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Abstract: Significant environmental impacts of mining activities connected with high-sulfur materials
result from the production of acid mine drainage and potentially toxic elements, which easily migrate
to adjacent ecosystems due to the typical absence of vegetation on spoil heaps and toeslope talus
mantle. In this paper, we present the results of the first comprehensive study of the ecosystems
affected by acidic and metal-enriched (Al, Ca, Co, Cu, Fe, Mg, Mn, Ni, and Zn) mine drainage
conducted at spoil heaps and adjacent talus mantle under semihumid climate conditions within the
Moscow Brown Coal Basin (Central Russian Upland, Tula Region, Russia). A total of 162 samples
were collected, including 98 soil samples, 42 surface water samples, and 22 plant samples (aerial
tissues of birch). Coal talus mantle materials of Regosols were characterized by the increased
concentration of water-soluble Ca, K, Mg, and S, and all mobile fractions of Al, Co, S, and Zn. The
chemical composition of birch samples within the zones affected by acid mine drainage differed
insignificantly from those in the unpolluted ecosystems with black soils, due to the high tolerance
of birch to such conditions. Differences between the affected and undisturbed sites in terms of the
chemical composition decreased in the following order: waters > soils > plants. The geochemical
characterization of plants and soils in coal mining areas is essential for the mitigation of negative
consequences of mining activities.

Keywords: acid mine drainage; black soils; coalmine waste; potentially toxic elements; chemical
speciation; water pollution; waste-rock dumps; tailings pond; mine tailings; translocation factor;
mining soils

1. Introduction

Up to the present time, coal remains a main energy source in the power supply systems
of many countries around the world, despite the fact that its carbon footprint is high [1,2].
The coal mining industry negatively affects the environment by high water consumption,
pollution of the hydrosphere [3] and the atmosphere [4,5], loss of agriculturally valuable
lands [6], and damage to the quality within areas of coal-mine waste disposal [7,8]. In
particular, degradation of ecosystems occurs under the impact of acid mine drainage,
which is generated due to the oxidation of sulfides in spoil heaps and the mobilization of
potentially toxic elements [9]. All these factors create health risks to residents of nearby
settlements [10] and employees of coal mines [11]. Similar problems are associated with
dumps of wastes of other sulfide-rich raw materials around the world [12,13], as well as
areas with acid sulfate soils [14] and thermal acid sulfate waters within recent volcanic
activity zones [15].
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In Russia, there are 22 coal basins with 129 separate deposits of coal [16]. At the
beginning of 2021, active coal mining was recorded in 58 shafts and 121 quarries [17].
The first studies on the ecological consequences of dumping sulfide-rich coal-mine waste
without mitigation were conducted under the supervision of N.P. Solntseva in the 1970s in
the former Soviet Union, within the Kizel Brown Coal Basin [18] and further within the
Moscow Brown Coal Basin [19,20] where coal bearing rocks are rich in sulfur compounds.
The Kizel Brown Coal Basin studies [18] demonstrated for the first time that coal mining
results in soil contamination by heavy metals and metalloids (HMMs), which originate
from waste rocks, and described the main processes of the formation of technogenic leakage
fluxes that cause secondary pollution by Cd, Pb, and Zn. Those studies highlighted the
importance of sulfur as a typomorphic element, which migration characterizes a given
epigenetic process [21] and predetermines the geochemical specificity of landscapes and
the formation of anomalies in coal mining areas. Such geochemical anomalies are especially
damaging for pedalfers (acid soils) of humid regions due to their low buffer capacity,
which is predetermined by a low cation exchange capacity and a low base saturation.
Concentration levels and distribution patterns of different sulfur compounds (sulfates,
sulfides, and organic and free S) can serve as indicators of the intensity of soil pollution and
the durability of its consequences. For example, in the northern and central parts of the East
European Plain, the prevalence of sulfates in soil indicates the soil’s capability from self-
remediation from S compounds. High proportions of low-valent compounds (iron sulfide
and free S) under reductive conditions indicate the formation of man-made anomalies.
Secondary sulfides produced under anaerobic conditions decrease the toxicity of many
HMMs by forming insoluble substances. In cases of remediation of such potentially acid
soil, these sulfide anomalies generate serious risks of secondary environmental pollution
due to the oxidation of newly formed sulfides and the mobilization of potentially toxic Al,
Cd, Cu, Mn, Pb, Zn, and other elements [22].

Despite the high extractability of HMMs from pedalfers, these soils have a low poten-
tial for self-remediation from high concentrations of HMMs due to their accumulation at
geochemical barriers [23–25].

The Moscow Brown Coal Basin (MBCB) is situated at the southern and western
borders of the Moscow syneclise of the East European Craton. Over the period of the
MBCB exploitation, more than 1.2 billion tons of coal have been extracted from around
180 shafts and about 100 ha of arable soils (mostly highly fertile black soils) have been lost
from agriculture due to the piling up of 100 million m3 of coal-mine waste. Each spoil heap
contains 300–600 thousand m3 of toxic waste rocks [26,27]. Coal mining activities within
the MBCB were spontaneously discontinued in 2009, with many spoil heaps left abandoned
with uncompleted remediation or without any remediation.

Adverse consequences of the abandonment of coal-mine waste, together with the
generally high population of the Tula Region, have caused serious ecological problems.
Non-remediated spoil heaps of the Moscow Brown Coal Basin have been studied as newly
formed ecosystems evolving over time intervals of several decades [28,29], which helps to
design optimal techniques for the restoration of ecosystems [30–33] and understand the
directions and rates of environmental degradation and new soil formation [27,28,34,35].

The aim of the present study was to evaluate partitioning of the chemical elements
in surface waters, soils, and plants within the sites affected by abandoned spoil heaps
in the Moscow Brown Coal Basin under semihumid climate conditions. We verified
the following hypothesis: as the impact of acid mine drainage waters on surrounding
ecosystems decreases, concentration of pollutants in soils and plants should decrease.

2. Materials and Methods

The MBCB coal bearing strata mostly belong to the Bobrik, Tula, Aleksin, Mikhailovo,
and Venyov suites of the Visean Age (the Middle Mississippian or the Lower Carbonif-
erous subperiod) and are rich in sulfide minerals, e.g., pyrite and marcasite. The basin’s
bedrock is overlain by calcareous moraines and loess-like loams of the Late Quaternary.
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Topographically, the study area (the Kireevsk District of the Tula Region) located within the
Moscow Brown Coal Basin on the Central Russian Upland (Figure 1) is characterized as an
erosional-denudational weekly plain, dissected by river valleys and a gully network, and
has been considerable disturbed by human activities [26]. The valleys are well developed,
with wide floodplains and two to three terraces. The exploitation of brown coal shafts has
resulted in the formation of man-made landforms such as spoil heaps, tailings ponds, and
surface subsidence features [26]. In some mining areas the natural topography has been
completely transformed.
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2—levelled, 3—phytoremediated. 4—unpolluted soil and plant sampling site. 5—unpolluted water
sampling site.

According to the Köppen−Geiger Climate Classification, the study area has a snow
fully humid climate with a warm summer [36]. The study area is located within the
forest-steppe, where woodlands are combined with meadow-steppe communities. Due
to farming, native (mostly woodland) communities are preserved in only small areas
that are unsuitable for agriculture. The native broad-leaved forests are dominated by
Fraxinus excelsior and/or Tilia cordata and have a thick understory and shrub layer. Their
herb layer consists of nemoral species. Occasionally, it is suppressed by strong shade
during the summer. Secondary forests are usually dominated by birch (Betula pendula)
and/or aspen (Populus tremula). They have a thin understory of heliophile species such
as Rubus idaeus and the herb layer is developed with plenty of light, and frequently con-
tains meadow and forest-meadow species. Herb layers of the woodland communities
at the bottom of wide U-shaped gullies are usually represented by hygrophyte and ni-
trophilic mesophyte species. The forest floor in both groups of forests is free of mosses
and lichens [28]. Infrequently occurring abandoned arable lands are colonized by meadow
communities dominated by (xero-)mesophytes. Another group of meadow communities
with a predominance of (meso-)hygrophytes occurs at the bottom of wide gullies. The
meadows are often used for moderate-intensity grazing or hay making [37,38].

The black soils—Chernozems (Loamic) and Phaeozems (Loamic)—are found mostly
within interfluves of the study area, while Fluvisols are mostly found within river valleys.
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Technosols (Spolic) and Regosols develop on spoil heaps within abandoned mine sites.
Detailed information on soils of the region under consideration is discussed in [39] and
represented in Table S1. Soils and soil horizons are named according to [40,41].

Field work was conducted within three study sites on spoil heaps and two sites in
unpolluted territory in August 2020 (see Figure 1 and Table 1). Site 1, at a distance of 2 km
to the northeast of the Il’inka village, comprised a non-remediated conical spoil heap 25 m
high and 240 m wide at the base. Its steep (about 30◦) slopes were dissected by deep (<3 m)
gullies. The toeslope colluvial mantle extended to a distance of about 60 m around the
perimeter of the spoil heap.

Table 1. Descriptions of the study sites.

Study Site Topography Vegetation (Dominants) Soils

1

Summit and slopes Single specimens of arboreal species
(Betula pendula, Salix caprea, Acer platanoides)

Spolic Technosols (Arenic/Loamic,
Dystric, Sulfidic, Phytotoxic) and

Technosols (Loamic, Ochric)

Talus

Bare ground
Dystric Colluvic Stagnic Regosols

(Arenic/Loamic, Lamellic, Areninovic,
Sulfidic, Phytotoxic)

Wet meadows (Calamagrostis epigeios)
Colluvic Brunic Stagnic Folic Regosols
(Arenic/Loamic, Lamellic, Areninovic,

Toxic) over Phaeozems (Loamic)

Birch forests with a bare floor or an herb layer,
either monodominant (Calamagrostis epigeios)

or more rarely poly-dominant

2

Summit

Bare ground
Spolic Technosols (Arenic/Loamic,
Dystric, Sulfidic, Phytotoxic) and

Technosols (Loamic, Ochric)

Wet meadows (Calamagrostis epigeios), mixed
grasslands (Poa angustifolia, Trifolium hybridum,

Lotus corniculatus), and young sparse birch
forests with a poly-dominant herb layer

Reductic Spolic Technosols
(Arenic/Loamic, Dystric)

Slopes Bare ground
Spolic Technosols (Arenic/Loamic,
Dystric, Sulfidic, Phytotoxic) and

Technosols (Loamic, Ochric)

Talus Bare ground
Dystric Colluvic Stagnic Regosols

(Arenic/Loamic, Lamellic, Areninovic,
Sulfidic, Phytotoxic)

3

Summit and lopes Mixed grassland dominated by ruderal species
(Calamagrostis epigeios, Solidago canadensis)

Technosols (Drainic, Eutric, Folic, Loamic,
Molic, Transportic)

Talus

Bare ground
Dystric Colluvic Stagnic Regosols

(Arenic/Loamic, Lamellic, Areninovic,
Sulfidic, Phytotoxic)

Birch forests with a bare floor or a
monodominant (Calamagrostis epigeios) or more

rarely a poly-dominant herb layer

Colluvic Brunic Stagnic Folic Regosols
(Arenic/Loamic, Lamellic, Areninovic,

Toxic) over Phaeozems (Loamic)

Unpolluted
area

Interfluve surface Mixed grassland (Fragaria viridis,
Galium mollugo, Tanacetum vulgare) Calcic Chernozems (Aric, Loamic)

Gully bottom Meadow (Alopecurus pratensis, Phleum pratense)

Site 2, at a distance of 2 km to the southwest of Kireevsk, represented a leveled spoil
heap 30 m high and 110 m wide with shortened toeslope colluvial mantle due to the
proximity of a U-shaped gully.

Site 3, at a distance of 300 m to the southwest of the Sinyaevka village, represented a
levelled spoil heap that was revegetated in 2015. It was 30 m high and 110 m wide at the
base, with a 30-m-long toeslope colluvial mantle. Nearby, there were two tailing ponds for
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acid mine drainage collection in order to minimize the leakage of acid sulfate waters into
the rivers.

Unpolluted territory (Site 4: unpolluted soils) was sampled at a distance of 700–1000 m
to the north of Site 2 (on a flat interfluve and in a gully) and between Site 1 and Site 2 (Site 5:
unpolluted pond).

Soil samples (a total of 98, Table S2) 400–500 g each were taken from the A, B, and C
horizons and waste rocks in 15 different locations. The samples were dried at 40 ◦C and
crushed with a mortar and pestle to the size of <2 mm, along with the removal of roots
and stones.

Plant samples (a total of 22) in the form of birch (Betula pendula) leaves and branches
of the current growing season were taken in the same locations as soil samples in those
cases, where vegetation was present. Birch is the only tree plant that is able to grow in all
the areas studied (spoil heaps, talus, and unpolluted territories). The phytomass of herbs
and grasses is insufficient to collect appropriate volume of a material for chemical analysis.
Air-dried birch samples 100–500 g each were thoroughly cleaned from fragments of any
other plant species, dried at 40 ◦C to reach a constant weight, and ground using a PM-120M
rotary grinder (Russia) down to a particle size of less than 1 mm. The ash content in plant
samples was determined gravimetrically from the loss on ignition (550 ◦C) upon reaching a
constant weight.

Water samples (a total of 42) were taken from the following groups of locations: surface
puddles or ephemeral streams on the spoil heaps (sites 1 and 2) and talus (sites 1, 2 and
3), two tailing ponds (site 3), and the unpolluted pond (site 5). The samples of 1 dm3 in
volume were collected in plastic bottles on 12 December 2019, 16 June 2020, 16 July 2020,
22 August 2020, and 12 November 2020 (Table S3). The water samples were passed through
paper filters (blue ribbon). Then, pH, electrical conductivity, and the cation and anion
compositions were determined in the filtrates.

Soil, plant, and water samples were analyzed using standardized techniques (Table 2).
Soil analyses included measurements of total organic carbon, content of chemical ele-
ments (including Al, Ca, Co, Cu, Fe, P, K, Mg, Mn, Na, Ni, Pb, and Zn), particle-size
distribution (clay < 2 µm; silt 2–63 µm; sand 63–2000 µm), pH (1:2.5 soil-to-water ratio),
electrical conductivity (EC), and cation and anion composition (1:5 soil-to-water ratio).
The total content of chemical elements was determined using an Axios X-ray fluorescence
spectrometer (PANalytical, Almelo, The Netherlands) and Russian Soil Standard sam-
ples (‘Chernozem’ and ‘Albeluvisol’), with analytical parameters and standard errors of
determination specified in Table S4.

Table 2. Methods of chemical analyses of water, soil, and plant samples.

Parameters Methods and Equipment

Total organic carbon The titrimetric method with phenylanthranilic acid [42]

pH pH-meter ‘Expert-pH’ (Econix-Expert Ltd., Moscow, Russia),
soil: solution ratio 1:2.5

Grain-size fractions A laser diffraction technique and Analysette 22 equipment (Fritsch,
Idar-Oberstein, Germany) in samples pre-treated with 4% Na4P2O7

Total content of elements in soil samples Axios X-ray fluorescence spectrometry (PANalytical, Almelo, Netherlands);
a powder (<0.067 mm)

Total content of elements in plant samples

Acid digestion (concentrated HNO3 and H2O2). Elan-6100 inductively coupled
plasma mass spectrometer and an Optima-4300 DV inductively coupled

plasma atomic emission spectrometer (PerkinElmer Inc., Waltham,
Massachusetts, United States

Electrical conductivity Hanna HI 98331 (Woonsocket, Rhode Island, United States),
soil-to-water ratio 1:5
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Table 2. Cont.

Parameters Methods and Equipment

Cation and anion composition (Cl−, NO3
−,

SO4
2−, Ca2+, Mg2+, Na+)

A ‘Styer’ liquid chromatograph with an amperometric detector (Aquilon, Saint
Petersburg, Russia)

Anions HCO3
− and CO3

2− Acid-base titration using a 0.01 M H2SO4 solution

Mobile fractions: Parallel extraction; incubation for 18 h [43–45]; AES-ICP detection (iCAP-6500,
Thermo Scientific, Waltham, MA, USA):

F1 NH4Ac (ammonium acetate buffer); soil-to-water ratio 1:5; pH 4.8

F2 NH4Ac with 1% EDTA (ethylenediaminetetraacetic acid);
soil-to-water ratio 1:5; pH 4.5

F3 1 M HNO3 (nitric acid); soil-to-water ratio 1:10; pH 0.0

The chemical element extractability was analyzed using a parallel extraction procedure.
Mobile fractions of chemical elements were extracted from soil samples using NH4Ac
(Fraction F1), NH4Ac with 1% ethylenediaminetetraacetic acid (EDTA) (fractions F1 + F2),
and 1 M nitric acid (fractions F1 + F3). The analyzed fractions named as in [43] are defined
as follows [43,44]:

• F1 (exchangeable): weakly bound acid-soluble (water-soluble and bounded with
carbonates and exchangeable ions).

• F2 (complex): bound with complexes (predominantly, fulvate and humate substances).
• F3 (specifically adsorbed): bound with different soil phases (Fe and Mn (hydr)oxides,

with carbonates, with sulfides, and with some clay minerals) [46–49]. The solution
of 1 M nitric acid simulates the conditions generated by oxidation at the surface of
sulfide minerals [50].

• F4 (residual): residual mineral fraction calculated as a difference between the total con-
tent of the chemical elements and the concentration of the mobile fractions F1 + F2 + F3.

The concentration of the chemical elements in the extracts and water was determined
using an iCAP-6500 inductively coupled plasma atomic emission spectrometer (Thermo
Scientific, Waltham, MA, USA) and blank solutions of NH4Ac, NH4Ac+1% EDTA, and 1M
HNO3. Duplicate measurements were made in 5% of the samples (Table S5) for analytical
quality validation.

In the plant samples after acid digestion (Table 2), the total content of Al, Ca, Co, Cu,
Fe, K, Mg, Mn, Na, Ni, P, Pb, S, and Zn was measured by inductively coupled plasma mass
spectrometry and inductively coupled plasma atomic emission spectrometer. Along with
the analyzed samples, the control samples of birch leaves (COOMET CRM 0067-2008-RU,
Irkutsk, Russia) [51] and tobacco leaves (INCT-OBTL-5) [52] were digested for quality
control (Table S6). Duplicate measurements were made in 20% of the samples for analytical
quality validation.

Data processing included the calculation of the chemical element (ChE) extractability (E):

E =
F1 + F2 + F3

TC
× 100 (1)

where F1, F2, and F3 are the concentrations of chemical elements in the mobile fractions
(mg/kg) and TC is the total content of a ChE. To assess main trends in partitioning of
the studied ChEs, we calculated geochemical indices L, Kx, PWR, Ax, and Bx. The L-
index is the average content of a chemical element in a soil horizon normalized to the
average content of the same ChE in the corresponding horizon of Technosols or unpolluted
Chernozems [53]. The L-index values below 0.8 and above 1.3 characterize the zones of
leaching and accumulation, respectively [54]. We calculated L-indices for ChEs in waters
and plants from the coal mining sites as compared to the unpolluted territories. Kx, which
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reflects the relationship between the chemical composition of rocks (soils) and surface
waters was calculated using the following equation:

Kx =
100 × mx

M × Cx
(2)

where mx—concentration of the chemical element in water (mg/dm3), Cx—concentration of
the ChE in rock (%), and M—mineralization of water (g/dm3) [55]. All ChEs were merged
into four groups depending on Kx values as follows: very highly mobile (Kx > 10), highly
mobile (1–10), mobile (0.1–1.0), and slightly mobile or inert (<0.1). The plant–water ratio
(PWR) is a ratio of ChE concentration in plant ash to its concentration in surface waters [56].
The Ax and Bx indices characterize the intensity of absorption of chemical elements by
plants, with Ax being the ratio of ChE concentration in plant ash to its average concentration
within the topsoil (0–20 cm layer) [21,55] and Bx being the ratio of ChE concentration in
dry plant material to the concentration of its F1 fraction within the topsoil [57].

Differences in the concentration of chemical elements were determined for paired
datasets using the Mann–Whitney U test. Spearman correlation analysis was conducted to
identify relationships between chemical elements and environmental conditions.

In this paper, we focused on HMMs, including potentially toxic elements such as Ni
and Pb, and considered Ca, Fe, and S as typomorphic elements [21,53,54], and Co, Cu, K,
Mg, Mn, Na, P, and Zn as biologically active elements [58]. Moreover, we chose Co, Cu,
Fe, Mg, Mn, Ni, P, Pb, S, and Zn as elements whose content is monitored in surface waters
and/or soils of Russia [59–62].

3. Results and Discussion

In the Moscow Brown Coal Basin, abandoned coal spoil heaps were found to be
associated with toeslope talus mantle and contamination of surface waters and soils with
potentially toxic elements due to the evolution of the acid sulfate soils. This fact should
be taken into account in the life cycle assessment of brown coal mining, which is rich in
sulfide minerals. Our study was conducted to uncover the impact of acid mine drainage on
the ecosystems of the toeslope talus mantle and the formation of new ecosystems.

3.1. Geochemical Partitioning of Elements in Surface Waters

Water from the unpolluted pond had a neutral reaction (pH 7.1 ± 0.6) and a low
content of electrolytes (EC 46 ± 19 mS/m). Surface water samples from the spoil heaps
were significantly more acidic (pH 3.7 ± 0.3, p = 0.0012) due to the high content of sul-
fates (2.9 ± 1.4 g/dm3, p = 0.0012). This induced the mobilization (dissolution) of many
HMMs [63]. Water samples from the talus had higher pH values and lower content of
sulfates and HMMs (Table S7). However, their levels were significantly different from the
levels in the unpolluted pond. Water samples from the two tailing ponds were relatively
closer in composition to the unpolluted waters. The concentration of potentially toxic
elements (e.g., Fe) in the tailing pond located farther from the mine was similar to that in
the unpolluted pond, but the electrical conductivity and the concentration of sulfates, K,
Mg, Ca, Mn, Co, Ni, and Zn was still higher than the background levels (Figure 2).

The L-index values showed that positive anomalies of the analyzed parameters were
more prominent than negative anomalies (Table S8), which reflected the saturation of
acid-sulfate waters with different chemical elements including potentially toxic elements
(Al, Co, Cu, Fe, Mn, Ni, Pb, and Zn).

Therefore, the highly saline acid mine drainage enriched in potentially toxic elements
had affected all studied mine site ecosystems.

3.2. Geochemical Partitioning of Elements in Soils
3.2.1. Physico-Chemical Properties

The unpolluted Chernozems (Loamic) were characterized by a nearly neutral pH, a
low electrical conductivity, a high total organic carbon content decreasing with depth, a
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prevalence of the fine silt, and the absence of sand fractions (Figure 3, Table S9). Such
characteristics are typical for Chernozems within the Central Russian Upland [64–68].
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Figure 2. Variation of pH, electrical conductivity, and the concentration of anions and chemical
elements in surface water sampled in 2019–2020 in the surface Moscow Brown Coal Basin. SH—spoil
heaps, T—talus, NTP—nearer tailing pond, FTP—farther tailing pond, UP—unpolluted area. Bold
line is the median. Box borders represent the inter quartile range (IQR) between the first (Q1) and the
third (Q3) quartiles. Whiskers are Q1 − 1.5 × IQR and Q3 + 1.5 × IQR intervals. Outliers are shown
as separate points.

The Spolic Technosols on the spoil heaps had highly variable pH, electrical conduc-
tivity, total organic carbon, and sand contents due to the initial heterogeneity of the waste
rocks [39]. As compared to the unpolluted Chernozems, the studied Technosols had a
significantly higher content of sand (63–2000 µm, p < 0.016), but a lower content of fine silt
(2–20 µm, p < 0.001), and also a higher electrical conductivity (p < 0.001) and a lower pH
(p = 0.046).

Under the influence of acid mine drainage, buried Chernozems lost carbonates. There-
fore, we named buried soils as phaeozems. However, their development under conditions
of high moisture may lead to their transformation into Gleysols, since stagnic color patterns
were observed in subsoils during the field studies. Revealing the rate and reversibility of
such changes can be a special research topic [69].

In the Moscow Brown Coal Basin, Technosols differed in the composition of the soil
matrix from the surrounding Chernozems, making differences in texture and elemental
composition reliable diagnostic criteria to assess the degree of transformation of affected
soils, which can be used to classify buried soils or soils exposed to any chemical attack.
Similar ideas were explored in [70].

Changes in soil properties reflects the most serious and long-lasting effects of the envi-
ronment [71–74] due to the buffer properties. Due to pedogenesis, the accumulation of some
substances resulted in the formation of geochemical barriers in soil compartments [23–25];
organic matter provides formation of a biogeochemical barrier, clay minerals and Fe and Mn
hydroxides, a sorption barrier, carbonates, a carbonate barrier, etc. Over time, the buffering
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capacity of the soil may be exceeded. Therefore, exposure time should be considered in the
context of the influence of acid mine drainage on ecosystems. The Kizel Brown Coal Basin
studies [18] demonstrated that in the first stages of geochemical transformation of soils
within the zones affected by acid mine drainage, HMMs accumulate in the toeslope collu-
vial mantle. Leaching of HMMs from waste-rock dumps and topsoils of Technosols begins
about 50 years from the onset of pollution and results in the formation of negative anomalies
in the dumps and positive anomalies in the surrounding soils [18,75]. We observed similar
trends in the key area studied. In a spontaneously vegetated urban brownfield located
in New Jersey, downward migration of heavy metals and metalloids from the Technosol
topsoils (a 0–5 cm layer) and subsequent immobilization in the subsoil (a 5–25 cm layer)
were observed in 50 years since site abandonment [76]. Long-term exposure of Andosols to
steam-heated acid-sulfate waters resulted in the formation of endothermal soils [77–79] or
Narcisols [15], which differed in texture, elemental, and mineralogical composition from
surrounding non-affected soils.

Figure 3. Variation of the physico-chemical properties of the soil horizons sampled in 2020 in the
surface Moscow Brown Coal Basin. Bold line is the median. Box borders represent the inter quartile
range (IQR) between the first (Q1) and the third (Q3) quartiles. Whiskers are Q1 − 1.5 × IQR and
Q3 + 1.5 × IQR intervals. Outliers are shown as separate points.

3.2.2. Special Differentiation

The Regosols formed on the toeslope colluvial mantle represented a transitory medium
with a predominant accumulation of the studied HMMs (Figure 4). These soils were
characterized by increased content of at least two mobile fractions of Al, Co, Fe, K, Mn, Na,
Ni, P, and Zn, but decreased content of mobile fractions of Ca, Mg, and Pb (Table S10). In
a former mining area in NW Tunisia (with the exploitation of Pb-Zn and Fe ore deposits
between 1881 and 1958), the total concentration of heavy metals decreased abruptly with
distance from the flotation tailings and mining facilities [80].

Under the talus mantle, the Ab-horizon of Chernozems was transformed into a leach-
ing zone with L < 0.8 in 52% of the studied chemical elements, and the Bb and C horizons
were transformed into accumulative zones, with L > 1.3 in 59 and 72% of ChEs, respectively.
According to [81], we observed a downward-translocation-solutional catena. Indeed, the
soils buried and formed at the footslope of the spoil heaps can be considered as geochemical
barriers on the migration route of potentially toxic elements.
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Spatial differentiation in the total concentration of chemical elements (based on L-
indices) was lower than those in any of mobile fractions of the same ChE. This had pre-
viously been reported from catenary studies on unpolluted soils of the Central Russian
Upland [65,82]. Based on L-indices in all studied soil horizons, the differences between
the positive anomalies of the analyzed parameters were greater than between the negative
anomalies (Table S10). This reflects a predominance of the accumulation over the depletion
of substances within the talus material.

3.2.3. Extractability

In the studied Technosols, Regosols, and Chernozems, the content of different fractions
of chemical elements had the same decreasing orders (Figure S1). In the soils studied, the
extractability of chemical elements decreased in the following order: Ca > Cu > Mn, Co,
Pb, Zn > Ni, Fe, P, Al, S, Mg > Na, K (Figure 5). According to this order, several groups of
chemical elements were distinguished depending on their extractability. Alkaline major
elements (K and Na) in most cases had a (very) low extractability (E < 10%), except for some
soluble compounds of Na that were either derived from acid mine drainage or formed in
the C horizons of Chernozems. Most complex-forming cationic (Mg, Al, Fe, Ni) and anionic
(S and P) elements had a low extractability (E = 5–20%). Another group included Co, Mn, Pb
and Zn, which were generally characterized by moderate extractability (E < 50% in the most
of the studied soil horizons, see Table S9), except for some cases when their extractability
values increased within the impact zones of acid mine drainage.
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Figure 5. Chemical element partitioning in the soils studied. The chemical element extractability
(median) is indicated by colors: red <5%, orange 5–10%, yellow 10–50%, and blue >50%. Soil horizons
are named according to [41]: A—mineral surface horizons, B—subsoil horizons, C—parent materials;
b—buried, g—stagnic conditions, j—jarosite accumulation, k—accumulation of pedogenetic carbon-
ates, r—strong reduction, u—urban and other human-made materials, y—pedogenetic accumulation
of gypsum.

An analysis of chemical speciation indicated that Al, K, Mg. and Na were mainly in
residual fractions, which made up more than 80% of their total content, while the percentage
of each mobile fraction was below 15%. In most of the studied soil horizons, the residual
fraction of Fe, Ni, P, Pb, S, and Zn had content of under 50%, while the percentage of each
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mobile fraction was below 15%. Calcium was mainly in the exchangeable fraction, which
made up 30% of its total content. The percentage of exchangeable Al, Cu, Fe, K, Ni, P, and
Pb was low (<5%). Specifically adsorbed compounds always prevailed over F2 in Ca, Cu,
Fe, Ni, P, Pb, and Zn. Na was characterized by a reverse situation. In some horizons of
the native or post arable Chernozems (including buried soils), the content of complexed
compounds of biologically active Co, Mn, S, and Zn was higher than the content of their
specifically adsorbed compounds.

Despite the material of spoil heaps and talus material being rich in potentially toxic
elements and differing considerably in physico-chemical properties, the proportion of
mobile compounds in the total content of chemical elements in the A-horizons are con-
stant (Figure S1). Previously, similar geochemical partitioning (insignificant differences
between sharply diverse soils) was reported for Kastanozems and Solonetz at the Ergeni
Upland [83], in Podzols affected by acid mine drainage on a hillslope in Dalarna, soils of
central Sweden [84] and soils at a different distance from the basements of spoil heaps
were rich sulfur compounds [85]. That is, the ratio of different compounds of the same
chemical element weakly depends on the properties of the soil and is more determined by
the chemical properties of the element and the geochemical specialization of the parent
material. For example, the extractability of Ca, Co, and Mn is high in the A-horizons of the
acid Spolic Technosols and the acid-free Chernozems, but extractability of Al, S, and K is
low. Similarities in the orders of mobility of ChEs in topsoils and in terms of geochemical
spectra of ChEs that accumulate and disperse within soils was originally observed in Reti-
sols, Phaeozems, and Chernozems within the Volga Upland of the East European Plain [86],
and in the topsoils of Chernozems and Planosols in the Trans Urals [45].

In addition, biologically active Co and Mn had increased E values within the A horizon
of unpolluted soils, which has been mentioned before in the studies on Chernozems of
the Central Russian Upland [64,65,82] and Trans-Urals [45,87,88]. Mobile fractions of those
chemical elements have also been found in young soils at the top of spoil heaps and on the
toeslope colluvial mantle [89]. Cu was characterized by a high extractability and Ca—by
a very high extractability, i.e., E > 45% in all studied soil horizons, which confirmed our
previous findings [83,90].

3.3. Geochemical Partitioning of Elements in Plants

Ash content in birch leaves was higher than that in birch branches (Figure 6), without
any significant differences between plants growing on the spoil heaps, talus, and in the
unpolluted area. Concentrations of chemical elements in the aerial tissues of birch decreased
in the following order: K, Ca > Mg, S, P > Mn, Fe, Zn, Al > Na > Cu, Ni, Co, Pb. The leaves
had relatively higher contents of Al, Ca, Fe, K, Mg, Ni, P, and S (Table S11). Trees growing on
the spoil heaps and the talus had very few differences in chemical composition, including
higher (p = 0.017) content of Ni in both leaves and branches sampled from the talus and
Pb in the leaves from the birches on the spoil heaps, as well as tendencies (p = 0.087) for
higher concentration of K in both leaves and branches of birches on the spoil heaps. Higher
concentration of Ni and Pb may have resulted from their passive absorption by plants [91]
growing at the contaminated soils. From the spoil heaps to their talus and further to the
unpolluted area, there were increasing concentration of Co, K, and Mn, which are essential
to plants [58]. and decreasing concentration of Ca and Pb in birch leaves and branches.
Content of other chemical elements (Al, Cu, Fe, Mg, Na, Ni, P, S, and Zn) in birch aerial
tissues did not show any significant differences between the study sites.

Birch leaf enrichment in Al, Ca, Fe, K, Mg, Ni, P, and S compared with branches
resulted from biogeochemical partitioning in aerial plant tissues, as all these elements
excluding Al are essential for plants and participate in different biochemical processes [58].

In birch, the positive and negative anomalies of concentrations of the studied ChEs
were similar to the L-indices in terms of differences between the values (Table S12). The
assemblages of accumulated and dissipated chemical elements were also similar. All these
findings reflected the plant’s capability to maintain certain ranges of element concentrations
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in their tissues. Previously, a relatively low ability of phytoextraction of heavy metals by
birch from contaminated soils was reported in [92].
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Figure 6. Variation of the ash content and the elemental composition of the birch aerial tissues
(green—leaves, grey—branches) collected in 2020 in the Moscow Brown Coal Basin: SH—spoil heaps,
T—talus, FTP—farther tailing pond, UP—unpolluted area. Box borders represent the inter quartile
range (IQR) between the first (Q1) and the third (Q3) quartiles. Whiskers are Q1 − 1.5 × IQR and
Q3 + 1.5 × IQR intervals. Outliers are shown as separate points.

In accordance with the phylogenetic specialization of certain species [91,93–95], veg-
etation can also be a very informative indicator of the influence of acid mine drainage.
However, when assessing the degree of influence of acid mine drainage, it is necessary
to take into account the presence of physiological barriers that prevent the entry of toxic
elements into plant tissues. It is necessary to choose species that are sensitive to exposure
and passively absorb indicator elements. It should be noted separately that it is important
to choose species of broad ecological specialization that can survive in a wide range of
pollution in order to compare the background and the most polluted areas. Stability of
the chemical composition of plants within the impact zones of acid mine drainage was
reported before, e.g., at a gold mine site in the northwest of Quebec [96], in the Portuguese
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sector of the Iberian Pyrite Belt [97], and in semi-arid northeast Brazil [98]. Similar levels of
Al, Ca, Mg, and Mn were found in the aerial tissues of Betula nigra (L.) grown on the soils
influenced by acid mine drainage in SW Ohio [99], as well. A relatively higher content of
chemical elements in birch leaves compared with birch branches was found in [99].

3.4. Relationships between the Chemical Composition of Surface Waters, Soils, and Plants

Based on the results obtained, we can conclude that to assess the degree of influence
of acid mine drainage on changes in ecosystems, first of all, water should be sampled as
a main indicative media. It is likely that we could obtain more contrasting patterns by
analyzing soil waters or drying up ponds, rather than temporary streams. We think that
the water of sampled temporary streams changed weaklier due to shorter contact with the
solid phase of soils. Analysis of the elemental composition of plants in our case gave the
most blurred picture. However, using more sensitive plant species with less phytomass in
similar areas or species that are less susceptible to acid mine drainage may provide more
interesting results.

In the studied locations, difference between the chemical composition of the sampling
medium decreased in the following order: surface waters > soils > plants (Figure 7). This
could be explained by the presence of geochemical barriers in soils and physiological
barriers in plants. It had been shown that both terrestrial and aquatic plants have low levels
of accumulation of chemical elements within impact zones of acid mine drainage waters,
e.g., in the Iberian Pyrite Belt (Portugal), the north Morocco mining areas [100], the São
Domingos mine site, the southeast of Portugal, Alentejo Region [101], and the Dabaoshan
Pyrite/Copper Mine, Guangdong Province, China [89]. However, the composition of soils
and waters within such zones significantly differed from those in unpolluted area.
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Figure 7. Spatial distribution of chemical elements in surface waters, plants and soils affected by acid
mine drainage. Numbers are L-index values (for the Arju and 2Aygb horizons, they are calculated
as normalized values for the Arju and A horizons sampled in the spoil heaps and background area,
respectively): red >10%, orange 10–2%, yellow 2–1.3%, white 1.3–0.8, blue 0.8–0.5, dark blue 0.5–0.1,
very dark blue <0.1. I—spoil heaps, II—talus (a—bare ground, b—meadows and forests), III—tailing
ponds (a—nearer, b—farther).

We confirmed that acid mine drainage causes considerable impacts on the elemental
composition of surface waters, newly formed soils, and old black soils, but the elemental
composition of aerial tissues of birch grown on the toxic materials at the spoil heaps and
the toeslope talus and on the non-contaminated loess-like loams differs inconsiderably.
Preceding studies on the sustainability aspects of ecosystems located in similar talus mantle
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and spoil heaps are sparse [102]. Therefore, the findings presented here cannot be compared
with much preceding research. Influx of acid mine drainage to arable lands surrounding
studied spoil heaps results in pollution of crops with potentially toxic elements, which is a
typical problem in such cases and is previously reported, e.g., in [103,104]. Our findings
are in line with the works by N.P. Solntseva [18–20,22,105], who concluded that changes
in the elemental composition of affected surface waters and soils depend on the period of
self-remediation of the abandoned mining area and are similar in the diverse regions.

Due to the considerable differences in the chemical composition of the studied surface
waters, the geochemical indices of Kx and PWR had a wide range of values. This is reflected
in the trends of changes in the mine sites compared to the unpolluted sites (Table 3). Only
in the case of Na were both Kx and PWR values in the mine sites higher than those in
the unpolluted area. This was probably caused, firstly, by a low concentration of Na in
acid mine drainage waters and newly formed soils (Technosols and Regosols) developed
under semihumid conditions and, secondly, by Na assimilation by plants without any
geochemical barriers under conditions of low Na concentration within the root zone.

Table 3. Values of the geochemical indices that characterize the relationship between the chemical
composition of surface waters, soils, and plants.

Chemical
Elements

Kx PWR Ax Bx

Spoil Heaps Talus Unpolluted Area Spoil Heaps Talus Unpolluted Area Spoil Heaps Talus Unpolluted Area Spoil Heaps Talus Unpolluted Area

Na 1.6 0.6 0.5 0.009 0.008 0.004 0.49 0.61 0.07 2.1 3.1 0.8
Mg 17 3.9 0.5 0.036 0.047 0.298 23 26 6.2 108 51 5.5
Al 1.7 0.8 0.002 0.001 0.001 0.819 0.05 0.03 0.05 2.0 0.11 0.9
P 36 27 28 1173 1169 472 136 143 42 278 337 217
S 19 38 7.1 0.003 0.004 0.148 2.2 2.2 32 5.8 3.8 158
K 0.09 0.06 0.04 6.2 5.5 7.4 15 33 12 49 82 74
Ca 20 16 2.3 0.04 0.04 0.12 32 93 9 3.1 10.3 1.1
Mn 16 3.4 0.08 1725 1763 61,162 106 147 16 478 119 18
Fe 0.4 1.2 0.002 0.009 0.002 0.883 0.058 0.140 0.088 0.8 0.2 0.9
Co 10,159 5778 14 0.06 0.11 68 1.9 4.6 4.3 8 6 42
Ni 4817 2415 15 0.17 0.43 50 2.9 6.0 3.2 11 16 5
Cu 686 690 65 5 4 20 13 8 5 70 76 150
Zn 22,240 8605 35 1 2 425 61 81 60 >1500 >1500 >2000
Pb 85 180 72 0.91 0.20 0.35 0.24 0.10 0.10 1.5 0.7 0.2

Values that are 10 times as high and low as the background levels are marked in red and blue, respectively.
Differences by 100 times are shown in bold.

The chemical elements were grouped according to their Kx values. Co, Cu, Ni, Zn,
P, and Pb were very highly mobile (Kx > 10) in all study sites, with the first four metals
characterized by Kx > 100 due to their extremely high concentration in acid mine drainage
waters of the spoil heaps and the talus, according to the Russian drinking water quality
standards (Table S13). Potassium was weakly-mobile or inert. At the spoil heaps and the
talus, the Kx values of Na, Mg, S, and Ca were dozens of times higher than those in the
unpolluted site, whereas Al, Fe, and Mn values were at least 100 times higher. Therefore,
Al, Fe, and Mn could be regarded as typomorphic elements within the zones affected by
acid mine drainage, but not within the unpolluted areas, because they were uncapable
of active migration within a near-neutral medium, according to existing geochemical
concepts [21,106–108].

In terms of Ax and Bx indices, differences between studied sites were less considerable
than the differences in the Kx and PWR indices. This was due to the presence of physiologi-
cal barriers in plants that prevented the assimilation of harmful levels of potentially toxic
elements [58,91]. This trend was most clearly expressed in S, which was one of the most
actively assimilated nutrients from unpolluted soils [55,58,109]. Despite the fact that the
concentration of bioavailable compounds of S drastically increased in waste rocks, where S
was a typomorphic element, the S concentration in birch aerial tissues remained at levels
similar to those of the unpolluted area.

There was a positive correlation between the content of all considered chemical ele-
ments in leaves and branches of birch. However, the correlation was significant in only
half of the studied elements, including Mg, Al, S, K, Ca, Mn, Co, and Ni (Table S14). The
chemical composition of plants did not significantly correlate with that of soils in the most
of the ChEs studied (Na, Al, Ca, Fe, and all the trace elements) due to the presence of
effective physiological barriers in birch, as explained by the example above. Such barriers
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accounted for its capability to grow on highly toxic substrates of the MBCB’s spoil heaps
and talus [26–28] where other plants could not survive. However, the concentration of
Mg in birch leaves and branches was closely correlated with its content in exchangeable
and specifically adsorbed fractions, as well as with the total content in soils, despite the
insignificant correlation with water-soluble compounds. A similar trend was observed
in P (Table S14). The S content in birch aerial tissues was significantly correlated with
its extractability. The content of water-soluble compounds of K in soils was significantly
(r > 0.92, n = 8) correlated with the K concentration in plants.

In the studied surface waters within the Moscow Brown Coal Basin, the content of
Cu in all samples and Zn in the majority of samples was below their maximal permissible
concentrations (MPCs) according to the Russian water quality standards for all kinds of
aquatic systems (including drinking water reservoirs and subterranean and surface water
bodies for agricultural and recreational uses). The content of Co, Fe, Mg, Mn, Ni, P, and Pb
exceeded their MPCs in the majority of water samples from the mine sites (Table S13). This
indicates that local rivers are at risk of water pollution via the mine drainage. In the surface
water samples from the unpolluted site, the concentrations of Fe, Mn, P, and Pb exceeded
their MPCs as well. This likely results from regional-scale water pollution, taking into
account the fact that the study region has well-developed industry and agriculture [90].

The studied soils were less contaminated by inorganic pollutants compared to the
surface waters. The concentration of total Ni, Pb, and Zn and the mobile fractions of
Co, Mn, Ni, and Zn exceeded their MPCs in only 30% of the soil samples. The total S
content exceeded its MPC in the absolute majority of soil samples, including those from the
unpolluted site. This might be connected with both regional-scale soil pollution and the
local properties of the studied Chernozems, where enrichment in certain elements could be
natural, e.g., due to the high content of clay particles and total organic carbon.

The detected levels of potentially toxic elements are typical for soils and surface water
affected by acid mine drainage [110]. We did not find very high content levels of the
potentially toxic elements in surface water or soils, which is in line with the ability of plants
to colonize the abandoned mining areas of the Moscow Brown Coal Basin. Observed bare
ground soils may result from severe erosion and water deficiency in the soils of the spoil
heap steep slopes, as well as sulfuric acid formation. In Spain [111], territories with similar
environmental harshness were covered by shrubs (Erica cinerea L., Ulex europaeus L. and
Rubus fructicosus L.). Greater environmental harshness (high acidity and/or higher content
of toxic elements) was reported for territories affected by acid mine drainage in [112–119].
Unfortunately, these studies did not provide data on vegetation grown in Spolic Technosols
and/or Spolic Regosols. These sites could have been bare ground and not revegetated
during a long period, as previously reported in [120].

4. Conclusions

In the Moscow Brown Coal Basin, ecosystems affected by highly saline acid sulfate
solutions were enriched in potentially toxic elements to levels much higher than their
maximal permissible concentrations. The degrees of pollution decreased between the
surface waters and soils, and further to plants, with generally decreasing pollution with
increasing distance from spoil heaps.

The chemical composition of birch aerial tissues reflected a high adaptability of this
tree species to the very acidic substrates enriched in potentially toxic elements in readily
available chemical forms.

Soils buried under and formed on the talus mantles at the footslope of the abandoned
spoil heaps could be regarded as geochemical barriers on the migration routes of potentially
toxic elements, which accumulate at such barriers. However, this is correct just for elements
in which extractability decreases compared with the A horizon of the Technosols and
Regosols studied. Under the toeslope colluvial mantle, the A horizon of black soils was
transformed into a depletion zone, while both the B and C horizons served as zones of
accumulation of different substances.
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Further research can be directed at an assessment of the spatial distribution of water
pollution and soil contamination, which is particularly important in terms of water quality
control to provide the local population with clean water for drinking, crop irrigation, and
other needs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w14010113/s1, Figure S1: Chemical element speciation (average
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samples collected at the sites studied; Table S3: The number of surface water samples collected at
the sites studied; Table S4: The root-mean-square deviation values (relative percentage, %) for the
X-ray fluorescence data on the elemental composition of the soils studied; Table S5: Lower detection
limits and the quality of the analysis and quality control for plant and water samples; Table S6: Lower
detection limits (LDLs) and the quality of the analysis and quality control for liquid samples of soil
extracts; Table S7: Characteristics (m ± SD) of the studied surface waters sampled at the different
locations; Table S8: The spatial differentiation of the studied surface waters; Table S9: Characteristics
(m ± SD) of the studied soil horizons; Table S10: Spatial differentiation of the horizons of Regosols on
talus at the footslope of spoil heaps; Table S11: Characteristics (m ± SD) of the studied aerial tissues
of a birch; Table S12: Spatial differentiation of the chemical composition of the analyzed birch tissues;
Table S13: A comparison of chemical element concentration in the studied surface waters and soils
with the water and soil quality standards of the Russian Federation; Table S14: Correlation matrix for
the elemental composition of topsoil and birch aerial tissues, n = 8.
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