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Abstract: Adaptive water management is a promising management paradigm for rivers that ad-
dresses the uncertainty of decision consequences. However, its implementation into current practice
is still a challenge. An optimization assessment can be framed within the adaptive management cycle
allowing the definition of environmental flows (e-flows) in a suitable format for decision making.
In this study, we demonstrate its suitability to mediate the incorporation of e-flows into diversion
management planning, fostering the realization of an adaptive management approach. We used
the case study of the Pas River, Northern Spain, as the setting for the optimization of surface water
diversion. We considered e-flow requirements for three key river biological groups to reflect condi-
tions that promote ecological conservation. By drawing from hydrological scenarios (i.e., dry, normal,
and wet), our assessment showed that the overall target water demand can be met, whereas the
daily volume of water available for diversion was not constant throughout the year. These results
suggest that current the decision making needs to consider the seasonal time frame as the reference
temporal scale for objectives adjustment and monitoring. The approach can be transferred to other
study areas and can inform decision makers that aim to engage with all the stages of the adaptive
water management cycle.

Keywords: environmental flows; optimization problem; regulated rivers; water diversion; in-
stream flow

1. Introduction

The concept of integrated water resource management (IWRM) embodies the will-
ingness to account for the economic, social, and ecological implications of water manage-
ment [1]. River regulation, such as damming, barrages, and river training, can affect both
the sediment balance, inducing morphological changes, and the hydrological regime [2,3].
As a consequence, many of the current water management decisions for regulated rivers
worldwide aim for the sustainable use of water resources to protect natural ecosystems [4].
However, the rapid decline in freshwater biodiversity urges for prompt practical actions
such as environmental flow implementation [5,6]. The concept of environmental water
regime or environmental flow (e-flow) was first announced during The Brisbane Decla-
ration (2007) [7] and ever since it has defined “the quantity, timing, and quality of water
flows required to sustain freshwater and estuarine ecosystems and the human livelihoods
and well-being that depend on these ecosystems” [8–11].

In regulated rivers, sustainable use is typically achieved by management decisions
controlling certain variables, such as consumption capping or water allocation, through
downstream release for specific target ecological processes and/or components [12]. Re-
gardless the management decision in question, the incorporation of e-flows into practice
is fundamental to facilitating “the establishment of a water regime needed to manage
rivers” [13] that acknowledge the importance of ecosystem needs [4]. Moreover, e-flow
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incorporation within management practices can also be associated with conservation
and restoration objectives for targeted scales such as “passive” restoration approaches
addressing the reduction of hydrological alteration stresses on biodiversity [14–17].

The complexity of the interactions characterizing our socio-ecosystems (sensu [18])
leads to difficulty in predicting the effects of certain factors (e.g., climate, water demand)
that increase the uncertainty of results from specific water management actions [19]. This
lack of security exacerbates the ongoing challenges for decision making in water manage-
ment process, such as organizing efficient water governance systems [20], and leads to
reduced capacity to resolve unexpected eventualities and future scenarios. The concept
of “adaptive management”, as a fairly new paradigm for managing water resources in
an integrated way, emerged in the last decades in response to the need to improve water
management strategies [21,22]. This paradigm, which builds on the “learning-by-doing”
approach, considers the improvement of management practices by learning from the
outcomes of previously implemented management strategies [19,21]. Theoretically, this
process consists of a constant loop of learning and adaptation between each adaptive water
management cycle (AWMC) to achieve long-term management goals (e.g., restoration
of hydrological conditions for endemic species). However, smaller adjustments based
on shorter-term, ongoing outcomes could be made between each phase of the cycle (i.e.,
planning, doing, monitoring, and learning; see [21,23,24]). Practically, exact strategies to
achieve adaptability within the AWMC are still lacking [25]—it calls for stronger links
between management actions and subsequent monitoring strategies [17,23,26] to support
the evidence of ecological improvement or degradation [26].

The adaptive management approach suits the challenge of incorporating e-flows into
management (due to the uncertain nature of environmental outcomes after management
decisions; [27,28]). The practical incorporation of e-flows into water management planning
will require prompt adaptation of decisions and actions based on changing environmental
conditions (e.g., hydrological, ecological, and climatic). The prediction of results from
management actions under different scenarios (e.g., incorporating hydrological variability,
climate change, and demand fluctuation) before their implementation represents a very
powerful tool to anticipate consequences and reinforce the decision-making process to
improve adaptability, sustainability, and ecosystem conservation. Overall, such a strategy
will improve our ability to reveal management effects in complex systems as managed
rivers [22].

E-flow incorporation into water management is often linked to the problem of bal-
ancing human and ecosystem water needs and maintaining ecosystem services provision
when sustainable abstraction practices are sought. Different methods have been applied to
support water management and water allocation in complex systems. Examples include
economic approaches [29,30]; geographic information systems [31,32]; socio-hydrological
and environmental assessments [33–35]; as well as a range of decision-support tools [36,37].
Usually, water management deals with a range of conflicting anthropogenic water-use
objectives and, consequently, there are important trade-offs between water uses and de-
mands [38]. The need for new instruments and frameworks that help decision-makers
is still evident [28] and will increasingly put pressure on water managers dealing with
future climate change effects [39,40]. Optimization is a decision support approach that
has been applied for such water management problems at different scales, envisaging
convoluted decision-making (among which there are trade-offs in river ecosystem services
and river sediment budget maintenance; [2,41,42]) [43–45]. It enables the identification and
evaluation of trade-offs and synergies among some management objectives (e.g., control
of consumption, risk prevention, delivery of water for targeted species, hydropeaking
control) before implementation takes place. The technical structure and features of the
optimization approach (e.g., mathematical expression, multiple solutions) address many
of the challenges (e.g., scenario analysis, real-world conditions representation) resulting
from the need to incorporate e-flows into management planning [44]. Due to the absence
of exact rules for the definition of e-flow requirements for rivers but rather distinct ap-



Water 2021, 13, 1281 3 of 24

proaches [13,46,47], a series of strategies are possible to operationalize their incorporation
within the optimization assessment (e.g., based on the consideration of natural-flow condi-
tions or exploiting flow–biota correlations). A careful definition of e-flow requirements is
hence needed to support the monitoring phase to enable the adaptive process [17,21].

In this paper, we developed an optimization assessment on the example of a targeted
river basin in Northern Spain, which is providing water for an urban area of over 200,000
people. The specific objectives of the modeling exercise were (1) to demonstrate the suitabil-
ity of a new methodology based on an optimization approach to mediate the incorporation
of e-flows into the diversion management planning, (2) to discuss the challenges and
limitations of the optimization model by drawing from the considered water management
problem, and (3) to assess the potential of the optimization approach to foster adaptive
management of water resources. We first present the conceptual framework underpinning
the definition of the optimization assessment for water abstraction and the stages involved
in the definition of the optimization problem for the selected case study (Section 2). The
section also contains the description of the case study and the optimization problem incor-
porating environmental flows, as well as an illustration of the hydrological scenarios and
the optimization modeling algorithm. Simulation results are presented in Section 3. Lastly,
we discuss both the modeling assumptions and results, highlighting both the advantages
and the disadvantages of the optimization assessment, and the implications for the diver-
sion planning and river management providing suggestions for the best adoption of an
adaptive process (Section 4).

2. Materials and Methods
2.1. The Optimization Framework

The optimization assessment framework presented in this study represents the “struc-
tured set of steps and considerations used for the formulation [of the optimization prob-
lem]” [44] underpinning the optimization modeling exercise conducted for the case study
of the Pas River, Northern Spain (Section 2.2).

The stages of the optimization assessment framework that led to the definition of
the optimization problem for the case study and their relationship to the AWMC phases
(see Figure 1) are shown in Figure 2. As a first step, management objectives and water
allocation decisions for the Pas River basin were assessed to understand the problem’s
context and to identify priorities and water diversion practices (Section 2.2). This stage
required the contextualization of the optimization problem to identify the best output
information to be produced. In other words, a tailored result format was selected to enable
the usage of information by the targeted user type (i.e., water managers and decision mak-
ers). Successively, based on the information identified during the contextualization phase,
reference e-flow conditions were defined considering different biological groups present in
the ecosystem (Section 2.3). For these biological groups, hydrological conditions (expressed
as thresholds) were considered to preserve flow components from alterations caused by
diversion. The “learning” process within the AWMC was based on the exploration of
ecological effects from the management interventions [21]. As described in Section 2.3,
given the exploratory nature of the assessment, the hydrological thresholds on the flow
components (for each biological group) considered in this study were largely based on
expert judgment. Lastly, information collected from the two previous stages was processed
during the modeling stage, which considered the design of the optimization problem (e.g.,
solution approach) and its functions (i.e., objectives) both for the human water demand
and for the considered biological groups (Section 2.4). Alongside the model development,
hydrological scenarios reflecting daily mean discharge at the targeted location were devel-
oped and used as the reference (input) hydrological conditions for the optimization model
runs (Sections 2.5 and 2.6, respectively).
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Figure 1. Position of the optimization assessment within the Adaptive Water Management Cycle. The
phases of an AWMC can be divided into two main stages belonging to opposite edges of the action
spectrum: perception–understanding and operational. The first stage involves the definition of the
management objectives and management decisions; the second stage focuses on the implementation
and monitoring of the management actions to provide insight into the next cycle, respectively.

Figure 2. Structure of the applied optimization assessment. The case study description phase
considers information that arises from the current management decisions, and it was used for the
optimization assessment development. The bold outlined box corresponds with the monitoring
phase that was not assessed in this study but serves to highlight the link with the Adaptive Water
Management Cycle (left-hand side).

2.2. Case Study Area: The Pas River Basin

We used the Pas River basin in Northern Spain as the case study area for the opti-
mization assessment development and application (Figure 3). The Pas River represents
an ideal catchment to show the potential of optimization approaches to support adaptive
water management planning. It subject to relatively strong human pressure, while it still
provides a good representation of its potential natural condition. In this regard, most of its
river water bodies show a good ecological status (sensu European Water Framework Direc-
tive; [48]) and provide habitats for iconic species for conservation such as Atlantic salmon.
The Pas River system drains into the Cantabrian Sea (North–East Atlantic). Calcareous rock
and sandstone formations dominate the basin which covers an area of 649 km2. The river
network is defined by the three main rivers Pas, Pisueña, and Magdalena. The mean an-
nual precipitation amounts to 1300 mm, and the mean annual daily flow (close to the river
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mouth) is 14 m3/s. Maximum flows are observed in April, and minimum discharges occur
in September [49], close to the mouth. Water regulation in the basin is mainly implemented
through surface water uptake by cross-channel weirs and pump injection into the water
supply grid. A primary management objective is domestic water supply: water is mainly
abstracted to satisfy the demand of the municipalities with annual volumetric allocation
for the distinct municipalities. While there are no large infrastructures (e.g., dams) able to
modify high flow and flood patterns, water diversion operations and water use can still
influence the hydrological attributes related to low flows (e.g., magnitude of low flows,
duration of droughts). Extended shoals and changes in the river flow as a consequence
of traditional diversion practices represent a threat to ecosystems and freshwater biota.
The ecological conditions of the aquatic ecosystem in the basin are monitored and defined
by the Cantabrian Hydrological Confederation (CHC) which is also responsible for the
drafting and development of the Basin Management Plans. In this study, we considered, as
a setting for the optimization of water abstraction for municipal use, two distinct diversion
points (i.e., DP1 and DP2)—as consumptive demand for the points we considered were
0.26 Hm3/year and 0.66 Hm3/year, respectively. Both points are not impacted by prior
upstream flow diversion along the river network located on two distinct river segments
(sensu [44]).

Figure 3. Location of the Pas River basin and the river sections in proximity to the selected diversion
points (indicated as “DP”). For illustration purposes we added shading to the river network, linked
to average river discharge.
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2.3. Definition of the e-Flow Requirements for the Pas River: Biological Groups and
Hydrological Thresholds

The optimization of water diversion based on environmental needs requires the defi-
nition of reference hydrological conditions to ensure the conservation of key flow attributes
(e.g., base flows, pulses) that support the ecosystem. Knowledge of the exact hydrological
conditions for species and their cross-scale variation remain a core research gap in the field
of freshwater biology [50]. Despite this gap, water management optimization assessment re-
lies on flow–ecology relationship assumptions or eco-hydrological indicators (e.g., [51–54])
for the identification of optimal management strategies that facilitate the implementation
of an adaptive management approach at appropriate scales [55]. E-flow requirements
need to reflect hydrological conditions that support ecological processes and functions.
A generalized optimization assessment approach considering a single taxonomic group
(e.g., fish) can expose the risk of adverse effects on other components of the ecosystem and
lead to unpredictable ecological results both at the short- and long-term scales [8,56]. Thus,
the acknowledgment of the role of each biological group in the ecological framework is
“fundamental to the maintenance of diverse and resilient communities into the future” [56].
In the frame of the study, despite not explicitly considering existing direct and indirect
relationships among the considered biological groups, we simultaneously included the
hydrological conditions of different biological groups to define the e-flow requirements
in the Pas River throughout the year (Figure 4). In this regard, we encompassed three
biological groups (Biological Group 1, 2, and 3) within the relevant levels of the trophic
network of the ecosystems (from primary producers to apex predators). The process of
e-flow requirement (R) definition (i.e., hydrological conditions for the biological groups)
was based on the output of a workshop with a group of experts in the fields of hydrology,
eco-hydrology, and freshwater biology from the IHCantabria (Santander, Spain). The
e-flow requirements considered in this study are not absolute, meaning that they can be
refined based on the dominant situation and idiosyncrasy of each watershed (establishing
definitive values was out of the scope of this work). A summary of the requirements is
shown in Table 1.

Figure 4. Annual distributions of e-flow requirements defined for the Pas River. Each requirement was translated into the
ecological objectives within the optimization model for water diversion.
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Table 1. E-flow requirements considered in this study: The requirements define the hydrological
conditions to be conserved in the river during the daily diversion operations throughout the year.
Q95–Q75 is the flow value that is exceeded 95% and 75% of the time, respectively; FRE3 is the flow
value that exceeds three times the median flow.

Target Group Requirement Definition

Biological Group 1

R1 Q95 flow, full period
R2 FRE3 flow, 21 days (consequent)
R3 Q95 flow, 45 days (consequent)
R4 Q95 flow, full period

Biological Group 2 R5 Q75 flow, 5 events

Biological Group 3 R6 10% average yearly flow, 70 days (consequent)

Biological Group 1 included fish species. Fish species are top predators and might
represent an economic source for the local population in the region, associated with
recreational angling [57]. Life cues of fish species are closely linked with the magnitude and
timing of the distinct flow regimes. Despite different fish species have specific adaptation
strategies and, hence, can tolerate the modification of either magnitude or timing of
river flows to a certain extent, modification of flows during key stages of the lifecycle
(e.g., migration, spawning, hatching, recruitment; [58–62]) could compromise population
structure [63] or even increase the extinction risk [64,65]. The hydrological requirements
(R1–R4) for Biological Group 1 aimed at the maintenance of certain flow conditions for
cues (e.g., spawning or feeding) for the majority of the year (especially during dry periods)
and at ensuring the occurrence of peak flows (e.g., for migration). Particularly related to
the September period (characterized by reduced discharge), we exploited the synergy (and
avoided algorithm conflicts) with R5 and R6 (described below) to ensure both survival and
migration of the fish, which provided low flows and peak flows, respectively, during the
month of September.

Biological Group 2 considered aquatic macroinvertebrates. The aquatic macroinverte-
brates’ community composition was highly diverse (e.g., grazer, shredders, predators; [66]),
and each community exhibits different responses to hydrological gradients and flow fre-
quency [55,67,68]. Since additional experimental evidence is needed to define the accurate
requirement of each taxonomic group, we considered the highest taxa occurrence probabil-
ity (the underlying rationale was based on the Intermediate Disturbance Hypothesis [69])
as an indicator for the e-flow requirement for this group. The hydrological requirement
(R5) for Biological Group 2 considered the occurrence of high flow conditions to reduce the
alteration from flow diversion (e.g., flow magnitude and variability).

Biological Group 3, considered for the optimization assessment, refers to primary
producers (PPs). PPs have a role in defining the presence of the other two groups (i.e.,
Biological Groups 1 and 2) because of their position at the base of the food-web [70]. PPs
encompass a variety of taxonomic groups (from diatoms imbibed within the biofilm to
macrophytes) that respond differently to changing hydrological patterns. The opportunistic
response of PPs to variation in hydrological conditions defines the establishment of specific
groups based on flow regime characteristics. We assumed that establishment success (i.e.,
ability to develop cover) was supported by a minimum flow during the dry period and,
hence, defined the hydrological requirement (R6) in the targeted period (April–September).

2.4. Definition of the Pas River Optimization Problem

To identify the highest water supply sustainability in the river basin, the magnitude
and timing of river water diversion operations need to be optimized to comply with the con-
sidered e-flow requirements. Hence, the latter generally constrains the availability of water
for human consumption. Constrained multi-objective optimization is an optimization
method based on the search for feasible solutions that directly limit the search space [71].
This method is frequently applied in real-world settings of structural and operational
optimization assessments for water regulation assets [72,73]. An approach for constrained
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optimization is represented by the penalty-based approach; it allows transforming the prob-
lem into an “unconstrained” one—penalty (constraint) is incorporated into the objective
function to reduce the fitness of the function based on the degree of the specified violation.
The penalty-based approach particularly suits optimization assessments considering the
high number of limiting conditions. Moreover, it can be easily implemented with evolu-
tionary/genetic algorithms [74–76]. In this study, the maximization of the conservation
potential of the hydrological conditions for the biological groups and the satisfaction of the
yearly municipal water volume demand are considered in the formulation of the problem
functions as conflicting objectives. For each e-flow requirement objective, a penalty score
method based on the characteristics of the requirement was defined and incorporated into
the objective function. The calculation of the penalty score and the objective function varied
based on the type of requirement. The general structure of penalty score and objective
function calculation process is shown in Figure 5, while the detailed functions used in the
optimization problem are available in Appendix A. Considering the specific case of river
flow diversion, the requirements were specified as thresholds for the river flow compo-
nent modification. A flow condition above the threshold will be always favored by the
algorithm, while a hydrological condition below the defined threshold will be penalized
based on the degree of the violation. Each function output was normalized based on the
characteristics of each requirement, with scaling between zero (i.e., the best outcome) and
one (i.e., the worst one).

Figure 5. General structure of the calculation process for the penalty score and objective function (di and di+n indicate a day
i of the year starting from 1 January).

2.5. Hydrological Data

The developed optimization assessment used input hydrological data describing the
river discharge for the Pas River basin. The simulated time series at a daily-scale resolution
(for the period 1980–2006) for the two diversion points (DP1 and DP2) was generated by
manipulating two data sets provided by the IHCantabria. The first data set of discharge
values was developed by [77] for the Pas catchment by using the updated version of the
rainfall–runoff model (HEC-HMS; [78]). This data set was available only for certain points
along the river network at a daily resolution. The second data set contained discharge
data extracted from the Spanish national repository and was processed with the SIMPA
GRASS-based tool [79], available for each 500 m section of the river network at a monthly
resolution. To obtain the aforementioned time series at the desired temporal resolution
format (i.e., the daily-scale resolution) used in this study, a conversion factor (i.e., flow
magnitude coefficient) for the target river segments (in correspondence with DP1 and DP2)
was first extracted from the monthly scale data (SIMPA tool) and successively multiplied
to the daily flow data (HEC-HMS model).

2.6. Optimization Scenarios

The scenario development aimed to capture lower than average, average, and higher
than average hydrological conditions at the considered diversion points (DP1 and DP2) to
increase produced information uptake and foster discussion about management practices
in the Pas River. With this purpose, hydrological year-based scenarios, namely, dry, normal,
and wet, were developed to explore optimization outcomes at different hydrological
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conditions (see Figure 6). Firstly, each year in the record (1980–2006) was sorted based
on its average yearly discharge value (the years 1980 and 2006 were discarded as only
full-data years were considered), and a three-tiered statistical breakpoint classification was
applied. Each class contained 33% of the data with higher, medium, and lower average
yearly discharge values. Lastly, daily averages were recalculated among the years of the
same class to obtain the three sample hydrographs used in this study. The daily values of
each hydrological time series (at the daily time step starting from 1 January to 31 December)
under each considered scenario for both DP1 and DP2 are available in Figure S1 in the
Supplementary Materials.

Figure 6. Average yearly discharge values (in m3/s) for the considered scenarios (i.e., dry, normal, and wet) for the two
diversion points DP1 and DP2. The upper and lower fences represent the maximum and minimum discharge vales, the
edges of the box represent the upper and lower quartiles, and the line inside the box is the median.

Despite the fact that real-world daily river discharges can greatly fluctuate around the
daily average discharge values within each scenario that we considered in the optimization
assessment, this is mostly due to less predictable (in the long term) factors such as pre-
cipitation and temperature. Forecasting the exact discharge value occurring on a specific
day with the aim of planning daily diversion is still challenging. A simple approach to
tackle this issue is the consideration of representative discharge patterns throughout the
year. In this study, the produced hydrological scenarios (or hydrographs) were intended
only as a basis for exploration and discussion about potential decisions and management
practices rather than absolute discharge values. Hence, a key assumption underlying the
input hydrological data (hydrographs in Figure S1 in the Supplementary Materials) was
that it serves as a representative “sample” of the current hydrological conditions at the
daily scale for each considered scenario.

2.7. Evolutionary Optimization Algorithm and Framework

To solve the presented nonlinear optimization problem for the Pas River, we applied
a state-of-the-art evolutionary algorithm, NSGA-III [80], by exploiting Pymoo—a multi-
objective optimization module in Python—framework version 0.4.1 [81]. To track the
convergence towards the optimal solutions, we used a recently developed running metric
indicator. Although the hyper-volume convergence metric is a widely employed technique,
it requires knowledge of the “true Pareto front”, which is not always available (see [82]); the
aforementioned running metric indicator uses extreme points and the information of the
non-dominated solution retrieved at each generation to define the convergence evolution
(for in-depth explanation, see [82,83]). The structure of the optimization module applied
to the defined optimization assessment problem for the Pas River basin simulation runs
is shown in Figure 7. The Pymoo module was then linked with two additional modules:
a module that extracts the input hydrological indices (i.e., Q75, Q95, FRE3, and AYF—
average yearly flow), and a scenario module that processes the hydrological record and
provides input hydrological conditions. The algorithm was parametrized with a population
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size of 100 individuals and run for 1000 generations. The running metric was set on a
50-generation step.

Figure 7. Optimization problem structure employed to the Pas River. The main box shows the module
structure of the Non-Sorted Genetic Algorithm-3 (NSGA-3) in Pymoo—a multi-objective optimization
module in Python [81]. Two external modules, Hydrological Scenario and Hydrological Indices,
calculated the hydrological scenarios to be inputted into the Pymoo module and the hydrological
variables, respectively.

3. Results

Providing sufficient water for consumptive use (e.g., municipal, industrial) was the
primary objective of the water management optimization problem developed for the
Pas River case study. Simulation results for the different diversion points (i.e., DP1 and
DP2) showed that the overall annual water demand for municipal use (calculated in
Hm3/y) set as the demand objective was fulfilled under all the considered scenarios
(see Tables S1 and S2 in the Supplementary Materials). The total annual water volume for
municipal use increased with the increased availability of river discharge and was at its
highest value under the wet scenario conditions. On the other hand, e-flow requirement
objectives (i.e., R1–R6) scores showed very small deviations (in their normalized values)
to the test runs (reference scores of the undisturbed hydrograph; see Tables S3–S8 in the
Supplementary Materials). Test scores different from zero indicated that the original input
hydrological conditions did not meet the requirements. This means that additional pressure
on the target Biological Groups already exists under some natural hydrological variability
from one year to another. The most noteworthy changes were related to the R2 objective
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scores, which showed a linear trade-off with the municipal water supply objective (see
Figure 8 as an example, other results available at https://doi.org/10.6084/m9.figshare.14
230553 (accessed on 16 April 2021); [84]). For the remaining optimization objectives, the
trade-off pattern was characterized by non-homogeneous behavior to the supply objective
gradient pattern. This could be due to the stricter nature of the penalty requirement
assigned to the objective.

Figure 8. Heatmap showing the sorted normalized objective functions scores (on the y-axis) for the
e-flow requirements (BG1 = Biological Group 1; BG2 = Biological Group 2; BG3 = Biological Group 3)
in relation to the municipal water supply objective (f1) (on the x-axis). Tile hue indicates the score
(dark green = high/best scores; light green = low/worst scores). Presented result is for run #1 for
DP1, dry scenario.

https://doi.org/10.6084/m9.figshare.14230553
https://doi.org/10.6084/m9.figshare.14230553
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It is important to note that the reference e-flow requirement scores (R1–R6) for the
natural (or undisturbed) river flow showed that in few cases, the hydrological condi-
tions for the selected Biological Groups were sub-optimal (i.e., higher than zero) also
before the trading of water with municipal diversion (see Tables S3–S5 and S6–S8 in the
Supplementary Materials). This means that the reference natural discharge conditions used
could have in, some cases, contributed to increasing the score for the Biological Groups.

The results also indicate that the daily availability of water for abstraction varied
throughout the year; what we explored from the model results was this day-to-day vari-
ability in the water quantity for municipal diversion defined as optimized discharge (OD).

To reduce uncertainty in the OD range values, the optimization problem was run under
three different hydrological scenarios (i.e., dry, normal, and wet) and ten independent
times for each diversion point and each hydrological scenario. Each model run output a
batch of day-to-day OD annual series when run for a specific scenario. The results indicate
that despite the stochastic nature of the genetic algorithm (as it uses random input values
of the potential optimized diversion volumes), the prevailing pattern of the optimized
diversion volumes repeats across the different runs for the same scenario (see Figure 9, for
example, which depicts the outputs for DP1 under the dry scenario).

Figure 9. Comparison of the results for each run of the optimization model showing the pattern of the normalized average
daily diversion percentage values (expressed as the daily percentage of the natural daily discharge). Yellow (1) tiles
correspond with the highest daily percentage, whereas blue (0) tiles correspond with the lowest optimal daily diversion.
Presented results are for the DP1 under the dry scenario.

The shades of the tiles are in agreement for the majority of the days of the year,
meaning that the algorithm was able to converge at each run to similar solutions and,
hence, the model identified a prevailing trend of optimal solutions (i.e., the daily optimal
amount of water for diversion) distribution throughout the different model runs. The
results of the time window from the end of August to the beginning of October are more
heterogeneous (i.e., the daily OD value changed significantly between each run). This
indicates a greater variability in the average daily diversion values identified by the model.
Similar patterns across the model runs emerged for the other diversion point and scenarios
(see Figures S2 and S3, Supplementary Materials).

To provide a greater understandability and to explore the obtained results, we av-
eraged the batch of daily diversion percentages for each scenario to obtain the mean
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daily percentages of the natural discharge (%OD) as shown in Figure 10 for DP1 under
the dry scenario. The %OD (optimized discharge expressed as a percentage share of the
natural flow) changed significantly daily. The results across the diversion points (see
Supplementary Materials, Figures S4 and S5) showed that for the majority of the year, over
50% of the daily river discharge was not required for the selected environmental criteria.
The highest %OD volumes were more evident in the first half of the year (January–June)
than the second half: this quantity decreases as river natural flow declines because of
the low flow season. Larger variability in abstraction shares characterized the months
from September to November, which can be attributed to the variability in precipitation
distribution upstream causing peaks in the river discharge in correspondence with the
diversion points.

Figure 10. Comparison between the residual percentage of natural daily flow (green—%RF) remains in the river and the
average daily discharge optimized for diversion (purple—%OD). The diverted discharge was calculated as a daily average
for all 10 runs of the model. Presented results are for the DP1 under the dry scenario.

By considering the results from the analysis of the individual simulations, we com-
pared the averaged results to the natural discharge in the river. Given the size of pro-
cessed information available from simulation runs we summarized all of the results in
Tables S9 and S10 (Supplementary Materials). To understand the trends throughout the
year, we plotted the value of the unaltered river flow with the flow portion optimized
for diversion (see Figure 11 as an example for the DP1 under the dry scenario; complete
results are available in Figures S6 and S7 in the Supplementary Materials). The OD mainly
followed the profile of the natural discharge, which corresponded with the upper edge of
the line, for the greatest part of the year. Thicker lines and, hence, a greater quantity of
water that should remain in the river, were concentrated in the driest days of the year. This
is plausible due to the required objectives of maintenance of base flows. It is important to
note that days where the width of the line is thinner indicate that the optimized discharge
almost matches with the totality of the natural discharge. This is because the lower edge
represents the ideal amount of water that can be abstracted. It represents an indication of
the greatest water amount available for daily abstraction, the latter being an average of the
results across all the runs. The reason for the presence of unmatched discharge (i.e., greater
gap) can be related to the specific scenario used (i.e., the representative hydrograph) and,
hence, associated with the hydrological model used to generate the data.
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Figure 11. Flow series showing the magnitude of gap of the daily optimized diverted discharges
with respect to the natural discharge for the DP1 under the dry scenario. Greater thickness indicates
the highest trade-off between the natural discharge and water for municipal use.

4. Discussion
4.1. Trade-Offs between Diversion and Biological Groups’ Requirements: Variability in the Daily
Flow Available for Diversion

Considering water demand fulfillment needs, the optimization of daily flow for
diversion evidenced periods of major and minor daily average trade-offs (expressed as the
quantity of flow that is available for abstraction against the quantity of flow that should
remain in the river), meaning that periods of lower availability of water for diversion were
present. Our optimization assessment shows that trade-offs of human water use against
the water needed to protect the ecosystem were not manifesting at the annual scale (i.e.,
modification of the total quantity of water that can be abstracted annually) but rather, the
trade-off was more evident at the daily scale. Since the magnitude of this trade-off varied
across the solutions found by the algorithm (during each run), the selection of one solution
over another was usually required. However, the process of option selection remains
a prerogative of the decision maker, as it requires appropriate engagement strategies
management preference elicitation [85]. The results presented in this study (as average
daily diversion values) allow showing the variance of the daily threshold defining the
optimized abstraction throughout the year. Knowledge of these daily trade-off thresholds
can serve as guidance for the daily diversion operations throughout the year. They can also
guide decisions on the timeframes for planning and revision of the management objectives
that will strengthen the overall water management capacity [86]. Further inclusion of other
statistical information (e.g., standard deviation) would be beneficial in supporting the
judgment underpinning diversion decisions.

Aiming at reducing alteration of surface water diversion assumes that the input
hydrological scenarios (related to an undisturbed hydrograph) fulfill the needs of the
ecosystem. In our study, the considered background hydrological conditions (i.e., input
scenarios to the optimization model) were not scoring optimally (i.e., zero) for the entire
set of objective functions as required by the targeted biological groups. On one hand,
this outcome could be related to the type of data and the design of the assessment; it
also suggests that climate change effects, leading to more frequent droughts and reduced
amounts of rainfall, will increase the pressure and, hence, risk the conservation of the
targeted biological groups. Both the climate and geomorphological features (e.g., slope,
vegetation type) influence the local seasonal change in river discharge and can affect, for
instance, the physio-chemical river properties [87,88]. Changes in land use and land cover
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at the local and regional scale influence the runoff and hydrology [89,90]. This suggests that
both objective scores and the magnitude of daily trade-offs can be reduced (i.e., reduced
variability in water available for diversion) if additional measures on the local scale are
implemented (such as replacing farmlands with forest cover). The consideration within
the optimization assessment for adaptive water management of additional hydrological
scenarios based on land use/land cover changes would provide insights into alternative
water management practices in the face of climate change conditions.

4.2. Advantages: The Role of Simulation Conditions for the Results

The application of optimization approaches shows several advantages for water
management such as the chance to modify prior conditions (e.g., total demand, daily
river flow). This provides the opportunity for foreseeing outcomes of decisions under
alternative scenarios improving the decision-making process. In particular, the chance
to modify the input of hydrological conditions and the defined e-flow requirements is
useful to increase the understanding of implications for diversion of alternative water
allocations for environmental needs. For example, by increasing the allocation (share
of discharge for ecological processes) or including additional biological groups or any
other sort of geomorphological or biogeochemical criteria for the achievement of a “good”
ecological status, can identify the best e-flow water management options that have the
least implications for water diversion. However, while the role of science in supporting
decision making still faces challenges, such as providing greater evidence for flow–ecology
knowledge [91], expanding the e-flow requirements for more species and other components
of the ecosystem could improve the chances of achievement of environmental goals. On the
other hand, the modification of the reference hydrological conditions (input hydrograph)
by considering the same ecological requirements could increase the resolution of the daily
diversion threshold under specific conditions. Overall, this strengthens the reliability of
daily diverted volumes identified by the model.

Another advantage of the employment of optimization approaches for fostering the
adoption of adaptive water management strategies is represented by the chance of incor-
porating e-flow requirements within management decision assessment regardless of their
type (i.e., as minimum flows, natural flows, indicators of hydrologic alteration). More-
over, environmental data are not always readily available in a format suitable for decision
making. E-flows can be expressed both as objectives or constraints depending on the
modeling capacity and ability [44]. However, each e-flow modeling approach used within
the optimization assessment would also require an appropriate results communication
strategy [92].

Despite models that have great potential for socio-ecological research [93], each mod-
eling exercise requires prior conditions (e.g., scenarios) to be stated in the model, and the
results remain highly linked with those conditions. Optimization assessment for water
management is no exception, but optimization results exploration offers ground for dis-
cussion of decisions and is meant to convey information useful for the decision-making
process [94]. This particularly suits the adaptive process.

4.3. Limitations: Sources of Uncertainty Defining the Optimal Diversion

Systemic, data-related, and epistemic uncertainties affect socio-environmental model-
ing [95]. We identified the systemic uncertainty to be the one related to the search approach
(e.g., stochastic) and the number of model runs. Few studies have addressed the question
of the number of simulation runs, and the best choice is represented by the “minimum
number of runs” [96], especially when simulations are particularly expensive. While ten
runs for each hydrological scenario allowed defining the prevailing annual pattern of water
diversion in our study, we believe that a further increase in simulation runs, especially
in the case of heuristic methods such as genetic algorithms, would allow reducing the
uncertainty of results, increasing the probability of ecological objectives achievement.
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Data-related uncertainty is related to both present condition outcomes and future
scenarios. In our study, in the absence of real flow data, simulation data led to the appli-
cation of a precautionary approach that considered the abstraction of the lowest amount
of flow that could be diverted daily. To a certain extent, this could represent the best
available strategy for resource management. However, knowledge of the extent of the “safe
abstraction range” and the associated probability would contribute to enhancing decision
making, especially to climate change-induced changes in the hydrological behavior of
the river flow [97] which are difficult to quantify and track. Methods that could address
the unpredictability of multiple flow conditions on a daily scale, such as Monte Carlo
sampling [98], could be used to generate many input hydrological conditions on which
to run the optimization algorithm. However, this will inevitably increase post-processing
effort (e.g., related to data volume).

Lastly, because of the complexity of the water management problem and optimization
problem, the use of expert opinions and knowledge is both a precious source of information
in different situations (e.g., urgency of implementation of management actions, limited
evidence) and a source of uncertainty (epistemic) linked with the subjective view of the
knowledge [99]. In the case of our study, epistemic uncertainty relates to both optimiza-
tion assessment design and expert knowledge. In the first case, this can be improved by
creating alternative assessment designs (e.g., changing objectives, solution search meth-
ods, scales; [44,50]) and by expanding our knowledge of eco-hydrological relationships
and ecosystem needs or by extending the pool of experts enquired in the second. Addi-
tionally, participatory approaches for the definition of objectives and optimal solutions
could support the identification of the appropriate scales and design for the management
problem [100].

4.4. Implications of the Results for the Diversion Planning and the Adaptive Management
Approach in the Pas River

Optimization can be used to translate knowledge of flow conditions that support
environmental processes into information used by decision-makers. This information then
supports strategies and maintenance of long-term goals for river management [101] under a
range of possible hydrological circumstances (i.e., below normal, normal, or above-normal
conditions). The great variability in the amount of flow throughout the year that can be
diverted daily for consumptive use suggests that the definition of the monthly targets for
municipal consumption (in Hm3) would be a much more appropriate management objec-
tive compared to the targeted annual water allocation volumes for the local scale. The main
reason is that, naturally, the river does not offer stable hydrological conditions for diversion
throughout the year at different locations. Reducing the time window of consumptive
allocation validity could incorporate these circumstances, preventing overexploitation.
River water can be diverted during periods of greater availability and temporarily stored
for the next period, but water collection and storage systems would eventually require
investments and additional costs [102].

Active water management is a management approach that calls for ongoing decisions
concerning the water required for environmental needs (see [24,94]) while aiming for long-
term management goals (i.e., good ecological status and human development; [94]). This
approach suits the case of regulated rivers such as the Pas River in which at least certain
flow conditions need to be considered as the rightful reserve for the ecological processes.
This means that certain flexibility of design of the environmental objectives within the
optimization assessment should consider thresholds and parameters that can be adjusted
based on ongoing monitoring outcomes. The marked difference in natural flow conditions
and, consequently, abstraction conditions, between seasons, suggests that the seasonal
scale could potentially represent the minimum time scale over which active management
should be implemented. For example, fish species respond to hydrological cues linked
with the seasonal variation of flow. When considering water requirement objectives for fish
biological groups, evaluation of the achievement of the expected phenological event from
monitoring results is needed to adjust the threshold or the timespan for the environmental
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water allocation for the next phenological period. This would ensure species conservation
and ecological restoration. Moreover, by increasing the scale of the assessment (i.e., expand
the analysis to multiple reaches or the entire basin) more detailed information can arise
and management planning can be extended over larger portions of the river. However,
while optimization allows assessment of both advantages and disadvantages of specific
management decisions, clear links between monitoring strategy and management goals
still need to be stated before the assessment phase to ensure the success of the adaptive
management approach [103,104].

Overall, the optimization assessment proposed in this study represents an opportunity
to investigate what implications arise from the incorporation of ecological needs within
a diversion plan. Results should not be considered as absolute, but they rather serve to
highlight that trade-offs in water availability are more linked to the daily scale (i.e., daily
diversion) than the annual scale (overall volume diverted in a year). Increased chances
of results uptake by the decision and policymakers would need an extended assessment
on the basin-scale and multiple simulations with sensitivity analyses. Furthermore, this
study showed an approach of e-flow requirements definition within the optimization
assessment to extract information useful for the promotion of an adaptive management
process. Besides, as the provision of e-flows is a means to restore the benefits of naturally
flowing rivers, the optimization assessments can also match the exploration of actions for
the eventual restoration of ideal ecological conditions. In this case, the advancement of the
available eco-hydrological knowledge to be used to build the optimization model would
significantly improve the chances of restoring natural conditions while meeting supply
objectives. The proposed assessment can be applied to other basins and locations but would
inevitably need the adjustment of e-flow requirements (i.e., thresholds and parameters)
to match local ecosystem needs. However, regardless of its usefulness in supporting the
adaptive process, the lack of proper link definition between the e-flow requirements and
the subsequent monitoring stage within an optimization assessment can jeopardize the
success of an adaptive management approach [21].

5. Conclusions

This study illustrates how an optimization assessment offers the opportunity for
designing e-flow requirements in a format suitable for informing water management and
at the same time offers support for the commitment to all the stages of the Adaptive Water
Management Cycle (AWMC). We demonstrated that the optimization process structure
(e.g., limiting conditions definitions and objectives) matches the presented approach ap-
plied for e-flow requirements incorporation. In particular, the presented approach suits
the need to anticipate management outcomes by exploiting the hydrological thresholds
as limiting conditions for river water diversion. On one hand, the advantages of the op-
timization assessment as an instrument for mediating the incorporation of e-flows lie in
the opportunity of tailoring e-flow requirements both to the available data and modeling
capability. On the other hand, the need to pre-define conditions (e.g., input hydrological
information, supply volume) can expose results to different levels of uncertainty. Lastly,
we identified few opportunities for the improvement of the management approach in
the case study area: the reduction of the allocation volume temporal window during
diversion planning such as by setting monthly caps on water allocation for consumptive
use based on seasonally averaged river discharge would allow incorporating natural flow
variability (for ecosystem needs) and prevent overexploitation during periods of scarce
flows. Future applications of the optimization assessment in support of Adaptive Water
Management would benefit from an improved characterization of the reference river flow
conditions through the inclusion of approaches to reduce uncertainty (e.g., employment
of input data-sampling techniques), the incorporation of alternative land-use/land cover
information and climate change scenarios. Moreover, stronger links between considered
e-flow requirements and monitoring planning would push the adaptive process further
towards the closing of the AWMC. Overall, this would reduce the risk of failure of e-flow
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requirements incorporation in the management program and contribute to improving
management actions outcomes.
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Appendix A

Appendix A.1. Municipal Water Supply Objective

The aim of this objective, OS, was the maximization of the sustainable yearly water
supply for municipal use. A target water supply value (for each diversion point) based
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on official water use reports was considered to delimit the ideal withdrawn volume. The
objective function was expressed as the minimization function of the normalized difference
between the municipal water volume demand and the actual river water volume supply:

OS : min f (y) =
VtotD −∑365

i=1(yi·τ)
VtotD

(A1)

where:
i ∈ I = {1, . . . , 365} days of the year;
yi diverted fraction (m3/s) at day i of the year, yi ∈ R+

0 ;
τ constant, referring to the daily timeframe of diversion;
VtotD total diverted volume in m3 per year (the target supply).

Subject to:
Daily diverted discharge limit

0 ≤ yi ≤ xi (A2)

where:
xi natural flow (m3/s) at day i of the year, xi ∈ R+

0
The design of function (1) hence allows checking if the supply requirement has been

met (represented by a minus sign) and, eventually, checking the ratio of the resulting
supply after optimization to the required supply (i.e., the proportion of existing water for
human consumption for demanded water).

Appendix A.2. Objectives for Biological Group 1

The four objectives (i.e., OR1, OR2, OR3, OR4) are expressed as minimization function
of the normalized sum of scores for each e-flow requirement.

Let qi xi − yi be the residual water flow (m3/s) in the river:

OR1 : min f (q) =
∑n

i=1

(
1− RR1

i
αh

)
n

, i ∈ A (A3)

RR1
i =

{
0 ,
αh − qi,

,
i f qi − αh > 0, i ∈ A
otherwise

(A4)

where:
RR1

i score value for the day i, when i ∈ A;
A set of days of the year relevant for R1;
n number of days in the considered set, n ∈ N∗ = {1, . . . , 61};

αh
reference value for the discharge threshold (in m3/s) corresponding to the Q95; flow
value for the given hydrograph h.

OR2 : min f (q) = 1−
RR2

i+k
kc

, i + k ∈ B (A5)

RR2
i+k =

{
kc,
NR2

i+k,
,

i f NR2
i+k ≥ kc, i + k ∈ B

otherwise
(A6)

NR2
i+k = ∑

qi+k ≥ βh

qi+k, i + k ∈ B, k ∈ {0, . . . , 21} (A7)

where:
RR2

i+k reference factor for R2 penalty score;
NR2

i+k number of days i + k, when i ∈ B;
B set of days of the year relevant for R2;
k range of consecutive days representing the optimal time length for R2;
kc constant, target number of days;

βh
reference value for the discharge threshold (in m3/s) corresponding to the FRE3
flow value for the given hydrograph h.
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OR3 : min f (q) = 1−
RR3

i+w
wc

, i + w ∈ C (A8)

RR3
i+w =

{
wc,
NR3

i+w,
,

i f NR3
i+w ≥ wc, i + w ∈ C

otherwise
(A9)

NR3
i+w = ∑

qi+w ≥ αh

qi+w, i + w ∈ C, w ∈ {0, . . . , 45} (A10)

where:
RR3

i+w reference factor for fish hatching score;
NR3

i+w number of days i + w, when i ∈ C;
C set of days of the year relevant for R3;
w number of consecutive days representing the optimal time length for R3;
wc constant, target number of days for R3;

αh
reference value for the discharge threshold (in m3/s) corresponding to the Q95; flow
value for the given hydrograph h.

OR4 : min f (q) =
∑n

i=1

(
1− RR4

i
αh

)
n

, i ∈ D (A11)

RR4
i =

{
0 ,
αh − qi,

,
i f qi − αh > 0, i ∈ D
otherwise

(A12)

where:
RR4

i score value for the day i, when i ∈ D;
D set of days of the year relevant for R4;
n number of days in the considered set, n ∈ N∗ = {1, . . . , 92}.

αh
reference value for the discharge threshold corresponding to the Q95 flow value for
the given hydrograph h.

Appendix A.3. Objective for Biological Group 2

Let qi xi − yi be the residual water flow in the river:

OR5 : min f (q) = 1−
RR5

i
γR

, i ∈ E (A13)

RR5
i =

{
γR,
NR5

i ,
,

i f NR5
i ≥ γR, i ∈ E

otherwise
(A14)

NR5
i = ∑

qi ≥ γh

qi, i ∈ E (A15)

where:
RR5

i reference factor for R5;
NR5

i number of days i, when i ∈ E;
E set of days of the year relevant for R5;

γR
constant, number representing the optimal occurrence of events for the promotion of
R5, γR ∈ N∗;

γh
reference value for the discharge threshold corresponding to the Q75 flow value for
the given hydrograph h.

Appendix A.4. Objective for Biological Group 3

Let qi xi − yi be the residual water flow in the river:

OR6 : min f (q) = 1−
RR6

i+u
σR

, i + u ∈ E (A16)
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RR6
i =

{
σR,
NR6

i+u,
,

i f NR6
i+u ≥ σR, i + u ∈ E
otherwise

(A17)

NR6
i = ∑

qi+u≥ σ

qi+u, i + u ∈ F, u ∈ {0, . . . , 70} (A18)

where:
RR6

i reference factor for R6;
NR6

i number of days i, when i ∈ E;
u range of days representing the optimal time length for R5;
F set of days of the year relevant for macrophytes seedling survival;

σR
constant, number representing the optimal number of days for the promotion of
primary producers’ density and growth σR ∈ N∗;

σ
reference value for the discharge threshold corresponding to the 10% of the average
yearly flow calculated from the historical flow record.
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