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Abstract: Modelling of stormwater networks and the related object (combined sewer overflows,
diversion chambers, retention tanks) is a complex task requiring colleting of data with appropriate
time and spatial resolution as well as application of adequate models. Often there is a need to find
balance between the costs of conducting measurement (period, resolution) and the uncertainty of the
model results. This paper presents an overview of simulation tools for sewerage networks modelling,
related objects, as well as low-impact development (LID) systems in relation to the hydrodynamic
and statistical models. Consecutive stages of data collection, sources of data uncertainty, limitations
resulting from the adopted measurement methodology, as well as their influence on the simulation
results and possible decision-making using the developed hydrodynamic or statistical model, are
discussed. Attention is drawn to the optimization methods enabling reduction in the uncertainty of
statistical models. The methods enabling the analysis of model uncertainty, as well as evaluation of
its influence on the calculation results pertaining to stormwater hydrographs, retention tank capacity
and combined sewers overflows, are also discussed. This is a very important aspect in terms of
optimizing construction works in the sewerage network and designing their appropriate dimensions
to achieve the assumed hydraulic effects.

Keywords: rainfall-runoff model setup; Storm Water Management Model (SWMM); statistical models;
urban stormwater systems; sustainable stormwater management; low-impact development (LID);
conventional measures; decision support system

1. Introduction

Recently, reserves of drinking water have become limited, not only by natural factors,
but also by the significant anthropogenic pressure exerted by water use, and discharge of
sanitary wastewater to surface waters and groundwater. Sustainable water and sewerage
management in urbanized areas is crucial [1–5]. In modern cities, there is a trend towards
an increase in the demand for water and food, so the volume of their use is increasing and
this inevitably leads to increased load on sewer systems [6–8]. All this is happening in
the context of climate change impacts, combining high temperatures and prolonged dry
periods, and, on the other hand, increased number of rainfall events with high intensities
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(storms). These, merged with increased urbanization, significantly affect sustainable water
management in urbanized catchments [4,9–11].

Sustainable water and sewage management allows preservation of water resources by
limiting water demands and lowering the anthropogenic pressure caused by sewerage and
stormwater handling. Such wastewater management should be directly based on the three
general circles of sustainability, e.g., social, economic and environmental, extended also to
technical and legal issues [12]. Numerical modelling of water balance in urbanized catchments,
stormwater surface runoff processes, hydraulics of water supply, and sewage and stormwater
disposal systems are very important tools supporting spatial planning, decision making, and
the designing operation of sustainable solutions for water management [10,13–16]. Numerical
models may also be successfully applied to numerous detailed technical tasks concerning
many decision-making and operation issues, such as selection of the most suitable variant
of design, planning of operation and maintenance work including flushing and sediment re-
moval, the possibility of existing drainage networks’ extension by connecting new catchments,
or changing the impervious level of the current ones. Additionally, selection of substrates,
types and locations of green roofs and pervious and semi-pervious surfaces, and determining
the retention ability of constructed wetlands, retarding basins, etc., can be also supported by
numerical modelling. Models can also be used for planning new estates, or retrofitting existing
housing estates, considering appropriate spatial distribution of urban greenery elements to
facilitate the shallow and deep infiltration of rainwater in the ground [17–21]. On the one
hand, such design helps to maintain an appropriate level of groundwater, and on the other,
it will relieve the various elements of the stormwater systems [22–24]. In order to be able to
retain rainwater in green areas (and prevent its runoff to the sewer system), it is important to
know the runoff routes, critical points and runoff amounts [25].

Moreover, the influence of the sustainable low impact development (LID) system on
the sewerage network operation can be modelled [10,26]. This enables optimization of the
selection of appropriate solutions and their proper location for assumed future changes
in rainfall characteristics. The model has to be calibrated to ensure the reliability of the
obtained simulation results. The calibration process requires collection of high-resolution
data concerning catchment characteristics, including spatial diversification, pervious and
impervious areas, morphology, sewer system characteristics, time series of precipitation, flow
rates, and water depth in pipes and tanks acquired by rain gauges, flow meters and water
level meters. Nevertheless, due to the large number of parameters being calibrated, issues
with their identification occur. In order to simplify the calibration process, it is necessary to
conduct a sensitivity analysis (local or global), which involves assessing the impacts of the
particular parameters on the simulation results (hydrograph time resolution) [27–29].

The aim of this paper is to present a critical up-to-date literature review considering the
actual state of knowledge of rainfall-runoff models development for urbanized catchments,
with special attention paid to the main components of the discussed models, i.e., the
hydrological model of catchment surface runoff and the hydraulic model of sewerage flow
in stormwater or combined pipeline systems. The presented study also aimed to identify
actual data gaps and possible future directions of research on rainfall-runoff modelling. The
developed review was partitioned into five sections focused on rainfall-runoff modelling,
required system data, model parameters, calibration data and data for optimization.

2. Rainfall-Runoff Modelling
2.1. Mechanistic Modelling

Due to the extensive range of data required for a catchment model, there is a need to
introduce appropriate systematic solutions which enable their collection, storage, processing
and analysis. A catchment runoff model can be setup on the basis of the sets of above-mentioned
data, supported by a wide range of computer tools and calculation procedures [30–32]. In the
case of a mechanistic (and deterministic) model, i.e., based on the equations of fluid mechanics
related to surface runoff and sewerage network, CFD (Computational Fluid Dynamic) models
can be employed for analysing the operational conditions of sewerage systems. However, the
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use of a full CFD model (a 3D model, based on the Navier-Stokes equation) would require a
very long computational time and high demands on hardware and input data. Because of this,
the vast majority of currently used sewer system flow models use the simplification of the full
3D Navier-Stokes equations and its reduction to 1D, often known as Saint-Venant equations.
In this case the solution of the given task under a known boundary and an initial condition
reduces to the solving of sets of de Saint Venant differential equations [33–35]. There is also a
rarely applied possibility of model integration with hydrodynamic models which allow a better
description of surface runoff and stormwater manholes flooding, but in such cases the amount
of required input data is increased [36–38].

Compared to this, (full) CFD finite elements models of extensive hydraulic systems,
including water supply as well as sewage and stormwater removal pipelines, are gen-
erally very hard to build and operate, due to very high hardware requirements of CFD
software. Because of this, the CFD models are very often used in limited parts of the sewer
system—variant hydraulic designs and feasibility studies of single water, wastewater or
stormwater structures or devices, such as spillways, combined sewer overflow structures,
solid phase separators, reservoirs, reactors, sedimentation tanks, etc. [39–43]. In these cases,
selection of the appropriate computational grid and the application of correct turbulence
models for simulating local phenomena within the analysed structure are of key importance.
The operation of structures located within the sewerage network is often simulated by
employing a water-air mixture, which corresponds to the volume of fluid model [44–46].

2.2. Simplified Models

Multiple simplifications were also implemented in surface runoff modelling, which
is confirmed by numerous publications on this subject. The surface runoff was modelled
with non-linear tank models [47,48], including the kinematic wave model [49], unit hydro-
graph [50,51], which is often employed in the calculation of agricultural catchments [52]
and constitutes a simplified solution for the dynamic wave equation, originally used for
simulating the hydrodynamic conditions in riverbeds [53]. The available calculation tools
for simulating the operation of sewerage network enable a simultaneous simulation of
surface runoff and pipe flows [54].

SWMM (Storm Water Management Model) is one of the most commonly employed
rainfall-runoff models. Its popularity stems from the fact that it is available in the public
domain, and does not require purchase of the license [54,55]. The authors of the software
uploaded the source code of SWMM, which enables its modification through the implementa-
tion of additional calculating algorithms for analysing the model sensitivity [56,57], eventually
expanding the model for stormwater flooding simulation, as well as the systems for sus-
tainable stormwater management [47,58]. By employing the SWMM software, it is possible
to model the operation of a sewerage network, the stormwater overflow, flooding, and the
models located within it, including impounding reservoirs, flow regulating valves, and the
systems simultaneously regulating the distribution and flow direction of stormwater. Using
SWMM allows modelling and optimization of the location and dimensions of impounding
reservoirs by conducting consecutive simulations for complex rainfall time series. A range
of similar models is currently employed; however, many of them are relatively expensive
commercial software, rarely used in the work of local authorities or scientific units. However,
there are available numerous models devised as a result of research projects [26,59,60]. From
a practical point of view, in terms of the currently valid guidelines for designing sewerage
systems (PN-EN 752:2017-06) [61], models which enable simulation of the flooding from
manholes and inspection chambers are especially important. This constitutes an important
aspect in evaluation of the efficiency of the existing and designed sewerage networks [62]. In
this case, conducted simulation is more complex, because there is a need for a simultaneous
simulation of conditions in an inspection chamber, its spill-over, and the path of stormwater
flow on the catchment surface [30,32,63]. In many cases, accounting for all necessary variables
requires integrating several calculation tools at once, e.g., in the work by Sañudo et al. [37],
a combination of FLO—2D and SWMM software was used. Other combinations, including
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FLUENT and SWMM (MOUSE, XPSWMM, etc.) are also employed [64]. In SWMM, there are
several options for simulations of the sewage flooding from inspection chambers, enabling
determination of its volume in a rainfall event [65,66]. It is also possible to define the system
of roads and parking lots which are directly connected via the overflow structure or an orifice.
The topography in the prospective flooding locations can be defined by means of retention
tanks [67]. The modifications of the SWMM source code in which every junction (node) is
integrated with a DTM (digital terrain model) are also created; the resultant code enables
modelling of the stormwater flooding and its surface area [8,68]. The current version of
SWMM allows users to simulate green infrastructure (GI) through low impact development
(LID) components, such as rain barrels, permeable porous pavements, swales and infiltration
trenches [10,69]. Moreover, the influence of the LID system on the sewerage network operation
can be modelled. This enables optimization of the selection of appropriate solutions and
their proper location [10,69–71]. The technical assessment of LID practice in the management
of surface runoff is also possible through long-term hydrological simulations, identification
of optimal LID options via long-term feasibility analyses and assessment of LID influence
on pollution reduction [70,72]. Generally, data driven models, based on machine learning,
require significant collection of input data but allow relatively simple calibration and are faster
in operation.

A new approach to modelling of urban runoff, automated modelling based on equation
discovery which aimed to overcome the drawbacks associated with manual selection and
calibration of models, was presented in the work of Radinja et al. [73]. Automated modelling
can be used to find the most suitable mathematical model among multiple available alternatives
for describing modelled processes and to calibrate the model parameters versus the measured
data. Thus, the discovery of the optimal structure and parameter values of the rainfall-runoff
models based on the pipe flow measurements, including a combination of infiltration methods
within a single model structure, was possible. Under such circumstances, automation is used
for crucial model structures and calibration, allowing significant reduction in duration of the
two most usually time-consuming processes in the popular modelling procedure.

Table 1 presents the advantages and disadvantages of the popular modelling software
used for rainfall-runoff modelling.

Table 1. Characteristics of the most popular rainfall-runoff modelling software, combined
from [23,54,74–77].

Characteristic

Program Name

EP
A

SW
M

M

M
IK

E
U

R
B

A
N

SW
A

T

ST
O

R
M

H
SP

F

M
U

SI
C

D
R

A
IN

S

C
iv

il
3D

M
O

U
SE

In
fo

w
or

k
SD

Accessibility Public domain X X X X X
Commercial X X X

Functionality
Planning X X X X X X

Operational X X X X X
Design X X X X X X X

Model characteristic

Water quality model X X X X X X X X
Hydrologic Model X X X X X X X X X
Hydraulic Model X X X X X X

Symulation types Event X X X X X X X
Continuous X X X X X X

Green infrastructure modelling X X X X X

Model quantity components

Pipes X X X X X
Open channel X X X X X X

Retarding basins X X X
Natural streams X X X X X
Rainfall runoff X X X X X X
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2.3. Calibration and Validation of Rainfall-Runoff Models

In order to ensure that the obtained rainfall-runoff models are reliable, it is necessary to
conduct their calibration and validation. In the course of model calibration, it is important
to conduct a sensitivity analysis, which enables identification of the model parameters
with a significant influence on the modelled stormwater quantity [78]. Local and global
sensitivity analysis methods are employed for this purpose. The local methods are easy
to implement; however, their application can be limited and the obtained results may
not reflect the actual conditions, because they omit the interaction between the calibrated
parameters [79]. The global sensitivity analysis is free of this drawback; however, due to the
introduced simplifications, the obtained results do not always reflect the physics of the anal-
ysed phenomena. At present, variance-based methods of global sensitivity analysis, which
account for the interaction between the calibrated model parameters and their influence on
the simulation results, are becoming increasingly popular [80]. Nevertheless, during the
sensitivity analysis, the influence of rainfall event space and time distribution is in both
cases accounted for to a limited extent, which may affect the selection of optimal values of
the catchment model parameters [81–83]. Due to the strong interactions between the cali-
brated parameters, there are issues with their identification. Evaluation of their impact on
the calculation results necessitates conducting the so-called uncertainty analysis [32,84–87].
One of the commonly employed methods employed for this purpose includes GLUE (Gen-
eralized Likelihood Uncertainty Estimation) [32,78,88,89]. This approach assumes good
matching of the measurement data to the results and governs multiple combinations of the
numerical values of the parameters being calibrated. Therefore, the results of calculations in
this approach constitute a multivariate distribution of parameters. Nevertheless, the results
of the analyses are produced in the form of a cumulative distribution function (CDF), rather
than a single set of calibration parameter values. Therefore, the result obtained during a
simulation related to, e.g., tank calculation or overflow structure constitutes a likelihood of
exceeding the simulated value [90]. In this case, there is a problem in choosing the correct
value for designing a sewerage network (structure dimensioning). In order to avoid the
above-mentioned issue, the identification of urban catchment models was performed with
such optimization methods as evolution algorithms, ant colony optimization algorithms,
cuckoo search algorithm, etc. [91–94]. These solutions enable determination of such a
combination of parameters, for which minimum goal function, i.e., best fit of calculation
results to measurement values, is obtained. Statistical models, in which the theoretical
models are formed on the basis of the accumulated data, constitute an alternative to urban
catchment deterministic models. Machine learning, linear and non-linear regression meth-
ods, etc., are used for this purpose. In the case where the collected data simultaneously
encompass several urban catchments, a universal model can be created on their basis,
which constitutes an advantage over the hydrodynamic models. However, they are usually
created for predicting a single dependent variable [95–97].

On the basis of a literature review [60,87,98] it seems that the use of hydrodynamic
models is highly related to the problems with model calibration, the amount of measured
data and the required study period. It is important to specify, based on an appropriate
literature study on the physics of the investigated phenomenon, whether the assessment
of its occurrence can be identified using other available methods and lower financial
outlays. Taking this into account, statistical models can be employed for the creation
of mathematical models of stormwater and combined networks and the objects located
therein. The literature indicates that data mining methods (multiple regression, neural
networks, autoregression models, regression trees, fuzzy logic) can be used for modelling
the variability of quantity and quality of stormwater in networks [54,99,100]. The logistic
regression model, constituting a classification model enabling identification of the overload
states in a system (stormwater flooding) is increasingly frequently used for modelling
sewerage network objects such as combined sewer overflow structures [60,101]. Due to the
complex character of rainfall events and thus the generated operational state of conduits, it
is possible to develop a simplified methodology of conducting measurements for the set-up
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of statistical models. In this case, the application of readily-available data is significant.
The identification of rainfall events with a diversified time-course can be supplemented
with the data from meteorological radar, eventually by the short term forecasts provided
usually by national meteorological services. On the basis of these data, it is possible to
prepare for the conducting of field studies, e.g., on the stormwater flooding events within
the considered catchment, well in advance. However, such application is limited to small
test catchments in which the observation of the stormwater system operation during the
rainfall events identified by means of forecasts can be conducted with the data from the
afore-mentioned websites. Simultaneously, these data can be employed for controlling
the operation of the stormwater overflow structures. In this case, it is possible to apply
washable water gauges painted inside conduits and flow chambers, where—on the basis of
the observed stormwater table—it can be determined whether the stormwater overflow
occurred through the overflow structure. This aspect could be employed as an alternative
for collecting the data for the calibration of hydrodynamic models, both local and spatial.
In this case, conducting numerous experiments within the investigated sewerage network,
during which a network of measurement posts with washable gauges would be created for
the identified rainfall events (using the data provided by national meteorological services),
should be considered. The acquired data would provide valuable information on the
stormwater level within a sewerage network and the operational conditions of stormwater
sewers. Therefore, the collection of data on the stormwater water in a sewerage network for
numerous rainfall events and subsequently its use for the calibration of a hydrodynamic
model seems purposeful. Thus far, this aspect has not been analysed and might constitute
an interesting low-cost alternative for the collection of data required for the calibration of
the hydrodynamic catchment model. The precipitation data, obtained in advance, can also
be applied in monitoring and controlling the leaching of pollutants from sediments of the
stormwater system. In this case, it is important to capture the beginning of the leaching
connected with the first flush phenomenon, which is essential for the mathematical model
calibration [102,103]. The examples presented above constitute an alternative to conducting
continuous, long-term monitoring of flows in stormwater networks. They indicate the
method for the collection of mathematical models of catchments, simultaneously reducing
the costs incurred while conducting long-term measurements [104,105].

A future research subject in this area can be the question of convergence and reliability
of automatic calibration systems, i.e., whether these systems can identify the best, but
also a real, set of parameters, and eventually how these systems react to unexpected (not
identified) errors in the model setup, e.g., missing conduits, structures, sediments, partial
blockage of the hydraulic cross-sections, etc.

3. System Data

Setup and calibration/verification of a hydrodynamic model of an urban catchment is
a complex task with many uncertainties affecting calculation results [32,78,106,107]. One of
the most important uncertainties is connected with the availability, relevancy and accuracy
of system data. Therefore, in order to ensure that the obtained simulations are as close
to the actual conditions for the observed phenomena as possible, it is essential to collect
the data reflecting the actual state. This requires appropriate knowledge encompassing
the system structure’s spatial development information and data (possible sources of their
acquisition and their accuracy), precipitation data (location of the rain gauges, sensitivity
of the employed device), data on the water depths, velocities and volumetric flow rates
within a network (conduits, combined sewer overflow structures, retention tanks, etc.),
assumptions adopted while building the model connected with its accuracy, as well as
discretization of sub-catchments in the model [108,109]. Taking into account the interactions
between the above-mentioned data, developing a methodology for catchment model setup
seems purposeful. In practice, this is an exceedingly difficult task since in some countries
the relevant data considering vector maps, GIS data bases, etc., is available online, whereas
in others the access to such data is limited. This is a known issue and the general principles
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for model setup have been developed. However, they lack details on the possibility of
(spatial) data acquisition, determining runoff coefficients in sub-catchments or model
calibration methods [110–115], which might be significant in the course of selecting the
measurement devices, their location or the measurement period. Taking these factors
into consideration, a new procedure for building hydrodynamic rainfall-runoff models
was proposed, allowing good model quality and overcoming the problems caused by the
missing data gaps (Figure 1).

Figure 1. Concept scheme of a hydrodynamic rainfall-runoff model setup, including data collection
and calibration.

3.1. Spatial Data

The basis for the creation of a hydrodynamic rainfall-runoff model mainly involves
spatial data. On their basis, the share of impervious surfaces, size of sub-catchments, and
terrain elevations are determined, and the values of roughness coefficients and depression
storage are estimated [116–118]. Nevertheless, it is vital to determine the reliability of these
data. The data used for specifying the catchment characteristics can be obtained from
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orthophoto maps; additionally, the data from e.g., Inventory of Land and Property Register
(LaPR) (PL), State Administration of Land Surveying and Cadastre (ČÚZK) (CZE), can be
used to improve their accuracy. This enables an increase in the reliability of data pertaining
to impervious surfaces (roofs, parking lots, roads, etc.). However, the accuracy of the input
data for model setup based on the general map should be treated as reference. The data
required to build a rainfall-runoff model also involve information on diameters, lengths,
and pipe slopes. These data can be acquired using the Geodetic Inventory of Network
Utilities (GIoNU) database; if unavailable, they can be obtained using the general map.
The data related to spatial land management, land topography, as well as the course of
the sewerage network are increasingly available for a broad range of users in the form
of GIS (Geographic Information System), DTM (Digital Terrain Model) and the data of
the sewerage network operator. Digital Terrain Model (DTM), and the data defining the
placement of sewer pipes and the course of linear drainage can also be used for this purpose,
which ensures relatively small simulation error. The access to DTM is frequently limited,
which leads to potential errors and affects the reliability of the coefficients being determined.
In such cases, the general map and sewer location can be used, which may however generate
errors while determining the catchment characteristics. Model calibration requires rainfall
data, especially data with high temporal and spatial-resolution [106,119–121].

In our opinion, a further improvement of the urban drainage models is the enhanced
integration with local topographic data sources, such as cadastral data, basic (state guar-
anteed) databases for the GIS, available DTM, orthophoto (aerial) maps, and eventually
evaluation of these data sources with respect to local conditions. Despite some activities
in this area, we still consider, as an interesting research subject, the use of the different AI
based systems for automatic recognition of the sub-catchment/surface types and determi-
nation of their hydrologic and hydraulic characteristics. Such a system can make easier
the data entry and setup of new models, but also update the data of existing models easily
and quickly.

3.2. Sewer System Characteristics

The data presented above are not sufficient to build a flow model of a sewer network,
because the values of the conduit roughness coefficients, coefficients of minor energy losses
at the inlet and outlet of particular conduits, and share of a hydraulically active cross-section
of a conduit, are also required. In order to acquire these data, it is recommended to conduct
CCTV inspection of conduits using specialized stationary or mobile cameras [122–124]. The
results of these studies have a significant effect on the correct selection of coefficient values
in rainfall-runoff models for sewer network flow simulation, determining their hydraulic
conditions [125]. If no data from CCTV inspection is available, the values of roughness
coefficients are determined based on the information pertaining to the type of material the
system is made of or by referencing to the literature data [126]. The exemplary values of
Manning’s roughness coefficient for the most popular materials of sewerage pipelines are
presented in Table 2. At the preliminary calculation stage, or when no data on the sewerage
network are available, this might be omitted during the setup of a rainfall-runoff model.
This approach has a significant impact on the reliability of the coefficient values determined
while modelling the velocity and volumetric flow rate inside the sewerage pipelines.
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Table 2. Exemplary values of Manning’s roughness coefficient for the most popular sewerage pipeline
materials.

Pipeline Material Mannig Coefficient, n [s/m1/3] References

Asbestos—cement pipe 0.011–0.015

[127]

Brick 0.013–0.017
Cast iron pipe—cement-lined and seal coated 0.011–0.015
Concrete (monolithic)
- smooth forms 0.012–0.014
- rough forms 0.015–0.017

Concrete pipe 0.011–0.015
Corrugated-metal pipe (1/2-in.x2/3-in. corrugations)
- plain 0.022–0.026
- paved invert 0.018–0.022
- spun asphalt lined 0.011–0.015

Plastic pipe (smooth) 0.011–0.015
Vitrified clay 0.011–0.015

Corrugated polyethylene (PE)pipe with smooth inner walls 0.009–0.015

[25]
Corrugated polyethylene (PE)pipe with corrugated inner walls 0.018–0.025
Polyvinyl chlooride (PVC) pipe with smooth inner walls 0.005–0.009
Cast iron pipe 0.013

3.3. Rainfall Data

In many cases, the access to rainfall data is limited or insufficient. This is due to the
fact that the number of rain gauges located in the urban area is limited. In many cases,
there is none or only a single rain gauge located on the outskirts of the city. The data
acquired in this way may be unreliable for calibrating a hydrological catchment model
because of lack of knowledge about rainfall spatial distribution. The proper placement of
rain gauges should enable determination of the direction and movement of rainfall cells
including its speed (especially in large urban areas). The data obtained in this way are
reliable and can be used for catchment model calibration. The appropriate rain gauge
placement is vital during model setup and preparation of the testing plot [128–131]. This
approach enables the acquiring of reliable values of calibrated parameters in rainfall-runoff
models, which is essential for their application in the analyses of sustainable catchments’
development. Due to the local nature of rainfall, land topography and land development,
the optimal placement of rain gauges is a very complex task. The current analyses do
not provide unequivocal data and the determined dependences indicating the maximum
distance between rain gauges in terms of sewerage network modelling omit the above-
mentioned aspects. There is no general, clear unified methodology for the placement of rain
gauges in urban catchments, which hinders the planning of research and the performing of
experiments, and leads to problems related to model calibration in terms of reliable input
data for the hydrodynamic rainfall-runoff model. However, Schilling [128] and Einfalt [132]
summarized suitable precipitation information for operation and design of urban drainage
systems as follows: at least 20 years of recordings without data gaps, a volumetric accuracy
of less than 3%, and a spatio-temporal resolution of 1 km2 and 1 min, respectively [133].

A source of very good and reliable rainfall current data is meteorological radar. Radar
devices provide wide-area scanning, with sufficient spatial resolution (pixels from 100 m
up to 1 km), and temporal resolution (1–10 min) in a typical range of 30–200 km. Such
resolutions are sufficient for most urban rainfall-runoff models. The use of radar also allows
the provision of operational rainfall information in real time; this allows the deployment of
the real control of sewer systems [133].

Future research trends in this area could be support for the generation of synthetic
rainfall series directly in the model environment (possibly with a spatial distribution)
based on user-defined IDF curves, or definition of a standard long-term rainfall series
(possibly with a spatial distribution) in order to be able to assess the most unfavourable
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flood situations in the urban river basin (e.g., combination of rainfall intensity, spatial
characteristics, direction and movement speed of rainfall copulas).

An interesting research issue is the examination of extreme flood events and situations,
e.g., a combination of snowmelt and rainfall, eventually combined with frozen permeable
surfaces in winter or springtime. Another research subject is research into the synergy be-
tween extreme rainfall and flood situation in urban river networks (both these phenomena
may or may not be statistically interdependent).

4. Model Parameters

Model parameters are all the system data that we are not able to quantify based on
catchment/sewerage system inspection (e.g., depression storage, time of concentration,
catchment/sewer roughness, depression storage, infiltration, etc.) [134]. At this stage of
the model setup, the tasks to be fulfilled by the model must be specified. The model may
be used for estimating the catchment runoff which requires less detailed data [87,103];
alternatively, the model can be used for simulating the sewer overflow or stormwater
flooding, which necessitates highly detailed data.

4.1. Surface Roughness and Runoff Coefficients

While creating a hydrodynamic rainfall-runoff model, it is necessary to identify numer-
ous parameters that constitute the input data [11,22], including the catchment characteristics
describing the land development, hydrological properties and the sewerage network pa-
rameters [54]. Surface imperviousness and coefficient of surface runoff constitute two of
the numerous parameters identified in the catchment models on the basis of the spatial
databases [135,136]. The values of surface imperviousness and their runoff coefficients can be
determined on the basis of map-based records, as well as satellite maps. By using the remote
sensing data, the catchment imperviousness can be determined [116,137]. Selection of an ap-
propriate catchment designation method in the model also affects the size of a sub-catchment.
This is an essential issue, because it has influence on the variability of the surface area in the
model as well as the values of runoff coefficients being calibrated. The exemplary values of
runoff coefficient for various surface types are presented in Table 3, while Table 4 presents
collected literature values of roughness coefficient for different land usage types.

Table 3. Exemplary values of runoff coefficient for various surfaces.

Description of Area Runoff Coefficient (-) References

Downtown 0.70–0.95

[138]

Neighborhood 0.50–0.70
Residental single—family 0.30–0.50

Residential multiunits, detached 0.40–0.60
Residential multiunits, attached 0.60–0.75

Residential (suburban) 0.25–0.40
Apartment 0.50–0.70

Industrial—light 0.50–0.80
Industrial—heavy 0.60–0.90
Parks, cementaries 0.10–0.25

Playgrounds 0.20–0.35
Railroad yard 0.20–0.30
Unimproved 0.10–0.30

Parks, cementaries 0.10–0.25
Asphaltic and concreto road 0.70–0.95

Brick road/pavement 0.70–0.85

Industrial area 0.865

[139]

Airport 0.8
Built-up areas 0.865

Harbour 0.865
Recreation 0.075

Solid waste disposal site 0
Tourism development 0.325



Water 2022, 14, 1997 11 of 27

Table 3. Cont.

Description of Area Runoff Coefficient (-) References

Pavement 0.70–0.90

[140]

Permeable pavement 0.30–0.40
Gravel road 0.30–0.70

Shoulder or top of slope:
Fine soil 0.40–0.65

Coarse soil 0.10–0.30
Hard rock 0.70–0.85
Soft rock 0.50–0.75

Unused bare land 0.20–0.40
Athletic field 0.40–0.80

Park with vegetation 0.10–0.25
Mountain with a gentle slope 0.30
Mountain with a steep slope 0.50

Farmland 0.10–0.30

Roofs
0.75–0.95

[138,140]

1.00
Lawns, sandy soil:

Flat, 2% 0.05–0.10
Avarage, 2–7% 0.10–0.15

Steep, 7% 0.15–0.20
Lawns, heavy soil:

Flat, 2% 0.13–0.17
Avarage, 2–7% 0.18–0.22

Steep, 7% 0.25–0.35

Table 4. Exemplary values of Manning’s roughness coefficient for various land type surfaces.

Imprevious Material Mannig Coefficient, n [s/m1/3] References

Concrete or asphalt 0.011 [25]

Smooth asphalt 0.011

[141]
Smooth concrete 0.012

Brick with cement mortar 0.014
Cement ruble Surface 0.024

Short grass 0.15

Pervious area 0.02 to 0.05 (0.2 *) [142]Impervious area 0.03 to 0.08 (0.015 *)

Pervious area 0.25
[143]Impervious area 0.05

Permeable pavement 0.013
[144]Vegetated Swale 0.15

Rain Garden 0.1

Rooftop 0.011–0.012
[145]Road, pavement and other impervious 0.011–0.013

Green area 0.15

Concrete block pavement area 0.01 [146]

Grasses 0.2

[147]Woods 0.4
Concrete Buildings 0.015

Asphalt or Cement Paved Surface 0.011

Pavement cross section 0.03 [148]

Asphalt/concrete 0.011–0.013 (0.014 *) [149]Grass/tree 0.18–0.8 (0.3 *)

Porous concrete block paving 0.06–0.1 (0.05 *)
[150]Impervious surfaces 0.1

Green urban areas
Sport and leisure facilities 0.025

[151]
Road and rail networks and associated land 0.013

Note: * value obtained on the basis of model calibration.
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By using the available measurement methods, it is possible to identify the values of
pipe (channel) roughness coefficients using laboratory methods [152]. By conducting the
flow measurements at the inlet and outlet in a single pipe with the specified diameter, slope
and length, the roughness values can be determined [153,154]. However, this is difficult
to perform under the real conditions in a sewer network. It should be noted that during
operation, depending on the catchment type, substantial amounts of suspended solids and
resultant sediments of various roughness coefficient may occur and flow in the stream, which
in the long-term changes the average roughness of the pipe walls [155]. Moreover, it should
be remembered that, depending on the local conditions, biofilm may cover the pipe walls,
and the deposits and sediments on the pipe bottom can reduce its cross section and change
the flow conditions, which affects the values of parameters identified in the hydrodynamic
model [156–158]. This is extremely difficult to determine, because CCTV inspection of sewer
pipes should be performed after each rainfall event, which would provide reliable data about
the pipe’s physical and hydraulic characteristics. At present, this aspect and its variability in
time is omitted due to the technical difficulties connected with conducting measurements, as
well as the high cost and time required for performing CCTV inspection. In numerous cases,
the minor energy loss coefficients in the inspection chambers as well as the inlet and outlet of
the pipe are omitted and the pipe roughness is increased by a certain value [159].

4.2. Subcatchment Area

In practice, the assumption that the uncertainty of coefficient values identification
in the surface runoff model increases with the area of the sub-catchment model seems to
be correct [80,89]. In turn, the lower the catchment resolution, the greater the variability
of the coefficients being calibrated can be. The accuracy of spatial data is important for
ensuring that the determined catchment characteristics in a more detailed model are more
reliable than in a model with a limited number of sub-catchments. At this stage, in order to
reduce the error related to the assessment of coefficient values in a model, the application
of DTM is essential, provided that the catchment size is appropriately selected—the ter-
rain slope is relatively uniform and the land development is homogeneous. Meeting the
above-mentioned assumptions pertaining to the division of sub-catchments in a model is a
key stage of its creation. However, due to diversified data resources (stormwater systems,
spatial data on land development, longitudinal slope of the catchment, etc.), the simplifica-
tions adopted while determining the catchment resolution in the model significantly affect
the reliability of the coefficients describing the sub-catchments, which in turn influences
the catchment calibration process. The surface imperviousness in urban catchments can
be indicated by using the collected data and machine learning methods [101,160]. On the
basis of this approach and identification of reference areas, other parameters requiring
calibration in hydrodynamic urban rainfall-runoff models, beside runoff coefficients, can
also be determined, i.e., depression storage and roughness coefficients [161,162]. In this
approach, the appropriate selection of the learning sample (application of machine learning
methods) which enable identification of the hydrodynamic model parameters, is essential.
The employed approach is extremely important for reducing the model uncertainty, which
affects the values of other calibrated parameters that are non-measurable [51,67,87]. Of
course, the values of calibrated parameters in the entire model can be assumed as fixed
values describing the impervious and pervious surfaces. This approach is employed during
the catchment model calibration [89,157]; however, it constitutes a source of uncertainty, be-
cause the retention of impervious surfaces, roofs, roads, or parking lots differ. Assumption
of identical values and their allocation for all impervious surfaces is a source of uncertainty,
which is confirmed by the simulation results [89].

Another important parameter during model setup, affecting the accuracy of the ob-
tained results, is the adopted method of runoff width determination [147,163,164]. Accord-
ing to Rossman [55], the catchment width depends on the total surface and mean runoff
length. In order to estimate the width, the geometrical shape of each sub-catchment is
simplified to a rectangle, but also a divergent and convergent shape with the corresponding
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surface area [165]. In the case of partial catchments which are symmetrical in terms of pipe
placement, the catchment width can be determined solely on the basis of pipe length. In
the case of catchments which are non-symmetrical in relation to the pipe, the catchment
skewness coefficient also has to be taken into account. Some authors suggest accounting
only for the impervious surface area of the partial catchments, rather than the total partial
catchment surface area [166].

4.3. Infiltration Ratio

Infiltration is an important parameter identified during model calibration, which can
be determined on the basis of field studies. At the initial stage, adoption of an appropriate
mathematical model (Horton’s, Green and Ampt, etc.) is important because it affects the
course of the measurement experiment and the employed measurement devices. Never-
theless, due to the urban conditions, the fact that catchments span over large areas may
hinder determination of the parameters in the infiltration model [167,168]. In the urban
area, several questions arise: to what extent will the obtained measurement results for
the representative areas differ from each other, what will be the impact of this difference
on the results, will infiltration be a key factor requiring calibration in the investigated
model, and can the values from literature be assumed? During model calibration, the
catchment is usually divided into areas with similar soil characteristics, which is simul-
taneously a source of uncertainty that should be thoroughly analysed. While gathering
the data for the creation of a hydrodynamic catchment model, the field measurements
are important for its further calibration, reducing the uncertainty of the coefficients being
determined. These measurements may lead to determination of the values of calibrated
parameters—coefficients in the Horton model (see Table 5 for the exemplary input data
for Horton model), which may significantly affect the correlation between the calculation
results and measurements, and reduce the interactions between the coefficients included in
the model [168]. However, this may not be an essential aspect at the stage of determining
the input data for the model, because in many cases, in relation to the modelled rainfall
event (intensive or long-term rainfalls with high rainfall depth) and the portion of the
pervious areas (generally impervious city centers vs. green and pervious city outskirts), it
turned out that the infiltration process dynamics have negligible influence on the results
obtained while calculating the variability of catchment runoff.

Table 5. Exemplary values of input data for Horton infiltration model.

Type of Area Maximum Infiltration Rate
(mm/h)

Minimum Infiltration Rate
(mm/h) References

Rooftop, Road, pavement and other impervious,
Green area 122.0 17.5 [145]

Pavement cross section 76.2 3.18 [148]

Flexible Porous Pavement 217.20 73.20

[169]

Small Porous Brick Pavers 259.20 59.40
Large Porous Brick Pavers 339 145.80

Engineered Soil 348 72
Vegetated Soil 152.40 46.80

Cast in Place Porous Concrete 270 21.60
Precast Porous Concrete 241.80 58.20

Porous Asphalt 327.6 56.40 [169]
180 0 [170]

Porous Concrete 450 348

[170]

Vegetated courtyards 234 84
Urban parks 48 30

Porous rubberized safety materials 324 12
Porous pavers 90 60

Backyards 204 90
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4.4. Personal Catchment Survey

We consider it extremely important to become familiar with the hydrological con-
ditions of the particular catchments, ideally by a personal walk in the river basin. In
many cases, water from the surface drain is unable to reach the sewers for various
reasons—e.g., obstacles such as small garden walls, depressions, fences with masonry,
etc. It is also advisable to find out directly in situ whether the drainage of surfaces (e.g., roof
gutters) is connected to the sewer network.

We also found it very useful to perform a personal survey (inspection) of the sewer
network, allowing assessment of the flow rates of infiltrated water, e.g., during the night,
when the sanitary flow is minimal. Another benefit of such survey can be related to
checking of the structure (topology) of the network, connection of pipes, detection of
large (as well as illegal) inflows, hydraulic arrangement of sewer structures, etc. In many
cases such inspection can reveal various construction modifications that are not officially
recorded in the sewer network documentation (e.g., sewer pipe interconnections, increase
or decrease of the weir crest level in the combined sewer overflow).

5. Calibration Data

During the planning of a measurement experiment aiming at the calibration of the
hydrodynamic model, determining the purpose is of key importance. From the data
collection viewpoint, it is important whether the model is to be applied for research
problems or practical issues including catchment management, expansion, modernization
and/or application of LID systems, predicting the stormwater and combined overflows
amount discharged into the river, or perhaps as a basis for designing a stormwater treatment
plant. These are highly relevant factors, which should be accounted for, because they affect
the dimensions of used devices, their number and type. It should be noted that, apart from
the sewage quantity, its quality can also be measured, which is much more time-consuming
and labour-intensive in the case of the collection of the sewage quality samples [171]. In
numerous instances, the research problem and catchment size are selected so that the latter
spans a homogeneous area, e.g., with identical development [32,60,69]. This is important in
terms of relatively low spatial differentiation of the values of calibrated model parameters
or one calibration point available.

Precipitation measurements are essential for the model calibration. An important
factor is the catchment area, which governs the number of rain gauges to be applied [106].
The temporal as well as spatial resolution of precipitation data, location of the rain gauge
and the employed measurement device are of great importance. In this case, the factors
which may significantly hinder the determination of reliable coefficient values in the model
include the catchment size and the number of rain gauges placed within it. In large urban
catchments, one of the crucial parameters is the rainfall spatial distribution. Therefore,
this should be included during the model calibration, because it may significantly affect
the reliability of the determined calibration parameter values and the reduction of their
uncertainty. This is a highly important issue during the calibration of large sewerage net-
work models [172–175]. A certain optimum should be achieved, where the number of rain
gauges in a catchment should ensure high correlation between the results of simulations
and measurements. Simultaneously, the number of rain gauges should not be too high to
avoid excessive cost generation. Therefore, it should be optimized in relation to the local
conditions. Time resolution of measurement data, combined with wetting, wind conditions,
rain gauge resolution and calibration, are other important factors. In many cases the higher
the resolution of data, the lesser the uncertainty of measurement. However, time resolution
is only one factor affecting the measurement uncertainty (others are wetting, wind condi-
tions, proper calibration of rain gauges, resolution of rain gauges, proper location of rain
gauges, etc.). Generally, shorter time steps decrease uncertainty of measurement, but such
a statement is valid only for a specific type of rain gauges placed in specific spot. Reducing
the measurement frequency of rainfall events in the range of 1–5 min [176], on the example
of a small urban catchment in Częstochowa, indicated a negligible influence on the results
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of simulations performed with a hydrodynamic rainfall-runoff model. However, this fact
cannot be generalized, because the catchment and sewerage network characteristics are
significant factors that should not be ignored in analyses [106].

Regarding flow measurement, the location of measurement devices in the sewerage
network is another problematic issue. This is especially important due to the cost of pur-
chasing the device and the specificity of conducting continuous measurements. Analyses
are being currently conducted in this respect; however, they are of a local and fragmentary
nature [32,60,69]. In case the measurement devices are unavailable, hydrologic methods can
be employed [177]. One of the simplest devices includes water gauges, which can be easily
used in a sewerage network by painting a washable gauge on the walls of the conduits,
diversion chamber, wells, and impounding reservoirs. However, this only enables determi-
nation the maximum stormwater level in a given event. Although a single measurement,
corresponding—for instance—to the maximum conduit filling level constitutes a relatively
small amount of data, when performed along the locations in the entire network it may be
a valuable source of data which can be used during the model calibration. The calibration
parameter values obtained in this manner will undoubtedly be characterized by much
higher uncertainty than in the case when the model is calibrated on the basis of continuous
flow or pipe filling measurements. A flow measurement method is significantly affected
by the type of calibration, i.e., continuous, based on time-series or isolated rainfall events.
Calibration of a model using continuous time-series is a solution ensuring less uncertainty
about the identified calibration parameters. Due to technical issues, the problems with
continuous data acquisition may occur in the course of measurements, which stems from
the specificity of the sewerage network operation. This problem is important, because
when a single measurement device is used in a cross-section closing the catchment, the
conditions in the pipes above are affected by uncertainty [178]. The use of additional mea-
surement devices, depending on the requirements set for the model, enables a reduction
in the uncertainty of measurement data, and thus ensures a more accurate calibration
of the catchment model parameters [179]. In terms of calibrating the model parameters
of large catchments, the situation is more difficult [180], due to a substantial number of
pipe segments and partial catchments. This hinders the placement of flow meters in the
locations that maximize the reliability of simulation results, while simultaneously keeping
their number—and related costs—at a minimum. This task is made even more difficult due
to the spatial differentiation of land use and the course of pipes. While the location of pipes
and its variability in the plan are described by means of the network topology methods,
it is difficult to analytically describe the spatial differentiation of land and its use. The
analyses performed for small urban catchments and thus small sewerage networks indicate
that the location of measurement devices can be optimized using fractal geometry meth-
ods [181,182]. However, a question as to whether Stachler’s laws—used for rivers—should
be implemented in the description of the sewerage network arises in the case of these
objects [183]. There are a number of technical issues connected with the implementation of
this idea, as well as lack of a devised calculation methodology; nevertheless, in the case of
small catchments, this solution may constitute an alternative to fractal geometry.

6. Data for Optimization

The basic precondition for using the model to optimize the runoff process in an urban
catchment is its previous calibration and successful verification. If the simulation results
related to sustainable development are to be considered reliable, there is a need to collect
and inventory the works determining the areas within the catchment which are to be rebuilt.
The information on the applied materials and adopted solutions is essential, because it
enables determination of the catchment characteristics for the hydrodynamic rainfall-runoff
model. Placement of the new investment in the area of existing stormwater system is
another important factor, because it generates the need to modify the employed hydro-
dynamic rainfall-runoff model of the catchment (if such a model already exists) [184,185].
While modelling a catchment, information on the planned objects regarding reduction in
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surface runoff (green roofs, infiltration devices, rain gardens, etc.) is essential; in this case it
is important to select such simulation parameters, e.g., reduction in runoff coefficient values,
that will enable the achieving of similar values under the operational conditions [186,187].

The rainfall data is vital for conducting the simulations related to hydraulic sewerage
networks as well as the analyses of their operation. In line with the DWA A-118E [188]
guidelines, the assessment of sewerage network capacity by means of hydrodynamic mod-
elling requires continuous multiannual rainfall data, spanning at least 30 years. If unavail-
able, the simulation of flow in sewerage systems has to be performed using IDF (intensity-
duration-frequency) curves describing the relationship between the maximum rainfall inten-
sity and its duration as well as rainfall frequency. The DDF (depth—duration—frequency)
curves are used in the design practice and scientific studies. In numerous cases, the capacity
of the sewerage network, as well as the objects located therein are designed and analysed
using the rainfall model in which constant rainfall intensity is assumed in line with the
IDF or DDF model or artificial rainfall such as Chicago or Sifalda storms. However, the
application of the Euler type II rainfall distribution model, in which 70% of rainfall depth
occurs in 20% of rainfall event duration, is recommended for conducting the sewerage
network capacity analysis [188]. The exemplary artificial rainfall models are presented in
Figure 2.

When the rainfall time series are shorter than 30 years, rainfall prediction models are
used. Three basic methods can be enumerated in this case. The first is based on fractal ge-
ometry, in which a rainfall generator is created by using canonical micro-cascades [189–191].
This solution is useful even in the case of a relatively short rainfall time series [191]. In
the second method, statistical methods, such as multidimensional scaling, are employed
for rainfall generation [27]. Currently, this method is enjoying great popularity, because it
enables accounting for the climate change in rainfall characteristics as well as prediction of
the rainfall while taking this change into consideration. This is essential from the point of
view of designing sewerage networks and objects located within (combined sewer over-
flow structures, tanks, etc.). The last method employed for rainfall simulation is based on
connecting functions, so-called copula, which link the marginal distributions of rainfall
characteristics (rainfall depth, duration, time distribution of rainfall in a rainfall event) [192].
In this approach, the rainfall characteristics from the measurement period are determined
on the basis of the isolated rainfall events [187,193]. This enables determination of their
empirical distributions and matching of the theoretical distributions [194]. In the next step,
the appropriate functions connecting marginal distributions are selected, which enables the
obtaining of multidimensional distribution used in calculations. The rainfall simulation on
the basis of the determined theoretical distributions can also be performed using modified
Monte Carlo methods, e.g., the Iman-Conover method, which accounts for the fact that the
modelled variables are correlated with each other. Rainfall generators are commonly used
in scientific studies [60,98,186]. Obtained data are employed for simulating the operation
of sewerage networks including the volume of stormwater flooding [193,195], capacity of
retention tanks [89,196], and as the volume and number of discharges through combined
sewer overflow structures [98,196–198].
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Figure 2. Exemplary model rainfall hyetographs for H = 20 mm and t = 1 h.

7. Rainfall-Runoff Models and the Decision-Making Process

A very useful and practical tool for planners can be the interconnection of the hydraulic
models (and their results) with the GIS support for decisive systems, focused on the optimal
sewer system rehabilitation strategy and (technical and financial) extent, considering the
hydraulic, construction and ecologic status of the sewer network.

Several studies have confirmed that LIDs (Sustainable Drainage Systems, SUDs) have
a positive impact on the hydrological and hydraulic load of traditional urban drainage
systems; however, the biggest reduction was achieved in cases of small, relatively frequent
rainfall events and more pervious soil types [199–204]. In case of extreme rainfall events,
such a reduction in flow (water volume) is very limited and sensitive to local conditions.
Therefore, it is wise to appropriately integrate SUDS and traditional drainage solutions to
enhance their synergy for drainage design [205].

According to the experience of the authors [5], some of the SUD and LID measures can
be implemented in urban areas relatively easily, without substantial technical problems and
with reasonable investment costs [206–208]. Beyond a certain level, the implementation of
these measures starts to raise technical problems, which induce relatively high investment
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costs, whereas the contribution to runoff reduction is small. Finding this limit using a
model approach and optimization could be very beneficial for urban planners.

The study of [209] provides evidence that the fate of infiltrated stormwater largely
depends on surrounding land use and that infiltrated stormwater may not always reach
receiving streams as baseflow, as often assumed. As the study shows, in summer, most
of the infiltrated stormwater was evapo-transpired by the vegetation downslope of the
basin, and thus did not reach the receiving stream. The reverse was true in the colder
months, where some infiltrated stormwater did reach the stream as plant water use declined.
Particularly during these summer-autumn months, anthropogenic disturbances interacted
with the plume of infiltrated stormwater: infiltrated stormwater seeped into nearby sewer
infrastructure. All of this has implications for the design and placement of infiltration
structures. In our opinion, there is a need to refine conceptual models of urban catchment
and stormwater models.

Another question is that of sewer system sealing. The experience of many sewage
system operators shows that sealing a specific part of a sewer system (typically a part
of the sewer system with high groundwater infiltration) will cause groundwater level
increase and extensive groundwater infiltration into pipes starting on different parts of the
sewer system, and eventually in household connections [210,211]. Such repeated processes
can lead to significant groundwater level increase, which can endanger the infrastructure
(buildings, cellars) in the urban catchment. A predictive model support for such repair
and sealing activities can be very helpful for the planning and implementation of such
rehabilitation measures.

8. Summary and Conclusions

Drainage models from sewer networks have fundamentally changed the concept of
the design and assessment of sewer networks. In the older concept, statistically processed
rainfall data were used. Based on these, the maximum flow was calculated and a sewer
network was designed. It was assumed that the periodicity of the incurred effect on the
sewer network (hydraulic surcharge, flooding, CSO events) is approximately the same
as the periodicity of the design rain, or at least that these two quantities are directly
dependent. However, as research work has shown [211], the actual periodicity of the effect
and the periodicity of the design’s rain are not in a statistically significant correlation.
The reason for this fact is that the effect on the sewer network is rather dependent on
random constellations of temporally and spatially variable precipitation (e.g., several
consecutive rains) and concentration and runoff time. Therefore, the opposite approach is
used today. The first step is to perform a long-term simulation of runoff, based on historic
rainfall data and subsequently (second step) statistical processing of the effect occurrence,
e.g., determination of the periodicity of hydraulic surcharge, flooding, CSO events based
on the simulation results.

Summing up the above-presented literature review, it can be stated that the creation of
a rainfall-runoff model is a complex task requiring the collection of spatial data involving
the characteristics of the catchment, sewerage network and the conditions within. Collection
of highly reliable data is not an easy task and determination of which type of data discussed
above has the greatest influence on the simulation results is very difficult. This results
from numerous interactions between the variables in the model, which is confirmed in
the model setup scheme (Figure 1). It is obvious that—for instance—by employing more
accurate precipitation field measurements in a catchment, but less detailed information on
the conduit and conditions within them, a strongly non-linear interaction occurs between
the considered variables, and determination of its impact on the reliability of the coefficients
being identified in the model is very complex. There are many more such interactions,
and their analysis is a highly complicated task requiring the implementation of complex
statistical models. This constitutes the topic of numerous works [187,212,213]; however,
in order to provide a clear indication as to how to create a model, which types of data
contribute to a relatively small error in the identification of coefficients in a model, and
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which cause much greater error, is very difficult to assess. This happens because—in
fact—there is a multitude of sources and data acquisition methods; additionally, not all data
are typically quantitative. There are also qualitative data which require uniformization and
clear differentiation through appropriate quality classes in terms of acquisition of reliable
coefficient values in the model being calibrated.

An important way to minimise the inaccuracies and uncertainties of the model pa-
rameters is proper calibration and successful verification of the model. However, the basic
premise for this is correct definition of model input data, i.e., physical data about the sew-
erage network including data concerning sub-catchment characteristics and rainfall data.
The possibilities of using weather radar to obtain rainfall data have been described above;
we assume that nowadays there should be no bigger problem with obtaining this data.
From the point of view of the physical data reliability (based on personal experience), the
biggest problems are caused by data on the ‘point’ elements (structures), such as division
chambers, combined sewers overflows, storage tanks, pumping stations, etc. Therefore,
for projects that involve rainfall-runoff modelling, we recommend personal inspection of
such structures. Personal inspection may reveal possible discrepancies between the actual
status of the structures compared with the available documentation, as well as additional
construction modifications of these structures, not recorded in the documentation. Missing
data can be then added/updated using simple measurement methods.

In our opinion, future research considering rainfall-runoff models should fill in the de-
scribed gaps in knowledge and focus on: (i) determination of convergence and reliability of
the automatic calibration systems; (ii) improvement of enhanced models’ integration with
local topographic data sources; (iii) evaluation of 1D and 3D detailed modelling to answer
the question considering precision of the currently used (1D) approach of the hydraulic
modelling of sewer system structures; (iv) support for the generation of synthetic rainfall
series directly in the model environment based on user-defined curves; (v) modelling inter-
actions between LID devices, including infiltration, groundwater and traditional drainage
systems, to achieve the optimal synergy for urban drainage and economic sustainability;
(vi) optimization of the urban drainage systems based on modelling of water quality and
consequent minimization of the pollution transport into receiving surface waters.

Author Contributions: Conceptualization, B.S., G.Ł. and D.S.; methodology and visualization, B.S.;
formal analysis B.S., G.Ł., D.S. and M.S.; writing—original draft preparation, B.S., G.Ł., A.M.-P. and
M.K.W.; writing—review and editing, B.S., G.Ł., A.M.-P., M.K.W., D.S., M.S., J.P. and R.B. All authors
have read and agreed to the published version of the manuscript.

Funding: Work and APC was financially supported by subvention of particular scientific units. For
elaboration of paper also contributed the support under the Operational Program Research and Inno-
vation for the project: Research on the impact of biotic and abiotic factors on soil-water-atmosphere-
plant cover components, 313011T620, co-financed by the European Regional Development Fund,
13-GASPU-2021 “Blue-green infrastructure as a basis for climate adaptation of land management in
agricultural and urbanized land”.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mariolakos, I. Water resources management in the framework of sustainable development. Desalination 2007, 213, 147–151.

[CrossRef]
2. Hurlimann, A.; Wilson, E. Sustainable Urban Water Management under a Changing Climate: The Role of Spatial Planning. Water

2018, 10, 546. [CrossRef]
3. Garcia, M.; Koebele, E.; Deslatte, A.; Ernst, K.; Manago, K.F.; Treuer, G. Towards urban water sustainability: Analyzing

management transitions in Miami, Las Vegas, and Los Angeles. Glob. Environ. Chang. 2019, 58, 101967. [CrossRef]

http://doi.org/10.1016/j.desal.2006.05.062
http://doi.org/10.3390/w10050546
http://doi.org/10.1016/j.gloenvcha.2019.101967


Water 2022, 14, 1997 20 of 27

4. Özerol, G.; Dolman, N.; Bormann, H.; Bressers, H.; Lulofs, K.; Böge, M. Urban water management and climate change adaptation:
A self-assessment study by seven midsize cities in the North Sea Region. Sustain. Cities Soc. 2020, 55, 102066. [CrossRef]
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90. Szeląg, B.; Kiczko, A.; Dąbek, L. Stormwater Reservoir Sizing in Respect of Uncertainty. Water 2019, 11, 321. [CrossRef]
91. Wang, Q.J. The Genetic Algorithm and Its Application to Calibrating Conceptual Rainfall-Runoff Models. Water Resour. Res. 1991,

27, 2467–2471. [CrossRef]
92. Rubinstein, R.Y.; Kroese, D.P. The Cross-Entropy Method; Information Science and Statistics; Springer: New York, NY, USA, 2004;

ISBN 978-1-4419-1940-3.
93. Bates, B.C.; Campbell, E.P. A Markov Chain Monte Carlo Scheme for parameter estimation and inference in conceptual rainfall-

runoff modeling. Water Resour. Res. 2001, 37, 937–947. [CrossRef]
94. Fang, T.; Ball, J.E. Evaluation of spatially variable control parameters in a complex catchment modelling system: A genetic

algorithm application. J. Hydroinform. 2007, 9, 163–173. [CrossRef]
95. Tayfur, G.; Singh, V.; Moramarco, T.; Barbetta, S. Flood Hydrograph Prediction Using Machine Learning Methods. Water 2018,

10, 968. [CrossRef]
96. Mosavi, A.; Ozturk, P.; Chau, K. Flood Prediction Using Machine Learning Models: Literature Review. Water 2018, 10, 1536.

[CrossRef]
97. Ke, Q.; Tian, X.; Bricker, J.; Tian, Z.; Guan, G.; Cai, H.; Huang, X.; Yang, H.; Liu, J. Urban pluvial flooding prediction by machine

learning approaches—A case study of Shenzhen city, China. Adv. Water Resour. 2020, 145, 103719. [CrossRef]
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189. Rupp, D.E.; Licznar, P.; Adamowski, W.; Leśniewski, M. Multiplicative cascade models for fine spatial downscaling of rainfall:

Parameterization with rain gauge data. Hydrol. Earth Syst. Sci. 2012, 16, 671–684. [CrossRef]
190. Licznar, P.; Schmitt, T.G.; Rupp, D.E. Distributions of microcanonical cascade weights of rainfall at small timescales. Acta Geophys.

2011, 59, 1013–1043. [CrossRef]
191. Licznar, P.; Łomotowski, J.; Rupp, D.E. Random cascade driven rainfall disaggregation for urban hydrology: An evaluation of six

models and a new generator. Atmos. Res. 2011, 99, 563–578. [CrossRef]
192. De Paola, F.; Ranucci, A. Analysis of spatial variability for stormwater capture tank assessment. Irrig. Drain. 2012, 61, 682–690.

[CrossRef]
193. Fu, G.; Butler, D. Copula-based frequency analysis of overflow and flooding in urban drainage systems. J. Hydrol. 2014, 510,

49–58. [CrossRef]
194. Cong, R.-G.; Brady, M. The Interdependence between Rainfall and Temperature: Copula Analyses. Sci. World J. 2012, 2012, 405675.

[CrossRef]
195. Fu, G.; Kapelan, Z. Flood analysis of urban drainage systems: Probabilistic dependence structure of rainfall characteristics and

fuzzy model parameters. J. Hydroinform. 2013, 15, 687–699. [CrossRef]
196. De Paola, F.; De Martino, F. Stormwater Tank Performance: Design and Management Criteria for Capture Tanks Using a

Continuous Simulation and a Semi-Probabilistic Analytical Approach. Water 2013, 5, 1699–1711. [CrossRef]
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