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Abstract: Excess irrigation may result in deep percolation and nitrate transport to groundwater.
Furthermore, under Mediterranean climate conditions, heavy winter rains often result in high deep
percolation, requiring the separate identification of the two sources of deep percolated water. An
integrated methodology was developed to estimate the spatio-temporal dynamics of deep perco-
lation, with the actual crop evapotranspiration (ETc act) being derived from satellite images data
and processed on the Google Earth Engine (GEE) platform. GEE allowed to extract time series of
vegetation indices derived from Sentinel-2 enabling to define the actual crop coefficient (Kc act) curves
based on the observed lengths of crop growth stages. The crop growth stage lengths were then
used to feed the soil water balance model ISAREG, and the standard Kc values were derived from
the literature; thus, allowing the estimation of irrigation water requirements and deep drainage
for independent Homogeneous Units of Analysis (HUA) at the Irrigation Scheme. The HUA are
defined according to crop, soil type, and irrigation system. The ISAREG model was previously
validated for diverse crops at plot level showing a good accuracy using soil water measurements and
farmers’ irrigation calendars. Results show that during the crop season, irrigation caused 11 ± 3% of
the total deep percolation. When the hotspots associated with the irrigation events corresponded
to soils with low suitability for irrigation, the cultivated crop had no influence. However, maize
and spring vegetables stood out when the hotspots corresponded to soils with high suitability for
irrigation. On average, during the off-season period, deep percolation averaged 54 ± 6% of the
annual precipitation. The spatial aggregation into the Irrigation Scheme scale provided a method for
earth-observation-based accounting of the irrigation water requirements, with interest for the water
user’s association manager, and at the same time for the detection of water losses by deep percolation
and of hotspots within the irrigation scheme.

Keywords: crop coefficient; irrigation water requirements; irrigation scheme; Sentinel-2; soil water
balance model; vegetation indices

1. Introduction

Given the climatic conditions of the Mediterranean regions, groundwater reserves
play an important role in interannual regularization, minimizing the impact of climate
variability, particularly droughts. However, the conservation of groundwater, in terms of
quantity and quality, is a major environmental challenge [1]. The conservation of quantity
requires the maintenance of its recharge, while the conservation of quality requires the
existence of low concentrations of nitrates and other elements in the flow of water that
reaches the aquifer. The challenge increases if we consider the additional effect of climate
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change, which could lead to a decrease in aquifer recharge, increased crop irrigation needs,
and rising sea levels [2,3]. Due to the characteristics of the Mediterranean climate, where
the hot season is also the driest, irrigation is mandatory for achieving high productivity and
competitiveness in the agricultural sector. However, intensive land use in terms of irrigation
and fertilizer consumption in areas overlying aquifers can lead to risks of contamination,
as water, when in excess, or poorly distributed, can transport nitrates into the deepest
layers [4]. This situation is particularly important in the Nitrate Vulnerable Areas (ZVN),
where nitrate concentration in groundwater has reached/exceeded the limit imposed by
the European community (50 mg NO3

− L−1). It is the deep percolation of water, resulting
from precipitation and irrigation, that serves as a transport of nitrates to groundwater.
Thus, the mismanagement of water and fertilizers plays an important role in modifying the
natural recharge of aquifers and in the groundwater contamination [5].

Some studies present estimates of aquifer recharge as a percentage of the annual
rainfall [6]. However, the deep percolation and recharge associated with the practice
of irrigation has been subject of reduced attention. In irrigated areas, in the absence of
precipitation, recharging during the summer months can be significant depending on the
water balance in the crop rootzone, creating hotspots for potential aquifer contamination
with nitrates from fertilizers, organic matter mineralization, etc.

The water balance in the crop rootzone, with the objective of calculating deep perco-
lation, requires the determination of the crop water requirements which in turn relies on
the correct estimation of their biophysical parameters, such as crop coefficients and the
durations of phenological phases. Although there is information in the literature, as in the
recent review by Pereira et al. [7,8], these authors state that these parameters may vary with
several factors so regional characterization is advised.

Satellite remote sensing (RS) data have been widely used for phenological monitoring
of vegetation in large geographic domains, using various observation methods [9–12].
Emerging techniques are based on time series analysis of remote detection multispectral
imaging which can be used to estimate the crops’ phenological phases (e.g., beginning of
the cycle, peak vegetative development, and the duration of phenological phases) [13–15].
As recently discussed by Mahlayeye et al. [16], there is a need to further study the cropping
patterns at larger scales such as irrigation schemes and watersheds.

Remote sensing temporal data with high spatial and temporal resolution can be
acquired, for example, from the Sentinel-2 satellite, which is an Earth Observation (EO)
mission of the European Union, the Copernicus program, that systematically acquires
high-resolution optical images. Together, Sentinel-2 satellites have high temporal resolution
(5 days) and spatial resolutions of 10, 20, and 60 m. These images are made available free of
charge by the European Space Agency (ESA) and can be downloaded on various platforms,
such as the Google Earth Engine (GEE), which makes these images available in its library as
a collection. It has two Sentinel-2 collections, the “COPERNICUS/S2” which corresponds
to the reflectance at the top of the atmosphere and the “COPERNICUS/S2_SR” for the
surface reflectance [17,18].

Vegetation indices (VI) correspond to an image treatment technique that is applied to
extract information such as crop planting density and vegetation vigor (e.g., [19]). Based
on these, the values of the actual crop coefficients (Kc act), planting dates, and the duration
of the phenological phases can be estimated. They can also be used to identify the soil
cropping patterns in a given period [20–22]. The Normalized Difference Vegetation Index
(NDVI) is a widely used index to characterize crop phenology and it is calculated using
the red and near infrared bands present in most sensors [23,24]. Several authors have
proposed correlations between NDVI and Kc act based upon field data, establishing a linear
relationship between the two variables [10,20,25–27], although this relation is affected by
other factors including crop architecture. The approach proposed by Calera-Belmonte
et al. [20] has been widely used both at the plot scale and at the regional level for obtaining
the actual Kc, the length of the crop phenological phases, and the identification of crop
types, with the aim of determining the irrigation water requirements [10,13]. The Kc act
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values are then used to calculate the actual crop evapotranspiration and subsequently
perform the soil water balance [26,28–30].

The availability of free satellite images with high spatial and temporal resolution makes
the use of this technology very interesting for obtaining crop data to improve the estimation
of actual ETc. Furthermore, the Google Earth Engine (GEE) [31] which is a “cloud-based”
platform for planetary-scale geospatial analysis that combines computing capabilities to
the storage and processing of satellite imagery, enables the access to publicly available RS
data, such as Landsat 4–8 or Sentinel 1–2, and its data processing and visualization. Thus,
GEE allows performance of this type of study without the acquisition of high-performance
computers, enabling a wider adoption of EO data on the estimation of ETc act. This service
contains several libraries with different types of data and allows the processing of this data
on their own servers. Datasets can be acquired and manipulated with a JavaScript code
editor platform [31]. GEE allows for rapid data processing, namely the automation of the
extraction of temporal series of vegetation indices (e.g., NDVI), without the need for a large
data storage capacity, or high-performance computers [31–33]. These characteristics of the
platform made it possible to overcome important limitations to a greater adoption of high-
resolution satellite images, as is the case of Sentinel-2, for crop data retrieval [31]. Vegetation
indices such as NDVI can be extracted from satellite images on the platform, and they can
be viewed in time series charts or transferred to external processing. GEE was successfully
used to estimate crop evapotranspiration [34–36], crop productivity [37,38], to cartograph
crop areas [39–41], for supporting irrigation scheduling [42,43], and water management [44].

Aiming at performing the spatial analysis of the deep percolation and detecting
hotspots at an irrigation scheme level, it is necessary to integrate soil water balance model-
ing with spatially distributed information in a GIS environment. To perform this integration
the following steps are required: (a) development of the GIS database, climatic database,
soil database, and other databases (administrative limits, irrigation, topographic and land
use information); (b) integration of the database and the customization of the GIS; (c) inte-
gration of the irrigation simulation model. Soil water balance modeling can be completed
in a GIS environment, using a vector approach through the definition of homogeneous
analysis units (soil × crop × irrigation system), or using data grids (raster) for climate, soil,
and crops [45].

The question to be answered by the present study is: are there hotspot areas in the
Caia Irrigation Scheme with high deep percolation due to irrigation practices? To answer
this question, the following objectives were established: (1) estimate crop evapotranspira-
tion using remote sensing images to improve the definition of the crop stages; (2) define
homogeneous analysis units (soil × crop × irrigation system) in a GIS environment, for
which the soil water balance is modeled; (3) estimate the deep percolation associated with
the irrigation and with the precipitation along the crop season, and also off season, after
crop harvesting; and (4) perform the spatial analysis of deep percolation and identify its
potential causes.

2. Materials and Methods
2.1. Caia Irrigation Scheme Case Study
2.1.1. Localization and General Characteristics

The Caia Irrigation Scheme (CIS) is located in the Alentejo region, southern Portugal
(Figure 1). The total irrigated area of the CIS, which is around 7000 ha, is included in the
Elvas Vulnerable Zone to Nitrates. The CIS serves 887 farmers with water from the Caia
Reservoir, located in the Caia River, which also provides water for domestic consumption.

Water is distributed to farms in open channel, with upstream control, and a fixed
rotation scheme where each farmer receives a maximum amount of water per hectare.
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Figure 1. Localization of the Caia Irrigation Scheme in Portugal and in Europe.

2.1.2. Climate and Soil Characterization

According to the Köppen classification [46], the climate in the region of study is a Csa—
temperate Mediterranean with hot and dry summers. Weather data used in the current
study was collected from a nearby weather station (38◦54′56′′ N, 7◦05′56′′ W), located under
reference site conditions. The long term (2003–2021) average annual precipitation is 519 mm,
mostly occurring in winter, while the average annual reference crop evapotranspiration
(FAO-PM, [47]), which represents the climatic demand, is 1404 mm. Figure 2 shows the
monthly average values of the reference crop evapotranspiration (ETo) and precipitation
for the four studied years. It clearly shows a water shortage for the crops during the
spring–summer seasons. When comparing the conditions of the studied years with the
long-term data, it is shown that 2018 was a humid year with 835 mm of precipitation while
2019 was the driest one with 317 mm. The annual ETo ranged from 1290 to 1375 mm during
the studied years.

According to the World Reference Base of Soil Resource [48], the predominant soils in
the irrigated perimeter are Fluvissols (44.9%), Luvissols (29.6%), and Calcissols (18.7%).
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Figure 2. Monthly reference evapotranspiration (ETo) (markers) and precipitation (columns) for the
four studied years.

2.1.3. Main Crops and Irrigation Systems

In 2002, the main crops in CIS were maize (Zea mays L.) occupying 49% of the area,
wheat (Triticum aestivum L.) with 17%, sunflower (Helianthus annuus L.) with 7%, tomato
(Solanum lycopersicum L.) with 6%, and olive orchards (Olea europaea L.) (super-intensive
and hedgerow) with 4% of the total area [49]. However, in the last few years (Figure 3)
there has been a significant conversion from areas with annual crops to permanent crops
such as olive orchards and nut-tree orchards, including walnut and almond.
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Figure 3. Areas occupied by the different crops for the period 2017–2020 as a percentage of total culti-
vated area (OG—olive groves; WC—winter cereals; M—maize; O—orchards; PT—processing tomato;
V—vegetables; FC—fodder crops; Vy—vineyards; PR—paddy rice; P—pastures; R—rapeseed).

These areas have been stabilizing in the last years (Figure 3). According to the Caia
water user’s association, in 2020 the irrigated area was 8559.4 ha, because it includes
areas that are outside the irrigation scheme but that receive water from the CIS. The main
irrigation system is drip with 82% of the irrigated area, followed by sprinkler irrigation
with 17.1%, mainly center pivots, while surface irrigation has a very small share of the
irrigated area.
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2.2. Data Collection and Georeference Database Building

A modeling tool (ISAREG model [50]) was used to support the estimation of the
crops water consumption (ETc) and of the deep percolation associated with both irrigation
and precipitation along the studied years (off-season was included in the study). To feed
the modeling tool, a georeferenced database with diverse information was built. Due
to the diversity of data sources, they were edited and converted to the same spatial and
temporal resolution.

Data used for the estimation of the deep percolation are summarized in Table 1 and
the data sources used to collect the various types of information are also included.

Table 1. Data sources used in the present study.

Data Set Observations Source

Soils
Soil water holding capacity and textural

characteristics; land use capacity
Map 1:25,000

Portuguese Soil Map (CSP) and Land Use
Capacity (DGADR—Ministry of Agriculture)

Weather

Daily weather data (2002–2020): maximum
and minimum temperatures (◦C), maximum
and minimum relative humidity (%), solar

radiation (kJ·m−2·dia−1), wind speed
(m·s−1), and precipitation (mm)

Meteorological station of Elvas (38◦54′56′′ N,
7◦05′56′′ W, 202 m a.s.l) (COTR)

Topography Military Map of Portugal (1:25,000) Instituto Geográfico do Exército

Hydrography
and altimetry

DTM (Digital Terrain Model) for the slope
Contour lines, elevation points, and water

flow lines
Instituto Geográfico do Exército

Administrative limits Caia Irrigation Scheme limits
Official Administrative Map of Portugal and

Irrigation Scheme Maps of
Portugal—Ministry of Environment

Nitrate Vulnerable Zone limits Nitrates Vulnerable Zones limits
Map (1:25,000) Ministry of Agriculture

Crops Cropping patterns, crop phenological stages Sentinel-2 images (Level-2A), Google Earth
Satellite Images (QMS)

Crop coefficients [7,8,51]

Land cover classes

Land use map (COS)
Land cover classes, Corine Land Cover (CLC)

2018 (spatial resolution 20 m)
Crop plots map

Ministry of Environment
Copernicus Program (EEA, JRC)Caia Water

Users Association

Farm/plot data Farm/plot identification (WMS/WFS format) Ministry of Agriculture

Groundwater Water table depth Water Resources National Information
System—Ministry of Environment

Irrigation Crop systems, irrigation calendars, irrigation
systems, and soil moisture data Caia Water Users Association

Irrigation systems Irrigation systems efficiency [52]

2.2.1. Crop Characteristics Database

The data relative to crop characteristics included the identification of the crop type,
spatial distribution of the diverse cropping systems, crop growth stages dates, and crop
coefficients for the diverse crop stages. These data were collected from diverse sources as
detailed in Table 1.

As previously stated, due to its capabilities the Google Earth Engine (GEE) platform
was used in the current study.

1. Satellite imagery processing and crop data collation

Aiming at decreasing the uncertainties in the characterization of the cropping systems
and crop growing seasons, Sentinel-2 satellite imagery with high spatial (10 × 10 m) and
temporal (5 days) resolution was used. All Sentinel-2 images available on GEE platform
for the CIS region between October 2016 and October 2020 were used, with a cloud cover
with less than 35%, which corresponds to a compromise between the number of images
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available to produce the VI time series and its quality. The Sentinel-2 information was then
processed in the platform Google Earth Engine using the Java script code editor.

The flowchart presented in Figure 4 shows the global process of selection, validation,
and pre-processing of information in order to build the database for crops.
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2. Crop identification and spatialization

Firstly, a layer containing the spatial distribution of the different types of crops was
created in QGIS; it included the vector information of the cultivated fields. This layer was
based on field information provided by the Caia water user’s association (WUA). In the
following and based upon the land use map (COS) (Table 1) the polygons of permanent
crops (olive orchards, orchards, and vineyards) were extracted, based on the assumption
that these crops vary little from year to year within the studied years (Figure 3). For
producing the NDVI [53] for each crop and each field the series of the spectral bands
of the Sentinel-2 sensors B4 (red) and B8 (near infrared) and QA60 (cloud mask) were
used from the image collection “COPERNICUS/S2_SR”, which corresponds to Level-2
data (orthorectified Bottom-Of-Atmosphere (BOA) reflectance) [18]. The GEE allowed the
extraction of the average NDVI per pixel for the period March–May which allowed for
the identification of the winter crops (Figure 5a) while the average NDVI for the period
May–August allowed identifying the spring–summer crops (Figure 5b). During summer,
the NDVI map allowed the precise identification of the irrigated areas. Figure 5c shows
an example of the identification of the actual irrigated areas using the Sentinel-2 images.
Images were previously processed to discard the pixels that correspond to small roads
separating orchard blocks, roads, and edges as the soil conditions in these pixels are
not the same as agricultural zones without vegetation; thus, avoiding its influence on
the vegetation indices calculation. In addition, the crop NDVI temporal profile analysis
allowed identifying the plot fields that did not match the typical crop NDVI pattern, which
were removed from its respective crop area [14].

The cropping pattern in CIS includes more than 30 types of crops, and therefore crops
were grouped according to their relative importance in terms of cropping area, crop cycle,
and irrigation water requirements.
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3. Locally adjusted crop growing stages

Subsequently, the processed satellite images were used to obtain the observed planting
dates and the diverse crop growth stage lengths, since the poor characterization of the crop
cycle is one of the main sources of uncertainty in the estimation of crop water requirements
(e.g., [54]).

The polygons corresponding to the fields with the different crop groups were imported
into the GEE platform and the average values of NDVI for each polygon were extracted
from the image collections “COPERNICUS/S2” and “COPERNICUS/S2_SR”.

In the following, the NDVI temporal profile for each crop was obtained from the
spectral signature of the fields identified with a certain crop; the actual Kc curves (affected
by diverse stresses, e.g., water and nutrients) were derived from those profiles using
empirical equations [20,25,27]. Atypical NDVI profiles were identified and discarded.

The NDVI temporal profile for each crop allowed estimating the average sowing/planting
dates and the lengths of the growing stages. Thus, allowing defining the crop growing stages
required for constructing the Kc segmented curve [47] for each crop. These were assumed to
be representative for the entire CIS.

4. Crop coefficients along the growing seasons

The standard potential Kc values for the diverse crop growing stages (initial, mid-
season, and end-season) were collected from the tabulated values recently updated by
Pereira et al. [7,8] and Rallo et al. [51]. For each year, the Kc values for the initial stage
were those provided by Allen et al. [47] but adjusted for soil wetted fraction (irrigation or
precipitation). While the crop coefficients for the mid-season and end-season values were
adjusted to the prevailing local climate conditions (RHmin and u2) in each studied year
using an algorithm based upon the methodologies described in Allen et al. [47].

The crop data used in the computations is presented in Tables A1 and A2 in Appendix A.

2.2.2. Soil Characteristics Database

Due to the large spatial variability of CIS soils, they were grouped into classes of land
suitability for irrigation. These classes result from the integration of three characteristics:
soil texture, slope, and permeability. Class I includes soils with excellent suitability for irri-
gation, with sandy loam or clay texture, good structure and permeability, and a maximum
slope of 2%. Soils in class II present good suitability for irrigation, are generally deep soils,
and moderately drained. Soils within class III present reasonable suitability for irrigation
and are shallow soils with heavy texture, with slopes varying between 4% and 6%. The soil
textures were extracted form Portuguese Soil Map (CSP). Slopes were obtained from the
digital terrain model (MDT), built using information on contour lines, elevation points, and
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the hydrographic network, with the support of QGIS. The permeability classes as defined
by ARS/USDA [55] were used.

2.2.3. Homogenous Unit of Analysis

Using the information from the previously referred databases, diverse homogenous
units of analysis (HUA) were defined at the CIS and the water balance was independently
modeled for these units. Each HUA corresponds to an area where the following three
features influencing the water balance terms do not spatially change: land suitability for
irrigation, crop, and irrigation system. The HUA were obtained in QGis by intersecting the
layers containing the three features above.

2.3. Soil Water Balance Calculation
2.3.1. Modeling Strategies and Field Validation

The soil water balance (SWB) was modeled for each HUA using the ISAREG software.
The ISAREG model calculates crop evapotranspiration according to the FAO methodology
and the SWB follows a reservoir approach. It was used because it has very good accuracy
when adequately calibrated and validated against observations of the soil water (e.g., [56])
and/or of crop ET and because it has been applied to diverse climatic and soil conditions.
Examples of application include those to field (e.g., [57–59]), vegetable crops [60,61], pas-
tures and grasslands [62,63], and orchards [64,65]. Furthermore, the model has been used
for the assessment of climate change on irrigation water requirements (e.g., [66,67]) and for
irrigation management at irrigation scheme [68] and basin level [69].

The flowchart presented in Figure 6 shows how the water balance is calculated by
ISAREG. The SWB was separated in two components, one for the irrigation season, to
account for the percolation created by irrigation, and the other for the off-season period, to
account for the percolation originated by autumn–winter precipitation. The general water
balance equation (Equation (1)) is applied to the crop rootzone:

DP = P + I − ETc act − ∆S (1)

where DP is deep percolation, P is precipitation, I is irrigation (0 for the off-season period),
ETc act is actual crop evapotranspiration, and ∆S is the storage variation. Runoff was
considered = 0 due to the large scale of application. All terms are in mm.

The information relative to the crop characteristics, derived from EO, along with the
farmers actual irrigation calendars were introduced in the modeling tool. In a few cases,
the information relative to the irrigation schedules was not available; thus, to overcome
the issue the WUA provided for information regarding the total water consumption per
field. This information enabled to estimate the irrigation schedules per crop based upon
the assumption that the farmers behave similarly in terms of irrigation depths and timing.

Several fields with the most representative crops within the irrigation district (Table 2)
were used for validating the soil water balance simulations by comparing the soil water
storage for the entire rootzone (ASW) predicted by ISAREG with soil water storage obtained
from soil moisture data obtained from continuous monitoring with capacitive probes
provided by the Portuguese Association of Precision Agriculture (APAP).

A set of goodness-of-fit indicators was used to assess the performance of the ISAREG
model in estimating the soil water storage (ASW, mm). These indicators are: (i) the
regression coefficient (b0) describing a linear regression forced through the origin [70]
between measured (ASWOBS) and model-simulated ASW (ASWSIM) values; (ii) the percent
bias (PBIAS, %), which measures the average tendency of the simulated data to be larger or
smaller than their corresponding observations (Gupta et al., 1999); (iii) the coefficient of
determination (R2) of the ordinary least squares regression; (iv) the root mean square error
(RMSE, mm); (v) the normalized RMSE (NRMSE, %), defined as the ratio between RMSE
and the mean of observations O; and (vi) the modeling efficiency (EF, non-dimensional),
which is an indicator proposed by Nash and Sutcliffe [71] used to assess the magnitude of
the mean square error (MSE = RMSE2) relative to the observed data variance [72].
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Figure 6. Flowchart with the modeling strategy used for the soil water balance and the deep
percolation predictions (Kc is the crop coefficient, Zr is the rooting depth, p is the soil water depletion
fraction for no stress, θFC is the soil water content at field capacity, θWP is the soil water content at
permanent wilting point, Z is the soil depth, Bd is the soil bulk density, TAW is the total available soil
water, DP is the deep percolation).

Table 2. Farmers’ field locations and characteristics used to feed and to validate the water balance
model simulations, Caia Irrigation Scheme.

Field Crop Area
(ha)

Irrigation
System

Soil
Texture Type of Field Data

Years
with
Data

Data
Provider
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A Maize
FAO600 58.8 Pivot Loamy

sand

Irrigation amounts
and frequency
Soil moisture

2018,
2019,
2020

APAP

B Maize
FAO200 37.4 Pivot Loam Irrigation amounts

and frequency 2017 ABCaia

C Olive
grove_1 26.8 Drip Clay

loam

Irrigation amounts
and frequency
Soil moisture

2018,
2019,
2020

APAP

D Olive
grove_2 396.3 Drip Clay

loam
Irrigation amounts

and frequency 2017 ABCaia

E Processing
tomato_1 20.2 Drip Silty

loam

Irrigation amounts
and frequency
Soil moisture

2019,
2020 APAP

F Processing
tomato_2 28.7 Drip Loam Irrigation amounts

and frequency 2017 ABCaia

Note: APAP—Portuguese association of precision agriculture; ABCaia—Caia water users association.

2.3.2. Irrigation Water Requirements

Irrigation water requirements (IWR) were calculated by dividing the net irrigation
water requirements calculated with ISAREG, by the average irrigation system efficiency
(drip = 0.9; center pivot = 0.8; traveling gun = 0.75; paddy rice basins = 0.7). In the case
of permanent crops irrigated by drip systems, the value was multiplied by the reduction
factor 0.8 to account for the reduction in the irrigated area at the soil surface [73].

3. Results
3.1. NDVI Temporal Profiles and Crop Coefficient Curves
3.1.1. Permanent Crops

The NDVI profiles for the permanent crops, e.g., vineyards, orchards, and olive groves
are shown in Figure 7. The NDVI profiles allowed distinguishing plots with young orchards
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from those in full production. For the orchards, the end of dormancy was identified to be by
March (DOY 90), while leaf senescence occurred by October (DOY 290). The NDVI increase
during spring may be associated with the interference of wet soil upon the reflectance [74].
As shown in Figure 7, the presence of clouds along the crops’ seasons affected the precise
identification of the various crop growth stages. For the case of the olive groves, the
NDVI profiles allowed to distinguish between hedgerow and intensive groves. For the
hedgerow, the NDVI is high, generally ranging from 0.3 to 0.6, and is minimally influenced
by the presence of weeds in the inter-row spacing, while for the intensive groves, due to
its management and higher space between trees the weeds develop particularly during
spring and autumn; thus, presenting higher NDVI values. Overall, for all permanent crops,
the high NDVI values at the beginning of the year may be associated with the presence of
weeds that grow in the inter-row spacing due to winter and spring precipitation events.
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3.1.2. Winter Crops

As per the permanent crops, the lack of images for some dates due to the presence of
clouds prevented the adequate characterization of the crop growth stages for the winter
crops (garlic, cereals, pastures) (Figure 8); thus, data was complemented with that available
in the literature (Table A1 in Appendix A).
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3.1.3. Annual Spring Crops

For the spring crops, the results of the NDVI temporal profiles allowed for an accurate
estimation of the planting/sowing dates as well as for the duration of the crop growth
stages; thus, allowing improvement of the definition of the crop coefficient curves, and
therefore increasing the accuracy of the water requirement computations. Figure 9 presents
examples of the NDVI time series obtained for several spring crops along the 2016/2017
season. The first attempt for the definition of the FAO Kc curves was to adjust it to the
mean values of the Kc NDVI after applying the Calera Belmonte et al. [20] relationship to
the NDVI profiles; however, this procedure created, in some cases, a flattening of the Kc
curve. The use of the average Kc curves showed to be not appropriate for the definition of
the crop growth stages because farmers used different varieties and sowing/planting dates.
Therefore, a different approach was used in the current study, consisting of adjusting the Kc
FAO curves, particularly the duration of the crop phases, to the Kc-NDVI clouds of points.
Figure 9 shows the results of the Kc curves obtained for various crops while Table A2, in
Appendix A, presents the values for the initial, mid- and end-season actual Kc for all crops
in all the considered years.

Abnormal behavior of NDVI occurred mainly during the initial stage resulting in a less
accurate determination of the duration of this stage. This behavior occurs mainly for the
lower NDVI values, due to instability associated with soil background influence during the
initial stage. Similar findings were reported by Cao et al. [74] and in the recent review by
Pôças et al. [10]. Other sources of uncertainty in the definition of the Kc-NDVI curves is
the use of empirical formulas calibrated and validated for other regions [10,21,27]. Similar
findings were reported by Vilar et al. [75] using Landsat-8 images and by Rolim et al. [14]
using images from SPOT-5 TAKE-5. Table 3 presents the length of the crop growth stages
and the seeding/planting dates for the spring crops, estimated from the NDVI temporal
profiles. Results show the adequacy of using the NDVI temporal profiles for improving the
characterization of the crop cycles.

For tomato crop, the use of plastic mulch was assumed. In the case of pepper and melon
crops, plastic mulch was not considered since most farmers in the CIS do not use it. For the
winter vegetables, the Kc values that were ingested in the modeling tool correspond to the
most representative crop, i.e., the broccoli because they are the main crop in terms of cropped
area. The same reasoning was applied to pepper, which were considered to represent the
spring–summer vegetables, while almonds were selected for representing the group of dry
fruits. For the pastures and the autumn–winter forages, the winter cereal data were used
because they presented similar crop cycles. For the irrigated pastures, an average Kc value of
0.75 was considered for the entire irrigation season.

The cropping patterns in the CIS, for the four studied seasons, after EO data validation
against the data provided by the WUA are presented in Figure 10. The maps produced in the
GEE platform with the average NDVI per pixel, for each growing period, allowed to identify
the areas with winter and spring crops. During summer, the NDVI map allowed the precise
identification of the irrigated areas. As previously stated, during the entire study period, olive
groves were the predominant crop in CIS spreading across the irrigated perimeter. Winter
cereals also occupy an important area, but they are preferentially located on the soil classes
of low suitability for irrigation. Maize and fodder crops are the most representative annual
spring–summer crops.
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Table 3. Example of the average lengths of the spring crop growth stages and of the seeding/planting
dates estimated from NDVI temporal profiles for 2017.

Crop Lengths of Crop Growth Stages (Days) Seeding/Planting
Date Obs.Initial Development Mid Late

Paddy rice 30 27 50 13 25/Apr.
Tomato 30 37 50 13 25/Apr.
Melon 35 27 33 27 30/Apr.

Bell
pepper 30 60 30 13 02/May

Rapeseed 30 30 40 25 02/Apr.
Sunflower 25 32 40 30 20/May

Grain
maize 20 27 53 37 25/Apr.

Silage
maize 22 30 35 12 13/May

Fodder
crop

multi-cuts

30 117 20 —
16/Nov.

1st cut
6 31 20 — 2nd cut
3 16 13 — 3rd cut

3.2. Irrigation Systems

The spatial distribution of the irrigation systems in the CIS for the studied years of
2017–2020 is presented in Figure 11. This information was provided for 2020 by the water
users association, while, for 2017–2019, it was estimated from the high-resolution satellite
images. As depicted in Figure 11, drip irrigation systems were predominant, followed
by the sprinkler irrigation system with center pivots while travelling guns and surface
irrigation have little significance.
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3.3. Land Suitability for Irrigation

As previously explained, the classes of land suitability for irrigation, which is one of
the layers needed for the definition of the HUA, were obtained by overlaying information
relative to soil use capacity, land slope, and soil permeability. Figure 12 shows the spatial
distribution of the land suitability classes for irrigation within the CIP. Results show that
most of the CIS area consists of class III soils, presenting moderate limitations for irrigation,
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while classes II and I, which present lower limitations for irrigation, are mainly located
along the banks of the Caia River. Results also show that the class with the lowest suitability
for irrigation (exc) occupies 15% of the total area. Table 4 presents the average soil properties
used to characterize the different land suitability classes that were inputted in the modeling
tool. These properties were determined considering the representativeness of each soil type
within each class.

Table 4. Average soil properties for each class of land suitability for irrigation.

Land Suitability
for Irrigation

θFC
(g·g−1)

θWP
(g·g−1)

Z
(cm)

Bd
(g·cm−3)

I 34.72 17.02 120 1.22
II 30.84 13.46 80 1.23
III 29.12 12.52 65 1.25
exc 30.83 14.18 50 1.25

Note: θFC is the soil moisture content at field capacity, θWP is the soil moisture content at the permanent wilting
point, Z is the soil depth, and Bd is the bulk density.Water 2022, 14, x FOR PEER REVIEW 18 of 31 
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3.4. Homogeneous Units of Analysis

The produced homogeneous units of analysis (HUA), obtained by intersecting in
QGIS the layers containing information of the spatial distribution of crop types, the land
suitability for irrigation classes and the irrigation systems, are depicted in Figure 13. The
total numbers of HUA were 104, 88, 112, and 109, respectively, for 2016/2017, 2017/2018,
2018/2019, and 2019/2020 (Figure 13). In a certain area, the changes in the HUA from one
year to the other are mainly due to changes in the cultivated crops. An example of the
detailed description of the HUA can be found in Table A3 in the Appendix A. As previously
pointed out, the soil water balance model was run independently for each HUA and the
results were spatialized using the GIS platform.
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3.5. Soil Water Balance Modeling Results
3.5.1. Model Validation for Soil Water Storage Predictions

The soil water balance simulations were validated using soil moisture time series
obtained, for the study years, in three farms planted with maize, processing tomato, olive
groves. Based upon the soil moisture measured within the rootzone with capacitance
probes presenting sensors each 10 cm, the soil water storage (ASW) was calculated and
compared with the simulated values, as shown in Figure 14. It can be observed that the
model was able to adequately predict the behavior of the ASW along the seasons for the
different crops and soils. In the example, maize was cropped in a loamy sand, tomato in a
silty loam, and olives in a clay loam. Furthermore, the model was able to simulate well
the impacts on ASW of the diverse irrigation schedules applied by the farmers along the
different seasons.
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The goodness-of-fit indicators relative to the ISAREG model test using farmers’ field
observations of ASW are presented in Table 5. Results confirmed the good accuracy of the
model in predicting the observed ASW after proper model parameterization. For maize
crops, the model shows no tendency for under- or over-estimation of ASW with b0 close to
1.00 and quite low PBIAS (0 < PBIAS < 1.5%). Results also show that the estimated ASW
values were statistically close to the measured ones. The R2 is high, indicating that the
model could explain most of the observed variance. The errors of estimates are quite small:
RMSE ranging from approximately 3 to 7 mm and the NRMSEs are lower than 6%. Finally,
the EF values are higher than 0.76; thus, indicating that the variance of residuals is much
lower than the variance of the measured ASW data. Similar results were obtained for maize
with other applications of SWB models in Portugal (e.g., [76,77]).

Table 5. “Goodness-of-fit” indicators obtained by comparing measured and simulated available soil
water for the diverse crops during the 2018–2020 season parameters.

Crop Year Observations b0 R2 PBIAS
(%)

RMSE
(mm)

NRMSE
(%) EF

Maize
2018 57 1.00 0.77 −0.1 3.1 2.5 0.76
2019 71 1.00 0.82 0.6 6.8 5.9 0.80
2020 78 1.01 0.84 1.2 5.8 5.0 0.83

Olive grove 2018 328 1.03 0.85 4.0 18.6 7.3 0.80
2019 364 1.01 0.93 1.1 13.6 5.6 0.92
2020 348 1.00 0.80 −0.2 17.5 6.2 0.77

Tomato for 2019 121 0.99 0.90 −1.2 5.5 3.4 0.88
processing 2020 99 0.99 0.87 −0.7 6.1 3.9 0.86

Note: b0—coefficient of regression forced to the origin; R2—coefficient of determination; PBIAS—percent bias;
RMSE—root mean square error; NRMSE—normalized root mean square error; EF—modeling efficiency.

Very good modeling results were obtained using the two data sets of ASWOBS in
tomato (Table 5) with b0 close to 1.0 and low PBIAS values; thus, the model shows no trend
for under- or over-estimation. R2 values range from 0.87 to 0.90; thus, higher than those
obtained for maize. Estimation errors were low, with RMSE close to 6 mm and NRMSE
lower than 4%. EF results are high (EF > 0.86) confirming that the variance of residuals is
much lower than the variance of measured data. These results are comparable with those
in the literature for the Mediterranean (e.g., [78]).

For the olive grove, the model was run for the growing and non-growing seasons
showing very good accuracy of the model along the years (Figure 14b). Results in Table 5
show just a slight tendency for the model to over-estimate the ASWOBS by 2018 (b0 = 1.03
and PBIAS = 4%) while in the following years the model showed no tendency to under-
or over-estimate. Errors of estimates were also relatively low with RMSE < 19 mm and
representing less than 8% of the mean of the ASWOBS. The EF values are generally high.
Few studies are available in literature relative to the use of SWB models for predicting ASW
in olive orchards. The results of the current study are better than those reported using the
WABOL model for an olive orchard in Spain [79].

Overall, results show that the parameterization of the ISAREG model was adequate
and that the model was able to simulate the soil water storage along the seasons for the
three studied crops. Thus, it can be assumed that the model may be further explored for
estimating the soil water balance for the other crops present in the CIS.

3.5.2. Irrigation Water Requirements

The spatio-temporal distribution of crop irrigation water requirements (IWR), com-
puted for each HUA (Figure 13), is presented in Figure 15, while Figure 16a,b shows the
IWR per crop and per year, respectively.

The crop with the highest IWR was paddy rice due to the use of flooding irrigation,
with lower application efficiencies than the other systems resulting from the large evap-
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oration losses. Regarding the crops irrigated by pressurized systems, maize presents the
highest IWR, with values above 750 mm during the 2017 and 2019 seasons, while lower
values of IWR were estimated for 2018 and 2020. The higher IWR by 2017 and 2019 relates to
the occurrence of less precipitation during the spring combined with higher ETo (Figure 16).
The relatively large amplitudes of the boxes associated with each crop type (Figure 16a)
are related to crop management practices (e.g., plant density, varieties) as well as the cul-
tivation in different soil classes, which influences the water balance results. The second
highest IWR are those for fodder crops, followed by tomato for industry and vegetable
crops. The high IWR of fodder crops are, in part, associated with the lower efficiency of the
traveling gun irrigation system, as compared with the center pivot and drip irrigation (see
Section 2.3). For the lowest IWR, there are the olive groves, averaging 275 mm, and legume
crops averaging 180 mm. The IWR are also influenced by the soil depth that constraints
the soil available water for the crops. In the case of spring–summer vegetable crops, IWR
showed a reduced spatial variability, which may be due to the shallow rooting system, so
the depth of the soil does not impose limitations on the root system and therefore does not
affect the IWR. Differently, in the case of maize and olive groves, there was a greater spatial
variation in the IWR. In the olive grove, this spatial variation was most noticeable in 2017,
because it was a precipitation scarce year. Thus, in the cases that orchards were installed in
shallower soils, the IWR were higher, and irrigation started by early March.

Figure 16b shows the IWR for each irrigation campaign, considering all crops together.
The higher IWR in 2017 relates to both the available water from precipitation as well as the
climatic demand (ETo). On one hand, during the spring of 2017, precipitation was lower
than the historical average for the months of April and May, when the spring crops are
planted (Figure 2). On the other hand, the climatic demand (ETo) was higher than the
average for April, June, and September, increasing crop evapotranspiration. During the
winter of 2019, precipitation was very low, leading to a small amount of water storage in
the soil profile at the time of planting in the spring, therefore, the irrigation season began
earlier, as in 2017, leading to higher irrigation requirements when compared with 2018
and 2020.
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Figure 16. Box and wishers plots showing the lower quartile (Q1), the median (Q2), the upper quartile
(Q3), the mean (×), and the minimum and maximum values (◦ outlier values are also depicted)
relative to the 2017–2020 period for: (a) irrigation water requirements for the crops in the Caia
Irrigation Scheme; (b) irrigation requirements for the different studied years; (c) deep percolation from
irrigation per crop; (d) deep percolation from irrigation per class of land suitability for irrigation (Mz—
maize; OG—olive groves; Sf—sunflower; Hsc—spring vegetable crops; To—tomato; Lc—legume
crops; Fc—fodder crops; I, II, III, and EXC are classes of decreasing land suitability for irrigation).

3.5.3. Deep Percolation

The results relative to the deep percolation associated with the irrigation events for
the set of selected crops is shown in Figure 16c. The null values correspond to the dry years
of 2017 and 2019. Results show that the median deep percolation value is lower than the
average value (right skewed) which results from a longer tail in the high deep percolation
values relative to the low ones. The relatively large amplitude of the boxes is due to the
different classes of soil suitability for irrigation and, in the case of legume crops, due to
the different irrigation systems used (center pivot, travelling gun, and drip irrigation) and
respective application efficiencies. For the same crop, soil class, and year, the HUA with a
traveling gun system presented the highest deep percolation values, 32% higher than for
those using drip irrigation systems.

Considering all the years, crops and soil classes, deep percolation associated with
irrigation averages 11 ± 3% of the total deep percolation that occurred during the year.

Crops associated with higher values of deep percolation resulting from irrigation are
maize and vegetable crops, and at the same time, these crops present the largest variability
of the results when all years and soil classes are considered. Farmers tend to apply more
water to these crops since they are the ones presenting the highest economic returns. The
opposite is found for sunflower and fodder crops. The irrigation schemes for olive groves
are characterized by a period of low or null application of water, during summer dormancy,
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but prior to this period, farmers tend to irrigate more and even beyond soil field capacity
and therefore some deep percolation occurs [67,80].

Regarding land suitability for irrigation, the classes with higher amounts of deep
percolation associated with the irrigation events are III and excluded, due to the shallower
depth of the soil profile and lower water retention capacity (Figure 16d).

The spatial variability of deep percolation that occurs during the periods when the
crop is in the field is shown in Figure 17a. Overall, during the crop season, the sum of
irrigation and precipitation are responsible for 29 ± 13% of the deep percolation, while
the precipitation that occurred during the spring and autumn (off-season), typical of the
Mediterranean climate was responsible for the higher share of total deep percolation. The
spatialization of the deep percolation calculated for each HAU shows that there are some
hotspots for deep percolation during the studied years. In this study, it was considered
that deep percolation hotspots were associated with HUA with deep percolation higher
than 200 mm during the crop season. The 2016/2017 season presented a low hotspot area
corresponding to 10% of the total irrigated area, although 26% of the irrigated area presents
deep percolation higher than 150 mm during the crop-growing season. Differently during
the 2017/2018 season, the deep percolation hotspot area increased to 21%. Results show
that 55% of these hotspot areas corresponding HUAs include soils with land suitability to
irrigation from classes exc and III, mainly due to shallow depth and lower water retention
capacity. In these HUA the crop is not a differentiating factor. However, 26 and 18% of the
HUAs include classes II and I, classified as good and excellent, respectively.
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Figure 17. Spatio-temporal distribution of deep percolation: (a) during the crop season; and
(b) during off-crop season. The spatial aggregation into the irrigation scheme scale provided a
method for earth-observation-based accounting of the irrigation water requirements, with interest for
the water user’s association manager, and at the same time for the detection of water losses by deep
percolation and of deep percolation hotspots (deep percolation higher than 200 mm) within the Caia
Irrigation Scheme.
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In this case, crops with higher irrigation water requirements and higher economic
return as maize and spring vegetables are predominant. The 2018/2019 season presents a
low deep percolation hotspot area of 6%, like that for 2016/2017. During 2019/2020, 10% of
the area is a deep percolation hotspot, from which 56% present suitability classes exc and
III and all types of crops, while for the 44% of hotspots on soil classes I and II the crops are
maize and pastures. On average, irrigation was responsible for 26± 8% of deep percolation
during the crop seasons.

Figure 17b presents the deep percolation that occurred during the off-season, after
crop harvesting; thus, resulting from precipitation only. The temporal pattern shows
the inter-annual variation in precipitation, which in the case of the humid year of 2018
resulted in almost the entire CIS area being a hotspot. Spatially, the areas with lower deep
percolation correspond to land suitability classes very good and excellent, i.e., classes I and
II. On average, during 2018, deep percolation represented 54 ± 6% of the average annual
value. High deep percolation during autumn–winter is favorable since it recharges the
Caia aquifer. However, the Caia Irrigation Scheme is within a designated vulnerable zone,
overlaying a nitrate-contaminated aquifer. Therefore, if a large amount of N remains in the
soil profile after the harvest of the spring–summer crops, it will be leached to the aquifer
with the first autumn precipitation. The soil water balance model predicted an amount
of deep percolation associated to precipitation of about 23 ± 6% of the total precipitation,
which agrees with other studies performed in the area [6].

Deep percolation in the referred hotspots leads to low efficiency of irrigation. Further-
more, it affects the aquifer quality, since drainage water is responsible for the transport of
nitrates resulting from fertilization and crop residue mineralization.

4. Conclusions

An integrated methodology was developed to estimate the spatio-temporal dynamics
of deep percolation with the farm information and crop coefficient curves being derived
from high-resolution satellite images processed on the Google Engine platform.

The identification and characterization of crop cycles, fundamental for the quan-
tification of crop irrigation water requirements, was based on the treatment of several
high-resolution Sentinel-2 temporal images on the Google Earth Engine platform. In a
first analysis of the NDVI temporal profiles extracted for each plot, in the GEE platform,
the atypical profiles for each crop were identified and discarded. This method also al-
lowed improvement of the identification of the crop growth stages and the planting dates
at the different plots. This information was used to feed the soil water balance model,
ISAREG, used to compute deep percolation below the root zone, for each homogenous unit
of analysis.

The use of the proposed integrated methodology showed a good accuracy when it
was validated using observed soil water storage data.

Results from the spatio-temporal analysis of the computed deep percolation along the
years allowed to answer the question raised at the beginning of the present study which
was: are there hotspot areas in the Caia Irrigation Scheme with high deep percolation due
to irrigation practices? The results show that deep percolation during the crop season
was quite variable among years, with average values ranging between 77.3 and 119.2 mm.
However, these values present a very high spatial variability, ranging from 0 to more than
200 mm. Deep percolation was higher during the 2017/2018 campaign mainly resulting
from precipitation due to the occurrence of a high amount of rainfall in a low number of
events, which in parallel led to reduced irrigation water requirements. Deep percolation
associated with irrigation averaged 11 ± 3% of total deep percolation. On one hand, the
deep percolation hotspots associated with the irrigation events correspond to soils with
low land suitability for irrigation, independently of the crop, probably due to the shallower
depth of the soil profile and median low water retention capacity. On the other hand, maize
and spring vegetables stand out when the hotspots correspond to land classes I and II.
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Overall, during the crop season, irrigation plus precipitation was responsible for 29± 13%
of the deep percolation, while the precipitation that occurred during the spring and autumn,
typical of the Mediterranean climate, was responsible for the higher share. On average, during
the off-season period, deep percolation corresponded to 54 ± 6% of the average annual
precipitation. Thus, aiming at controlling the nitrates leaching in this vulnerable area, farmers
need to have appropriate support to manage the irrigation scheduling according to the soil,
crop, and weather conditions as well as to manage fertilization.
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Appendix A

Table A1. Crop stage duration and seeding/planting dates obtained from the literature.

Crop Crop Stage Duration (Days) Planting Date Literature
Initial Development Mid Late

Garlic 70 30 47 27 01/Dec [6,81]
Broccoli 35 45 40 15 01/Nov.

[47]

Chickpea 20 30 35 15 15/Mar
Winter cereals 30 140 40 20 15/Oct
Olive groves 30 90 60 90 01/Mar

Orchards 30 50 130 30 01/Apr
Vineyards 20 50 75 60 01/Mar
Almonds 32 65 140 41 23/Jan [82]

Table A2. Actual crop coefficients.

Kc act ini Kc act mid Kc act end

2017 2018 2019 2020 2017 2018 2019 2020 2017 2018 2019 2020

Garlic 0.70 - - - 1.00 - - - 0.65 - -

Tomato 0.50 - 0.50 0.50 1.10 - 1.04 1.05 0.90 - 0.84 0.85

Melon 0.40 - - - 0.99 - - - 0.79 - -

Sweet peppers 0.50 0.5 0.5 0.5 1.09 1.03 1.05 1.05 1.04 0.98 1.00 1.00

Broccoli 0.40 0.4 0.40 0.40 1.04 0.94 0.96 1.00 1.04 0.94 1.00

Sunflower 0.35 0.35 0.35 0.35 1.19 1.13 1.15 1.15 0.34 0.3 0.3 0.30

Rapeseed 0.35 0.35 0.35 0.35 1.03 1.02 1.05 1.00 0.28 0.35 0.3 0.25
Chickpeas - 0.4 0.40 0.40 - 0.98 0.99 1.00 - 0.35 0.34 0.35

Rice 1.05 1.05 1.05 1.05 1.20 1.2 1.20 1.20 1.09 1.05 1.05 1.05
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Table A2. Cont.

Kc act ini Kc act mid Kc act end

2017 2018 2019 2020 2017 2018 2019 2020 2017 2018 2019 2020

Maize grain 0.30 0.3 0.30 0.30 1.20 1.2 1.19 1.20 0.36 0.3 0,39 0.30

Maize silage
and sorghum 0.30 0.3 0.30 0.30 1.20 1.06 1.14 1.15 1.01 0.86 0.94 0.95

Winter cereals 0.30 0.3 0.30 0.30 1.09 1.08 1.11 1.06 0.34 0.33 0.36 0.31

Fodder crop
multiple cuts 0.40 0.4 0.40 0.40 0.99 0.89 0.91 0.95 0.94 0.84 0.86 0.90

Pastures 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75

Almond 0.40 0.4 0.40 0.40 0.92 0.82 0.84 0.85 0.67 0.57 0.59 0.60

Orchards 0.45 0.45 0.45 0.45 1.06 0.97 0.99 1.00 0.76 0.67 0.69 0.70

Vineyards 0.30 0.3 0.30 0.30 0.75 0.67 0.69 0.70 0.60 0.52 0.54 0.55

Table A3. Description of the homogeneous units of analysis for the 2019/2020 season.

ID Soil Type Irrigation
System Crop ID Soil Type Irrigation

System Crop

0 Exc. n.a. n.a. 55 II Drip Chickpeas and peas
1 Exc. Fallow Fallow 56 II Drip Winter vegetables

2 Exc. Drip Almond, walnut,
and pistachio 57 II Drip Summer vegetables

3 Exc. Drip Chickpeas and peas 58 II Drip Olive groves
4 Exc. Drip Winter vegetables 59 II Drip Other crops
5 Exc. Drip Summer vegetables 60 II Drip Orchards
6 Exc. Drip Olive groves 61 II Drip Tomato
7 Exc. Drip Other crops 62 II Drip Vineyards
8 Exc. Drip Pastures 63 II Travelling gun Chickpeas and peas
9 Exc. Drip Orchards 64 II Center pivot Winter cereals
10 Exc. Drip Tomato 65 II Center pivot Rapeseed
11 Exc. Drip Vineyards 66 II Center pivot Fodder crops

12 Exc. Travelling
gun Chickpeas and peas 67 II Center pivot Sunflower

13 Exc. Center pivot Winter cereals 68 II Center pivot Chickpeas and peas
14 Exc. Center pivot Rapeseed 69 II Center pivot Winter vegetables

15 Exc. Center pivot Fodder crops with
multiple cuts 70 II Center pivot Summer vegetables

16 Exc. Center pivot Fodder crops 71 II Center pivot Maize grain

17 Exc. Center pivot Sunflower 72 II Center pivot Maize silage
and sorghum

18 Exc. Center pivot Chickpeas and peas 73 II Center pivot Pastures
19 Exc. Center pivot Winter vegetables 74 II Flooded paddies Rice
20 Exc. Center pivot Maize grain 75 II Rainfed crops Fodder crops

21 Exc. Center pivot Maize silage and
sorghum 76 II Rainfed crops Maize grain

22 Exc. Center pivot Pastures 77 II Rainfed crops Olive groves

23 Exc. Flooded
paddies Rice 78 III n.a. n.a.

24 Exc. Rainfed
crops Fodder crops 79 III Fallow Fallow

25 Exc. Rainfed
crops

Almond, walnut,
and pistachio 80 III Drip Almond, walnut,

and pistachio

26 Exc. Rainfed
crops Maize grain 81 III Drip Chickpeas and peas
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Table A3. Cont.

ID Soil Type Irrigation
System Crop ID Soil Type Irrigation

System Crop

27 Exc. Rainfed
crops Olive groves 82 III Drip Winter vegetables

28 Exc. Rainfed
crops Other crops 83 III Drip Summer vegetables

29 Exc. Rainfed
crops Vineyards 84 III Drip Maize grain

30 I n.a. n.a. 85 III Drip Olive groves
31 I Fallow Fallow 86 III Drip Other crops

32 I Drip Almond, walnut,
and pistachio 87 III Center pivot Pastures

33 I Drip Chickpeas and peas 88 III Drip Orchards
34 I Drip Summer vegetables 89 III Drip Tomato
35 I Drip Olive groves 90 III Drip Vineyards
36 I Drip Other crops 91 III Travelling gun Chickpeas and peas
37 I Drip Orchards 92 III Center pivot Winter cereals
38 I Drip Tomato 93 III Center pivot Rapeseed

39 I Drip Vineyards 94 III Center pivot Fodder crops with
multiple cuts

40 I Travelling
gun Chickpeas and peas 95 III Center pivot Fodder crops

41 I Center pivot Winter cereals 96 III Center pivot Sunflower

42 I Center pivot Fodder crops with
multiple cuts 97 III Center pivot Chickpeas and peas

43 I Center pivot Fodder crops 98 III Center pivot Winter vegetables
44 I Center pivot Sunflower 99 III Center pivot Maize grain

45 I Center pivot Summer vegetables 100 III Center pivot Maize silage
and sorghum

46 I Center pivot Maize grain 101 III Center pivot Pastures

47 I Center pivot Maize silage and
sorghum 102 III Flooded paddies Rice

48 I Center pivot Pastures 103 III Rainfed crops Fodder crops

49 I Flooded
paddies Rice 104 III Rainfed crops Almond, walnut,

and pistachio

50 I Rainfed
crops Fodder crops 105 III Rainfed crops Maize grain

51 I Rainfed
crops Olive groves 106 III Rainfed crops Olive groves

52 II n.a. n.a. 107 III Rainfed crops Other crops
53 II Fallow Fallow 108 III Rainfed crops Vineyards

54 II Drip Almond, walnut,
and pistachio

Note: n.a.: not applicable since it concerns non-agricultural areas.
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