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Abstract: Antarctic freshwater ecosystems are especially vulnerable to human impacts. Polychloro-
biphenyls (PCBs) are persistent organic pollutants that have a long lifetime in the environment.
Despite their use having either been phased out or restricted, they are still found in nature, also in
remote areas. Once in the environment, the fate of PCBs is strictly linked to bacteria which represent
the first step in the transfer of toxic compounds to higher trophic levels. Data on PCB-oxidizing bac-
teria from polar areas are still scarce and fragmented. In this study, the occurrence of PCB-oxidizing
cold-adapted bacteria was evaluated in water and sediment of four coastal lakes at Edmonson Point
(Northern Victoria Land, Antarctica). After enrichment with biphenyl, 192 isolates were obtained
with 57 of them that were able to grow in the presence of the PCB mixture Aroclor 1242, as the sole
carbon source. The catabolic gene bphA, as a proxy for PCB degradation potential, was harbored by
37 isolates (out of 57), mainly affiliated to the genera Salinibacterium, Arthrobacter (among Actinobacte-
ria) and Pusillimonas (among Betaproteobacteria). Obtained results enlarge our current knowledge on
cold-adapted PCB-oxidizing bacteria and pose the basis for their potential application as a valuable
eco-friendly tool for the recovery of PCB-contaminated cold sites.

Keywords: polychlorobiphenyls; cold-adapted bacteria; bphA gene; Antarctic coastal lakes

1. Introduction

In recent years, persistent organic pollutants (POPs) have attracted attention for their
rapid spread worldwide, without sparing even areas that are considered pristine, such
as the Antarctic continent. The primary source of pollutants threatening Antarctica is
the transport by oceanic or atmospheric route even from very distant areas [1,2], and the
subsequent deposition and persistence intensified by the global warming and climate
change phenomena. However, anthropogenic in situ impact, due to the increasing human
presence related to scientific or touristic activities, may aggravate the contamination state.

Among POPs, polychlorinated biphenyls (PCBs) are relatively less investigated in
the polar areas. Despite the numerous measures to protect the Antarctic environment,
the presence of PCBs has been evidenced since the 1960s in biotic and abiotic Antarctic
matrices [3]. Their occurrence has been proven in the Antarctic marine (including seawater,
sediment, and organisms) [4–11] and terrestrial (e.g., lakes, permafrost, surface snow)
environments [12–19].

The fate of PCBs in the environment is tightly affected by bacterial degradation.
Thanks to genetic and physiological potentials in remediation processes, bacteria play a
pivotal role in the transfer of pollutants within the trophic net [20,21]. By considering
the increasing evidence for microbial potential in the degradation of a wide range of
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pollutants, bacteria thriving in cold environments are claimed as promising candidates
for low-temperature bioremediation strategies [22–25]. Indeed, psychrotrophic bacteria
possess unique metabolic features to cope with extreme and fluctuating conditions such as
low nutrient availability, cold temperature, and dryness.

If the cryosphere is considered as a natural reservoir for organic and inorganic con-
taminants on a large spatial and temporal scale [1,26–28], Antarctic lakes can be considered
collectors of pollutants. In fact, in the austral summer and in coastal areas, Antarctic lake
basins receive the flows coming from the melting ice and snow flow [29]. These flows carry
solutes and particulate material as well as contaminants, which cannot be turned away in
absence of physical outlets [30]. Even if PCBs are of environmental concern in polar areas,
Antarctic freshwater systems have been poorly investigated for PCB contamination. The
first evidence of PCB occurrence in Antarctic lakes dates to 1982, when Tanabe et al. [31]
detected them in the ice and water of a lake in the vicinity of the Japanese Antarctic station.
Further findings occurred in lake and river sediments from James Ross Island [32].

The Terra Nova Bay (Northern Victoria Land, Antarctica) hosts several lakes, mostly
of limited extension and with a depth not exceeding 4 m. The Edmonson Point area is
located on the eastern slopes of the Melbourne volcano, where there are about ten small
lakes distributed in three small deglaciated sites. Most of them are placed in an area hosting
a large Adélie penguin colony. In these regions, it is common to observe surface flowing
waters due to solar radiation that heats the volcanic rocks during the summer [33]. The
occurrence of some inorganic pollutants, e.g., mercury and cadmium, was highlighted
in mosses in the area, and direct (marine aerosol) and indirect (seabird guano) inputs
from the sea together with volcanic emissions have been suggested as main sources for
Edmonson Point terrestrial ecosystems [34]. Studies related to the occurrence of PCB
congeners in the Edmonson Point area (e.g., snow, lake sediment and water, mosses) were
recently reported [35,36]. The concentration of seven indicator PCBs increased by about
20% between the early and the complete melting of ice in lakes at Edmonson Point [35].
In sediment samples, hexachlorobiphenyls generally were the most abundant class of
homologs, exhibiting a shift of the profile towards heavier compounds in comparison to
water samples [35]. The PCB153 congeners was the major compound among indicator
PCBs, as in Adélie penguin eggs collected from the same site [10]. Despite this, few data are
available about the occurrence and growth of cold-adapted bacteria in the presence of such
persistent contaminants, their degradation potential, and even less is known on this issue
in the case of Antarctic freshwater environments. Moreover, PCB-driven shifts in bacterial
communities, and the possible correlations with the abiotic matrices, i.e., sediment, water,
ice, have been scarcely investigated. Here, this paper was aimed at providing first insights
on PCB-oxidizing bacteria from freshwater polar environments through the achievement
of some objectives, namely (i) the isolation and characterization of cold-adapted PCB-
oxidizing bacteria from water and sediment of four different Antarctic lakes lying in the EP
area, and (ii) the search for specific catabolic genes involved in bacterial PCB degradation
as a time-reducing pre-screening strategy.

2. Materials and Methods
2.1. Sampling Area

Edmonson Point (EP) is a wide ice-free area on the eastern slope at the foot of Mount
Melbourne along the west side of Wood Bay (Northern Victoria Land, Antarctica). It has
been designated an Antarctic Specially Protected Area (ASPA 165) because of its terrestrial
and freshwater ecosystems. The volcanic lithology and substrates are nutrient-enriched
(0.5–1.6% C org) by colonies of Adélie penguins, Pygoscelis adeliae, and south polar skuas,
Stercorarius maccormicki. Weddell seals, Leptonychotes weddellii, breed on the adjacent sea-ice.
EP freshwater habitats support algae, cyanobacteria, and bryophytes, while terrestrial
vegetation includes epilithic lichen and moss communities. Temperature generally ranges
between −30.3 and +18.6 ◦C, with an amplitude of about 49 ◦C [37].
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2.2. Sampling and Preliminary Treatment of Samples

The sampling of surface water (n = 4) and sediment (20–25 cm depth; n = 4) was
carried out at four lakes (EP1 to EP4) lying in the Edmonson Point area (Figure 1). Sampling
activities were carried out in the morning.
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Figure 1. Location of lakes sampled at Edmonson Point.

Lakes EP1 and EP2 were covered by ice at sampling time. Temperature, pH, dissolved
oxygen, salinity, conductibility, and temperature of water were measured at each lake
(Table 1). A deep description of the geochemical features of the lakes was previously
reported by Porcino et al. [38]. All samples were aseptically collected and preliminary
processed after sampling (approximately 2 h) in the laboratory of the Mario Zucchelli
Station (MZS), as described in the following sections.

Table 1. Physico-chemical parameters measured in lake water at each sampling time.

Lake
ID Reported Name Coordinates Altitude

(m)
Temperature

(◦C)
Dissolved O2

(ppm) pH Conductivity
(µm s−1) Salinity

EP1 Edmonson Point 13 74◦20′ S–165◦08′ E 0 4.7 9.3 6.5 1442.0 5
EP2 Edmonson Point 14 74◦20′ S–165◦08′ E 20 1.1 10.6 9.1 5.1 8
EP3 Edmonson Point 15 74◦20′ S–165◦04′ E 3 3.6 9.5 8.1 51.3 5
EP4 Edmonson Point 16 74◦22′ S–165◦06′ E 10 0.5 8.5 7.4 223.0 5

2.3. Bacterial Isolation and Characterization
2.3.1. Set-Up of Bacterial Cultures

For the initial enrichment, biphenyl (BP) served as the sole carbon and energy source
for growth. Aliquots (1 mL) of a stock solution (75 mg mL−1) of BP dissolved in chloroform
were added to empty Erlenmeyer flasks and the solvent was allowed to evaporate [39].
Then, 75 mL of each water sample was added to BP-containing flasks (final concentration
0.1%, wt/vol). In the case of sediment, 1 g of wet samples were used to inoculate 75 mL
Bushnell Haas (BH; Difco) in BP-containing flasks (final concentration 0.1%, wt/vol). All
cultures were incubated aerobically at 4 ◦C with shaking at 175 rpm for 30 days. Aliquots
(100 µL) of each enrichment were plated on solidified BH. BP was added as crystals
(0.1 g) in the Petri dish lid after inoculation. Replicate plates were incubated at 4 ◦C for
30 days. BH agar plates without BP were used as a control. For bacterial isolation, colonies
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were randomly selected from agar plates, picked, and subcultured three times under the
same conditions. Isolates were named with the lake ID followed by the isolation number
(e.g., EP2-1 was isolate 1 from lake EP2).

2.3.2. Bacterial Growth in the Presence of Aroclor 1242

Bacterial growth in the presence of polychlorobiphenyls (PCBs) was tested in liquid BH.
Aroclor 1242 (Sigma-Aldrich, Milan, Italy; 100 ppm in dichloromethane) was added as sole
carbon and energy source (final concentration 0.1%, wt/vol) [25]. Aroclor 1242 is a mixture of
PCB congeners (ranging from dichloro- to hexachlorobiphenyls) made of 12 carbon atoms in
the biphenyl molecule and containing 42% chlorine by weight [40]. Cultures were incubated in
duplicates at 4 ◦C for one month. The ability to use PCBs as growth substrates was evaluated
according to the degree of turbidity or the appearance of cellular flocs in the test tubes. Optical
density (OD) was also spectrophotometrically evaluated at 580 nm (OD580; UV-mini-1240,
Shimadzu, Milan, Italy). The uninoculated medium was incubated in parallel as a negative
control. PCB-oxidizing isolates belong to the Italian Collection of Antarctic Bacteria of the
National Antarctic Museum (CIBAN-MNA) kept at the University of Messina (Messina, Italy)
(voucher codes MNA-CIBAN-1523 to 1559).

2.3.3. 16S rRNA Gene Amplification

Bacterial isolates able to grow in the presence of PCBs as the sole carbon source were
identified by the 16S rRNA gene sequencing. For DNA extraction, single colonies of each
strain were picked from agar plates with a sterile toothpick, resuspended in 20 µL of sterile
distilled water, and lysed by heating at 95 ◦C for 10 min. Cell lysates were rapidly cooled in
ice, briefly centrifuged in a microcentrifuge, and directly used for PCR amplification. Am-
plification of 16S rRNA gene was performed with a thermocycler (Mastercycler GeneAmp
PCR-System 9700, Applied Biosystem, Monza, Italy) using Bacteria-specific primers 27F
(5′-AGAGTTTGATCACGGCTCAG-3′) and 1492R (5′-TACGGYTACCTTGTTACGAC-3′).
The reaction mixtures were assembled at 0 ◦C and contained 1 µL DNA, 0.4 µL of each
of the two primers (10 µM), 0.4 µL of each dNTP (10 mM), 2 µL of reaction buffer 10X,
0.4 µL of BSA (3 mg mL−1), 0.2 µL of Taq polymerase 5 PRIME (5U µL−1), and sterile
Milli-Q water to a final volume of 20 µL. Negative controls for DNA extraction and PCR
setup (reaction mixture without a DNA template) were also used in every PCR run. The
PCR program was as follows: (1) 95 ◦C for 1.30 min; (2) 5 cycles at 95 ◦C for 30 s, 60 ◦C
for 30 s and 72 ◦C for 4 min; (3) 5 cycles at 95 ◦C for 30 s, 55 ◦C for 30 s and 72 ◦C for
4 min; (4) 25 cycles at 95 ◦C for 30 s, 50 ◦C for 30 s and 72 ◦C for 4 min; (5) 72 ◦C for
10 min; (6) 60 ◦C for 10 min [25]. The results of the amplification reactions were analyzed
by agarose gel electrophoresis (1%, wt/vol) in TAE buffer (0.04 M Tris-acetate, 0.02 M acetic
acid, 0.001 M EDTA), containing 1 µg mL−1 of ethidium bromide.

2.3.4. Sequencing and Analysis of 16S rRNA Genes

Amplified products were purified using the QIAquick PCR purification kit (Qiagen,
Milan, Italy), following the manufacturer’s instructions. Sequencing was carried out
at the Macrogen Laboratory (Amsterdam, The Netherland). Next relatives of isolates
were determined by comparison to 16S rRNA gene sequences in the NCBI GenBank and
the EMBL databases using BLAST, and the “Seqmatch” and “Classifier” programs of
the Ribosomal Database Project II (http://rdp.cme.msu.edu/; 23 December 2021) [41].
Sequences were further aligned using the program Clustal W [42] to the most similar
orthologous sequences retrieved from database. Each alignment was checked manually,
corrected, and then analyzed using the neighbor-joining method [43] according to the
model of Jukes–Cantor distances. A phylogenetic tree was constructed using the MEGA 5.2
(Molecular Evolutionary Genetics Analysis) software [44]. The robustness of the inferred
trees was evaluated by 400 bootstrap re-samplings.

http://rdp.cme.msu.edu/
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2.3.5. Screening for the bphA Gene

Three different sets of specific primers were tested (Table 2). In particular, Burkholderia
xenovorans (DSM 17367) and Pseudomonas pseudoalcaligenes KF707 (DSM 10086), well known
as PCB degraders, were used for the preliminary test for the amplification of the BPH gene
from extracted DNA, and as positive controls in the subsequent bphA amplifications. DNA
from positive bacterial controls and isolates was extracted as reported above (Section 2.3.3).

Table 2. Specific primer sets used forthe detection of bphA gene.

Primer Set
(n.) Primer(s) Sequence

(5′ to 3′)
Annealing

Temperature Reference

1 BPHA1REV11150 AKW-YYC-SCC-GTC-GTC-CTG-MTC
60 ◦C [45]2BPHFWD1 GGC-TGG-GCC-TAC-GAC-ANC-GC

2 2BPHAREV1 ADV-CCS-GCB-GCC-GCB-TCH-TCG
58 ◦C [46]2BPHFWD1 GGC-TGG-GCC-TAC-GAC-ANC-GC

3 BPHA1REV11150 AKW-YYC-SCC-GTC-GTC-CTG-MTC
60 ◦C [47]BPHA1FWD1654 AAY-TGG-GCC-TAC-GAC-ANC-GC

The reaction mixtures for the primers set testing were assembled at 0 ◦C and contained
1 µL DNA, 1 µL of each of the two primers (10 µM), 0.4 µL of each dNTP (10 mM), 2 µL of
reaction buffer 10X, 0.4 µL of BSA (2.5%), 0.4 µL of Taq polymerase 5 PRIME (5 U/µL), and
sterile Milli-Q water to a final volume of 20 µL. Negative controls for DNA extraction and
PCR setup (reaction mixture without a DNA template) were also used in every PCR run.
DNA from B. xenovorans (DSM 17367) was used as a positive control. The PCR program
was as follows: (1) 95 ◦C for 5′; (2) 35 cycles at 94 ◦C for 45”, 60 ◦C for primers set n. 1 and 3,
instead 58 ◦C was used for the primer set n. 2 for 1′ and 72 ◦C for 2′; (3) 72 ◦C for 10′ [45].
For better separation of the amplified fragments, more stringent agarose gel electrophoresis
(2%, w/v) conditions were applied. Amplification products were visualized in TAE buffer
(0.04 M Tris-acetate, 0.02 M acetic acid, 0.001 M EDTA), containing 1 µg mL−1 of ethidium
bromide, and the fragment size was evaluated through the use of a 1 kb ladder (Fermentas,
Milan, Italy).

3. Results
3.1. Bacterial Isolation

Overall, 192 psychrotolerant isolates (48 isolated per lake: 24 from water and 24
from sediment) were obtained from BP-amended agar plates inoculated with BP-amended
enrichment cultures. Colony-forming units (CFU) were in the range 2.95–15 × 102 mL−1

and 1.75–18.2 × 102 g−1 in water and sediment, respectively (data not shown). A total of
57 isolates (29.7 %; 24 from water and 33 from sediment, respectively) were able to grow in
the presence of Aroclor 1242 as the sole carbon source at 4 ◦C (Table 3). OD values ranged
between 0.8 and 1.2.

Table 3. PCB-oxidizing bacterial isolates from water and sediment of four Edmonson Point lakes.

PCB-Oxidizing Isolates
(n.)

Lake ID Water Sediment

EP1 6 2
EP2 11 6
EP3 7 13
EP4 - 12

3.2. Screening for bphA Gene

Preliminary analyses, carried out to determine the best conditions for the amplification
of the A portion of the BPH gene, led to identifying the best amplification protocol in a
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modified version of that described by Lehtinen et al. [45]. The primer set n. 2, with the lower
degree of degeneration, gave the best amplification response. Indeed, the amplification
process achieved by using this primer set showed better qualitative parameters, in terms of
quantity and purity (Figure 2).
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Figure 2. The bphA gene amplification optimization test. The amplification products were visualized
on agarose gel (2%, v/v). Two certified bacterial strains were used, both having the BPH gene:
Pseudomonas pseudoalcaligenes KF707 (A) and Burkholderia xenovorans (B). This test was performed
under the same amplifying conditions changing only the annealing temperature per primer set.

By applying the best amplification protocol, a total of 32 isolates (out of 57 PCB-
oxidizing isolates; 16 and 16 from water and sediment, respectively) harbored the bphA
gene fragment as about 800 bp amplicon was obtained (Table 4).

3.3. Bacterial Identification

The affiliation of 37 (out of 57 strains) is reported in Table 4 and comparative sequence
analysis indicated that most isolates were closely related to already known and/or pre-
viously isolated bacteria (16S rRNA similarity, ≥97%). The 16S rRNA gene sequencing
of seven PCB-oxidizing isolates (i.e., EP2-10, EP1-11, EP2-11, EP2-14, EP3-26, EP3-30, and
EP3-41; Table 4), all harboring the bphA gene, gave no amplification results. The phylo-
genetic tree in Figure 3 shows the clustering of some representative isolates (highlighted
in bold in Table 4) from EP lakes. PCB-oxidizing bacterial isolates mainly belonged to
the Actinobacteria (15 and 11 from water and sediment samples, respectively), followed
by the Betaproteobacteria (four and five from water and sediment samples, respectively),
Gammaproteobacteria (one Lysobacter isolate from EP4 sediment), Firmicutes (one Planococ-
cus isolate from EP4 sediment). Actinobacteria were mainly represented by Salinibacterium
(11 isolates; exclusively from water samples) and Arthrobacter (10 isolates; mainly from
sediment samples) members. Proteobacteria, mainly affiliated to Betaproteobacteria class,
were exclusively represented by Pusillimonas members (nine isolates).
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Table 4. Phylogenetic affiliation of PCB-oxidizing bacteria from water and sediment of Edmonson
Point lakes, and occurrence of the bphA gene.

Phylum
or Class * Strain AN MNA Code Next Relative by GenBank Alignment

(AN **, Organism)
Isolation
Matrix

Hom §

(%)
bphA
Gene

BET EP1-3 OL470332 MNA-CIBAN-1523 NR116103.1, Pusillimonas ginsengisoli strain DCY25 Water 98 +
EP1-35 OL470333 MNA-CIBAN-1524 NR116103.1, Pusillimonas ginsengisoli strain DCY25 Sediment 98 +
EP2-12 OL470334 MNA-CIBAN-1525 NR116103.1, Pusillimonas ginsengisoli strain DCY25 Water 98 +
EP3-42 OL470335 MNA-CIBAN-1526 NR116103.1, Pusillimonas ginsengisoli strain DCY25 Sediment 96 +
EP3-46 OL470336 MNA-CIBAN-1527 NR116103.1, Pusillimonas ginsengisoli strain DCY25 Sediment 94 -
EP2-20 OL470337 MNA-CIBAN-1528 NR116103.1, Pusillimonas ginsengisoli strain DCY25 Water 97 +
EP2-15 OL470338 MNA-CIBAN-1529 NR116103.1, Pusillimonas ginsengisoli strain DCY25 Water 98 +
EP3-34 OL470339 MNA-CIBAN-1530 NR116103.1, Pusillimonas ginsengisoli strain DCY25 Sediment 98 -
EP1-31 OL470340 MNA-CIBAN-1531 NR116103.1, Pusillimonas ginsengisoli strain DCY25 Sediment 98 -

GAM EP4-4 OL470341 MNA-CIBAN-1532 KY476459, Lysobacter sp. strain A5-17 Sediment 99 +
FIR EP4-7 OL470342 MNA-CIBAN-1533 CP013661, Planococcus kocurii ATCC 43650 Sediment 100 -

ACT EP3-13 OL470343 MNA-CIBAN-1534 JX428856, Salinibacterium sp. ZS217 Water 99 -
EP3-15 OL470344 MNA-CIBAN-1535 JX428856, Salinibacterium sp. ZS217 Water 100 -
EP3-3 OL470345 MNA-CIBAN-1536 JX428856, Salinibacterium sp. ZS217 Water 98 -
EP1-8 OL470346 MNA-CIBAN-1537 JX428856, Salinibacterium sp. ZS217 Water 99 -
EP1-15 OL470347 MNA-CIBAN-1538 JX428856, Salinibacterium sp. ZS217 Water 99 -
EP1-16 OL470348 MNA-CIBAN-1539 JX428856, Salinibacterium sp. ZS217 Water 100 +
EP1-17 OL470349 MNA-CIBAN-1540 JX428856, Salinibacterium sp. ZS217 Water 100 +
EP3-16 OL470350 MNA-CIBAN-1541 JX428856, Salinibacterium sp. ZS217 Water 99 +
EP3-18 OL470351 MNA-CIBAN-1542 JX428856, Salinibacterium sp. ZS217 Water 99 +
EP3-21 OL470352 MNA-CIBAN-1543 JX428856, Salinibacterium sp. ZS217 Water 99 +
EP2-1 OL470353 MNA-CIBAN-1549 KM891542, S. amurskyense AP9-24B Water 99 -
EP2-43 OL470354 MNA-CIBAN-1544 MT890162, Leifsonia rubra strain G.S.5 Sediment 96 +
EP3-28 OL470355 MNA-CIBAN-1546 MT890162, Leifsonia rubra strain G.S.5 Sediment 99 +
EP3-17 OL470356 MNA-CIBAN-1545 MH482237, Leifsonia rubra strain 4ABZ17 Water 99 +
EP2-2 OL470357 MNA-CIBAN-1547 MK660300, Leifsonia sp. strain SER12 Water 99 -
EP2-8 OL470358 MNA-CIBAN-1548 KY476591, Leifsonia sp. strain F3-8 Water 99 +
EP2-32 OL470359 MNA-CIBAN-1550 KR023886, Arthrobacter antarcticus strain TBQH1 Sediment 99 +
EP2-46 OL470360 MNA-CIBAN-1551 KR023886, Arthrobacter antarcticus strain TBQH1 Sediment 99 +
EP2-31 OL470361 MNA-CIBAN-1552 KR023886, Arthrobacter antarcticus strain TBQH1 Sediment 99 +
EP3-44 OL470362 MNA-CIBAN-1553 MW295493, Arthrobacter sp. strain Y36 Sediment 99 +
EP3-29 OL470363 MNA-CIBAN-1556 MW295493, Arthrobacter sp. strain Y36 Sediment 99 +
EP1-13 OL470364 MNA-CIBAN-1554 MH018889, Arthrobacter sp. strain Kopri-28 Water 99 +
EP4-11 OL470365 MNA-CIBAN-1555 AB920568, Arthrobacter alpinus strain S6-3 Sediment 99 -
EP2-42 OL470366 MNA-CIBAN-1557 MW960234, A. livingstonensis NJ-QEDSD-9-C Sediment 100 +
EP3-27 OL470367 MNA-CIBAN-1558 MT622202, Arthrobacter sp. strain R16 Sediment 99 +
EP3-43 OL470368 MNA-CIBAN-1559 MT622202, Arthrobacter sp. strain R16 Sediment 100 +

EP3-26, EP3-30, EP3-41 Unidentified Sediment – +
EP2-10, EP1-11, EP2-11, EP2-14 Unidentified Water – +

* BET, Betaproteobacteria; GAM, Gammaproteobacteria; FIR, Firmicutes; ACT, Actinobacteria; ** AN, accession
number; § Hom, homology.

The Actinobacteria group clustered in three main branches: the first one including
isolates strongly related to the genus Salinibacterium, the second branch with members in
the genera Leifsonia and the third one including isolates strongly related to Arthrobacter. The
Proteobacteria clustered into the Gamma- and Betaproteobacteria. All the Betaproteobacte-
ria formed a cluster formed by isolates strongly related to the genus Pusillimonas, while
Gammaproteobacteria were represented by the single related Lysobacter strain.
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4. Discussion

The increased melting of the cryosphere, strictly dependent on climate warming, is
causing an increased release of contaminants in the polar regions, thus becoming secondary
sources of contaminants, including PCBs [27]. Microbial communities are very sensitive
to changes in environmental conditions so that they can be considered useful bioindi-
cators. The assessment of the genetic potential for contaminant degradation, as well as
the occurrence of microbes with degradation ability, usually indicates the presence of the
relevant contaminants. Despite this, the role of microbial communities in the fate of polar
contamination has been identified as a knowledge gap [48]. Our current knowledge on the
PCB oxidation by bacteria from polar areas is still fragmented. PCB degradation potential
was previously reported, for example, for bacteria isolated from Arctic soils, mainly in
the Canadian Arctic [49–52], cryoconite holes [53], marine sediment [39], and freshwater
systems [54]. In Antarctica, the oxidation or degradation of PCBs at low temperatures
was reported for bacteria from seawater [25,55,56] and marine sediment [20,57], soils [58],
and hypersaline lake brines [59]. In this study, we first explored the occurrence of PCB-
oxidizing bacterial strains from water and sediment of Edmonson Point lakes, where POPs,
including PCBs, were detected [14,60]. The 29.7% of total isolates showed the ability to
grow in the presence of Aroclor 1242 as the only carbon source, with a higher yield in terms
of PCB-oxidizing strains from sediment than water samples (25.5 and 18.6% of positive
strains from sediment and water samples, respectively). Such percentages were higher
than those previously reported for Antarctic marine matrices (Refs. [20,25]), but similar to
the value obtained from lake brines [29.8% of total isolates] [59]. This finding may suggest
that microbial communities inhabiting Antarctic lakes and ponds are better adapted to the
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presence of contaminants, probably due to the atmospheric transport and deposition of
PCBs in the ice and snow by which lakes and ponds are affected after melting processes
during summer. However, it is noteworthy that, differently from previous investigations,
the enrichment procedure with biphenyl possibly stimulated the growth of PCB-oxidizing
bacteria, thus allowing the selection of PCB degraders, and confirming the pollution-caused
induction effect of more specific microorganisms within the total community [61,62].

Proteobacteria and Actinobacteria are well-known degraders of POPs. Among Pro-
teobacteria, cold-adapted members of the genera Pseudoalteromonas, Psychrobacter, and
Pseudomonas (all Gammaproteobacteria) from polar areas were reported as PCB degraders
(Refs. [20,25,49,50]), whereas PCB-degrading Actinobacteria were generally Rhodococcus
members (Refs. [55,56]). The enrichment procedure adopted in this study led to the isola-
tion of PCB-oxidizing isolates mainly affiliated to the genera Pusillomonas and Arthrobacter,
already reported as PCB degraders, even if not in cold areas [63,64]. This was not the case
for Salinibacterium members as a report exists on their capability to degrade PCBs at low
temperature by Salinibacterium spp. Isolated from Arctic sediments [39]. Interestingly, we
also detect isolates belonging to bacterial genera (i.e., Leifsonia, Planococcus, and Lysobacter)
that have been never reported as PCB-degraders.

The Bph operon contains the genes bphA1A2A3A4-bphB-bphC-bphD [65], but some mi-
croorganisms have a different operon organization in genes number and sequence [66,67].
The bphA gene encodes for the first enzyme of the Bph pathway and is the major deter-
minant of PCB degradation, i.e., the biphenyl dioxygenase. Its presence may provide
information about the real ability of bacterial strains to degrade PCBs. Interestingly, in this
study the bphA gene was detected in 56.1% of isolates growing on Aroclor 1242, revealing a
strong potential of autochthonous bacterial population of Antarctic lakes for aerobic PCB
degradation. However, a possible underestimation occurred as primers used for the gene
amplification were degenerated or the gene was possibly harbored by plasmids, whose
extraction and analysis were not included in this study. Future analyses will be devoted
to deepening this aspect and further optimizing the amplification protocol, in order to
confirm the findings here reported or to update them for further insights. Refining molecu-
lar methods is a key approach to search for specific metabolic abilities and represents an
excellent screening tool to identify the presence of the targets of interest, within both the
cultivable and uncultivable fractions of a microbial community.

The development of bioremediation strategies requires the understanding of the
pollutant-degrading microorganisms’ potential in the environment, by assessing their
physiology and roles [68]. The search for new cold-adapted PCB-degrading bacteria in
polar habitats is surely interesting for bioremediative purposes, especially in contaminated
Antarctic environments where the introduction of non-native species is forbidden.

5. Conclusions

Data on the chemical contamination of Antarctic lakes and the occurrence of cold-
adapted bacteria specialized in contaminant removal are scant. This is even more true in the
case of PCB occurrence in Antarctic freshwater systems, and the isolation of PCB-oxidizing
bacteria. As natural collectors of several pollutants and sensitive ecosystems, such systems
are important to study models also in relation to the climate change effects. Overall,
our findings highlighted the potential of Antarctic microbial communities in the aerobic
degradation of PCBs, by posing the bases for future studies aimed at correlating the
occurrence of such contaminants in Antarctic lakes with the role played by microbial
communities in the self-purification processes in polar areas. Polar environments could
represent pivotal reservoirs for bacterial strains with promising abilities in bioremediation
of remote contaminated cold sites. The next steps will be devoted to the estimation of
bacterial biodegradation efficiency on PCBs and to the further optimization of molecular
protocols to detect catabolic genes involved in PCB degradation.
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