 1901 and 2015, a
value way larger than the national average of +0.12 ◦C decade−1 [49]. This could explain
the higher rate of increase during the winter half-year for the Ogouchi catchment. However,
no significant trend in air temperature could be detected in the summer half-year, which
means that the annual trend is largely affected by the rising local temperatures during the
winter half-year. On the other hand, wind speeds showed a nonsignificant upward trend
for the annual and the two seasons. Furthermore, the long-term trends of annual and heavy
rainfall (>50 mm d−1) are not statistically significant. While the country’s air temperature
displayed upward trends, which are likely attributed to climate change and urbanization,
precipitation may be considered to be within the normal range of fluctuations [51].

Table 2. Results of the Mann–Kendall (M–K) test at α = 0.05 for long-term values of air temperature,
wind speed, rainfall (basin average), and SWT. Significantly different p-values are in bold characters.

Parameter Period M–K
z-Stat

M–K
p-Value Sen’s Slope

Air Temperature

Annual +2.9783 0.0029 +0.15 ◦C decade−1

Apr–Sept −0.1610 0.8271 −0.01 ◦C decade−1

Oct–Mar +4.4809 <0.0001 +0.30 ◦C decade−1

Wind Speed

Annual +1.8758 0.0607 +0.03 m s−1 decade−1

Apr–Sept +1.4565 0.1453 +0.02 m s−1 decade−1

Oct–Mar +1.8293 0.0673 +0.03 m s−1 decade−1

Rainfall
Annual +0.2147 0.8300 +5.02 mm decade−1

>50 mm d−1 +0.2415 0.8092 +3.35 mm decade−1

SWT

Annual −1.2723 0.2033 −0.06 ◦C decade−1

Apr–Sept +0.0566 0.9549 <0.01 ◦C decade−1

Oct–Mar −2.3253 0.0201 −0.15 ◦C decade−1

The long-term trends in air temperature, wind speed, and basin-averaged rainfall
for the year and the two seasons can be referred to in Figure 3. Long-term atmospheric
warming during the year and the winter half-year can be confirmed, with overall rising
trends in air temperature in Figure 3a,c. Besides these two, no other significant long-term
trends were identified for the rest of the parameters (Table 2); however, several remarkable
observations can be recognized at certain years. Figure 3b shows that the period from 1976
to 1993 is characterized by cold spells during the summer half-year. In terms of wind speed
(Figure 3d–f), recent years from 2007 onwards are dominated by large values. In terms
of annual rainfall (Figure 3g), the wettest years (magnitudes greater than 2000 mm) were
1959, 1991, and 1998, while the driest years (below the average of 1480 mm) were 1973,
1980, 1984, and 2009. In Figure 3h, strong rainfall events were observed in 1974, 1983, and
2011, due primarily to typhoons.

The meteorological trends in each period were defined by the slope of the parameters
using simple linear regression. For Period A, air temperature, wind speed, and basin-
averaged rainfall are characterized by weak slopes. On the other hand, Period B noticeably
has rising trends in air temperature and basin-averaged rainfall but a decreasing one
in wind speed. A limitation to estimating the trends for Period B is recognized as it
covers only a relatively short duration of ten years. Furthermore, Period C manifests a
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slight increase in air temperature and a strong increase in wind speed but the reverse for
basin-averaged rainfall.
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Figure 3. Average air temperature (a–c), wind speed (d–f) and basin-averaged rainfall (g,h). Colored
straight lines are linear fit for each period, with colored texts as slopes, while values in parentheses
are slope percentages (slope value/average value for that period × 100).

3.2. Water Temperature Distribution and Trends

Figure 4 presents the raw reservoir temperatures recorded at different depths from
1959 to 2016, while Figure 5 provides the average weekly temperature for the year for each
period. The general pattern follows a trend where low values can be observed during winter
(December to February), peaking during summer (August) and decreasing with the onset
of autumn. Large fluctuations are observed for SWT (0 m), with a high of 25 ◦C and a low
of 5 ◦C for all three periods. On the other hand, Period A (Figures 4a and 5a) shows warmer
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conditions for the 10-, 20-, 30-, and 70-m depths, while Periods B (Figures 4b and 5b) and
C (Figures 4c and 5c) are mostly colder at these depths. Temperatures at the 70-m depth
for the two latter periods are relatively flat at the 5 ◦C level. Closer lines between depths
mean a relatively mixed condition at these layers, while gaps between the layers indicate
an apparent thermocline. For Period A, small temperature gaps are evident between
the 30- and 70-m depths from late summer until autumn. Meanwhile, large gaps are
manifested for Periods B and C between the 10-m and 30-m depths over the entire year,
except during winter, where mixing occurs. Between the 30- and 70-m depths for Periods B
and C, temperature gaps are larger for the latter, meaning that Period C exhibits deeper
thermocline and thicker epilimnion than Period B.

In terms of heat content (Figure 5d), the Q peaks around Day 270 (end of September),
while it is the lowest around Day 75 (mid-March). Period A consistently attained the highest
amount of heat stored in the reservoir. Periods B and C have similar trends, although
Period C has relatively higher heat content than Period B. Although the SW facility was
in operation in both these two latter periods, the effect of VCs may have played a role in
the higher heat content of Period C. The observed differences in the plots of temperature
profiles and heat content suggest that the operation of the facilities significantly influenced
the thermal structure of the reservoir. This is further explained in the succeeding sections.

For SWT (0 m), no observable differences can be seen between the three periods
during the summer half-year; however, the two latter periods appear to be generally colder
than Period A during the winter half-year (Table 3). On average, the SWT for Periods B
and C decreased relative to Period A. Kruskal–Wallis tests showed significant differences
among the periods (p = 0.0019) for the winter half-year (October to March), while rank-
sum tests further confirmed the significant differences of Periods B and C with Period
A. Furthermore, based on M–K analysis, the SWT decreased for the year at −0.06 ◦C
decade−1 (nonsignificant, p = 0.2033) and for the winter half-year at −0.15 ◦C decade−1

(significant, p = 0.0201), with no observable trend for the summer half-year (April to
September) (Table 2). During the year and the winter half-year, the SWTs were decreasing,
although air temperatures were significantly rising. This surface cooling phenomenon can
be strongly attributed to the change in management procedures.
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For the temperatures below the water surface (10 to 70 m), the Kruskal-Wallis test
affirmed the significant differences among periods. Period A is generally warmer than B
and C, on average (Table 3). During the summer half-year, large temperature gaps in the
upper layer are observed in Periods B and C, indicating the presence of strong thermoclines
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(Figure 6a). During the winter half-year (Figure 6b), while Period A is mostly isothermal,
Periods B and C still have inherent stratification, as observed from the relatively large
temperature gaps between the 20- and 70-m depths.

Table 3. Results of Kruskal–Wallis (K–W) and rank-sum tests at α = 0.05 for water temperatures at
various depths. Significantly different p-values are in bold characters.

Depth Season
Average per Period (◦C) K–W

p-ValueA B C

0 m
Apr–Sept 20.09 20.09 20.40 3.6 × 10−1

Oct–Mar 11.23 10.44 * 10.73 * 1.9 × 10−3

10 m
Apr–Sept 15.58 13.98 * 14.61 * 8.4 × 10−6

Oct–Mar 11.06 10.08 * 10.22 * 1.6 × 10−3

20 m
Apr–Sept 12.87 8.63 * 9.75 * 1.9 × 10−9

Oct–Mar 10.91 9.31 * 9.47 * 4.7 × 10−6

30 m
Apr–Sept 11.14 6.40 * 7.41 * 1.2 × 10−9

Oct–Mar 10.76 7.46 * 8.61 * 1.0 × 10−8

70 m
Apr–Sept 7.59 5.85 * 5.79 * 1.4 × 10−7

Oct–Mar 9.20 5.91 * 5.97 * 7.0 × 10−9

* Significantly different with Period A by rank-sum test.
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half-year and (b) the winter half-year.

3.3. Thermal Structure Parameters

On average, for the summer half-year (Figure 7), Period A shows the highest value
of Q, with 6600 TJ, followed by C with 5500 TJ, and, lastly, by B with 5200 TJ. In terms
of PEA, Period C obtains the highest average value of 103 J m−3, followed by B with
94 J m−3 and A with 93 J m−3. For the winter half-year, Period A still obtains the highest
average Q, followed by C and then B, while stability in terms of PEA is still highest for C,
followed by B and then A. In summary, Period A manifests higher Q but lower PEA than
Periods B and C. Higher Q is observed for Period A as it has a warmer water column and
thicker epilimnion. High stability, as described by PEA, is observed in Periods B and C, as
attributed to stronger vertical stratification in these two periods.
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The trends of these two thermal structure parameters can also be compared with
those of meteorological forcing. Period A, which generally exhibited weak slopes for air
temperature and wind speed during both seasons, obtained relatively weak slopes for Q
and PEA during the summer half-year but a strong negative slope for PEA during the
winter half-year. For Period B during both seasons, the increase in air temperature and
rainfall and the decrease in wind speed (Figure 3) are associated with the decrease in Q
but the reverse for PEA. On the other hand, for Period C, specifically during the winter
half-year, the increase in wind speed is associated with decreasing trends in Q and PEA. To
summarize, while the difference in the average values of different parameters of thermal
parameters is brought largely by the varying reservoir operations, the trends of these
parameters in every period are highly associated with the trends of air temperature and
wind speed.
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The stability of the reservoir in terms of N2 is shown in Figure 8. For all three periods,
the duration between Day 0 (1 January) until around Day 90 (31 March) is characterized
by zero values of N2. This indicates that isothermal conditions existed during this specific
time range. The N2 values are pronounced from Day 91 (1 April) to Day 273 (30 September),
which specifically fall during the summer half-year. From Day 274 (1 October) until the
end of the year, the N2 values gradually decrease as the reservoir experiences a weakening
of stratification due to overturn during fall and mixing during winter.

Focusing on the summer half-year, stratification is more intense in August for Periods
B and C compared to A. Stronger thermoclines were produced during Periods B and C
because of the shallow withdrawals through the SW facility. Comparing the two latter
periods with the 0.0001 contour line, stratification extends deeper for C due to the effect of
the VC.

Period A, on the other hand, has weaker stratification, as attributed to hypolimnetic
withdrawals by penstock. Considering the 0.0001 contour line, the stratification extends to
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the deepest part of the reservoir, specifically near year-end. This means that thermoclines
are developed at the deeper portions of the reservoir during the start of the cooling season.
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4. Discussion
4.1. Correlation Between Climate Forcing and Reservoir Temperatures

Pearson correlation coefficients (r) between the climate forcing and reservoir tempera-
tures were obtained. Long-term correlation (1959–2016) was made only between climate
forcing and SWT, excluding the 10- to 70-m temperatures. On the other hand, all water
temperatures (0 to 70 m) were included in the short-term correlation for every period.

For the long term, SWT shows a positive correlation with air temperature for the
summer half-year (r = 0.73) and a negative one with wind speed (r = −0.29) for the winter
half-year. Meanwhile, other meteorological parameters acquire very weak correlations for
both seasons. It has to be noted that strong correlation is not evidence of a mechanistic effect,
i.e., correlation is not causation. The long-term correlation established specifically between
air temperature and SWT should not be confused with the long-term trends generated
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from the M–K test. While there is a strong positive correlation between the two parameters
during the summer half-year, the M–K test showed no significant long-term trends in the
same period. In the same way, while the correlation between the two parameters appeared
to be weak during the winter half-year, the M-K test showed significant inverse trends.

For the short term, SWTs for Periods A and B show positive correlation with air
temperature for April to September (rA = 0.76; rB = 0.86) and October to March (rA =0.64;
rB = 0.73), with Period C exhibiting very weak correlation. The warming of the surface
water occurs via downward longwave radiation, as associated with the increase in air
temperature. SWT in Period B has a negative correlation with wind speed, specifically
during the summer half-year (rB = −0.38). Furthermore, a weak correlation between SWT
and basin-averaged rainfall is seen for Periods A and B for both seasons, but SWT is
negatively correlated with basin-averaged rainfall during the winter half-year (rC = −0.58)
for Period C. Considering the deeper layer of the reservoir, air temperature and wind
speed have very low correlation with the temperatures at the 10- to 70-m depths. However,
a positive correlation is detected between basin-averaged rainfall and the 70-m layer
temperature, with r of 0.58 and 0.65 for Period A during the summer half-year and winter
half-year, respectively.

To highlight the results for the short term, a negative correlation is found to exist
between rainfall and deep-layer water temperature in Period A (summer half-year and
winter half-year), between wind speed and SWT in Period B (summer half-year), and
between rainfall and SWT in Period C (winter half-year). This correlation test results only
suggest that within an individual short-term period, where a facility is operated, a certain
climate forcing is associated with the temperature drop at a certain layer of the reservoir.

4.2. Effect of Facilities on Reservoir’s Thermal Structure

The downstream outflow control by DPW and SW and the upstream inflow inter-
ception by VCs can explain the significant differences in water temperature distributions
between the three periods for both the summer half-year and winter half-year, as shown in
Figure 9.

In Period A, the river water largely disperses and remains for a longer period within
the reservoir and replaces the colder water in the deep zone. This subsequent interaction
of river water with the hypolimnetic water could explain the high correlation in Period A
between bottom water temperatures and rainfall, wherein the latter serves as the primary
source for river inflow. On the other hand, in Period B, the abstraction of water through
SW leads the inflow to follow a narrow path along the upper layer and encourages most of
the river water to be released directly out of the dam. The apparent thermocline formation
during Period B not only limits the thermal advection between the upper and lower layers
of the reservoir [23,29] but further shields the radiant heat transfer from the atmosphere to
the hypolimnion [14]. This can further reaffirm why air temperature is highly correlated
with SWT but not with the temperatures at the deeper layers. Furthermore, shallow
withdrawals can diminish the internal heat in the reservoir over the summer and can offset
the effect of further warming [52].

Meanwhile, during Period C, the curtains facilitated the plunging of the river water
underneath it, limiting the flow to a layer way below the level of inflow and making a
slightly wider epilimnion than in Period B. The two curtains acted as hydraulic and thermal
barriers against the direct intrusion of the river water into the upper layer of the reservoir.
River water has relatively larger velocity and different temperatures than the reservoir, and
its manner of dispersion in the reservoir, as affected by the VC, essentially influences the
thermal structure of the water body [23].

The average of PEA for each period strongly corresponds with the documented
average trends of Schmidt’s Stability Index (SSI) in the same reservoir [23]. Shallower with-
drawals result in larger average values of PEA and SSI compared to deeper withdrawals.
Likewise, Figure 8, which provides the reservoir’s stability, as defined by N2, shows that
shallower withdrawals in Periods B and C produced stronger thermoclines, specifically
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during the peak of heating in the year. The thermocline in Period A, on the other hand,
appeared to be weaker and migrated deeper into the reservoir as the weather cooled down
in autumn and winter. As mentioned earlier, surface releases strengthen the stratification
while bottom releases induce the warming of the reservoir body, hence the lower thermal
stability [27–29].

Looking at Figure 5, higher heat was stored in the reservoir during Period A compared
to Periods B and C. In the case of the two latter periods, the heat exchange between the
epilimnion and hypolimnion was strongly limited by the thermocline, hence the lower
values of Q. In one study that carried out a heat budget analysis of the Sau Reservoir, it was
found that hypolimnetic withdrawals increased the reservoir’s annual Birgean heat budget
(ABHB) while intermediate withdrawals produced stronger thermoclines and decreased
both Q and ABHB [21]. Eventually, that study concluded that hydraulic management can
partially counteract the effects of climate warming.

This present study strongly establishes that the different behavior of the thermal
structure of the reservoir in the three periods is mainly caused by management and not
climate warming and that some management strategies can be used to mitigate certain
climate impacts. Nevertheless, this only generalizes the effects of surface releases with
the use of the SW facility but has not yet explored the effect of withdrawals at different
depths. The operation of the Ogouchi Reservoir can still be optimized in order to maintain
desirable water quality not only in the main reservoir body but also with the released
water downstream.
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5. Conclusions

The effects of climate and varying facility operations on the temperature and ther-
mal structure of a warm monomictic reservoir are evaluated in this study. Although air
temperatures were rising, SWTs were found to be decreasing in the long term. Climate
forcing affects the reservoir temperatures within the individual periods, but the varying
reservoir operation has been identified to ultimately influence the differences in thermal
responses among the periods. Kruskal-Wallis tests affirmed that the distributions of water
temperatures were significantly different between the three periods, while rank-sum tests
proved that Periods B and C were significantly different (colder) to Period A. The two latter
periods exhibited lower heat content due to their shallower epilimnion but higher stability
in terms of PEA due to stronger vertical stratification. The stratification, as defined by
N2, showed that Periods B and C developed stronger thermoclines than Period A. Flow
interception by VCs upstream and outflow control by DPW and SW downstream play a
large role in either inhibiting or enhancing the radiant heat transfer from the atmosphere
to the reservoir and advection between epilimnion and hypolimnion with the presence
of thermocline. This study reveals that the thermal condition of this reservoir is not sig-
nificantly affected by the climate warming that was prominent during the colder seasons.
Furthermore, reservoir operation bears a stronger influence on the temperature and thermal
structure of the reservoir than climate change itself. The use of SW and VCs appears to
be a promising key to mitigate the thermal impacts of climate warming. Future studies
will include numerical simulations to determine the sensitivity of the reservoir’s tempera-
ture and thermal structure with varying hydrometeorological parameters, assuming each
facility is operated over the long term. Furthermore, the effects of management options
on downstream temperatures can be studied through numerical simulation in the hope of
recommending the most favorable operating measures for SW.
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