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Abstract: Repeated use of aqueous firefighting foams at military aircraft training centers has contami-
nated groundwater with per and polyfluorinated alkyl substances (PFAS). To delineate the extent
of PFAS contamination, numerous site investigations have occurred, which have generated large
quantities of investigation-derived wastes (IDW). The commonly used treatment of incinerating
PFAS-tainted IDW is costly, and was recently suspended by the Department of Defense. Given
long-term IDW storage in warehouses is not sustainable, our objective was to use electrochemi-
cal oxidation to degrade PFAS in contaminated water and then scale the technology toward IDW
treatment. This was accomplished by conducting a series of laboratory and pilot-scale experiments
that electrochemically oxidized PFAS using direct current with boron-doped diamond (BDD) elec-
trodes. To improve destruction efficiency, and understand factors influencing degradation rates, we
quantified the treatment effects of current density, pH, electrolyte and PFAS chain length. By using
14C-labeled perfluorooctanoic acid (PFOA) and tracking temporal changes in both 14C-activity and
fluoride concentrations, we showed that oxidation of the carboxylic head (-14COOH→ 14CO2) was
possible and up to 60% of the bonded fluorine was released into solution. We also reported the
efficacy of a low-cost, 3D printed, four-electrode BDD reactor that was used to treat 189 L of PFOA
and PFOS-contaminated water (Co ≤ 10 µg L−1). Temporal monitoring of PFAS with LC/MS/MS
in this pilot study showed that PFOS concentrations decreased from 9.62 µg L−1 to non-detectable
(<0.05 µg L−1) while PFOA dropped from a concentration of 8.16 to 0.114 µg L−1. Efforts to improve
reaction kinetics are ongoing, but current laboratory and pilot-scale results support electrochemical
oxidation with BDD electrodes as a potential treatment for PFAS-tainted IDW.

Keywords: boron-doped diamond electrodes; per and polyfluorinated alkyl substances; chemical
oxidation; 14C-labeled PFOA

1. Introduction

Per- and polyfluoroalkyl substances (PFAS) are a family of synthesized chemicals that
have been heavily used in manufacturing, often without adequate disposal. Commonly
used to improve the quality of commercial products by making them resistant to heat, oil,
and stains, PFAS are found in many household goods and industrial products such as
surfactants, emulsifiers, and aqueous film forming foams (AFFFs). Due to their unique
ability to resist heat and block oxygen, PFAS-containing firefighting foams were used at
aircraft service centers where fire-fighting training operations were routinely performed.
With more than three decades of repeated use at hundreds of military facilities across
the U.S.A., PFAS have been detected in 61% of the groundwater samples taken around
Department of Defense (DoD) facilities with concentrations ranging from µg L−1 (ppb) to
low mg L−1 (ppm) concentrations [1–4].
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Chemically, PFAS contain both a fluorinated carbon tail and a hydrophilic ionic head
(-COOH, -SO3H), and it is this unique structure that give PFAS their biphasic or surfactant
characteristics. The PFAS molecule may be either fully (per–) or partially (poly–) fluorinated
and can contain between two and eighteen carbon atoms [5]. Examples of the most common
PFAS include perfluorooctanoic acid (PFOA; C8F15O2H) and perfluorooctane sulfonic acid
(PFOS; C8F17SO3H). Although PFOA and PFOS are the two most frequently detected PFAS
in contaminated aquifers, there are literally hundreds of PFAS precursors that have been
released into the environment, which are also causes for concern.

Unfortunately, the chemical properties that make PFAS useful from an industrial
perspective also make them mobile and recalcitrant once released into the environment. As
true xenobiotics, PFAS have no known natural decomposition processes and the stability of
the C-F bond makes them almost un-degradable by natural attenuation [6,7].

Now that toxicological studies have revealed the bio-accumulative, neurotoxic, and
potentially carcinogenic nature of PFAS exposure [8–11], identifying and delineating the
extent of PFAS contamination is paramount for protecting human and ecological health.
Given the United States Environmental Protection Agency (USEPA) recently decreased its
2016 health advisor level (HAL) of 70 ng L−1 (70 parts per trillion, 70 ppt) for the singular
or combined concentration of PFOA and PFOS, to 0.004 ng L−1 for PFOA and 0.02 ng L−1

for PFOS [12], the need to further delineate the extent of PFAS contamination in aquifers
will only intensify.

The federal government has an environmental responsibility to delineate the extent of con-
tamination at sites where firefighting foams were routinely used. While PFAS-contaminated
groundwater is the primary concern, site investigations create a secondary problem that is
continuing to grow, namely, the generation of investigation-derived waste (IDW). IDW is the
water, soil and drill cuttings generated during well installations and sampling activities per-
formed during contaminated site investigations. The potential risks and liabilities associated
with PFAS exposure has previously caused IDW generators to take the conservative approach
of incinerating their PFAS waste. While energy intensive and costly, incineration offered a
workable solution. The temporary moratorium on incinerating PFAS-containing substances
by the Department of Defense [13] has now changed the way IDW will be handled, and
complicates disposal options. Given that PFAS site investigations will continue and long-term
storage of containerized IDW in warehouses is not a sustainable solution, alternative treatment
options are needed. In 2020, the EPA established the PFAS Innovative Treatment Team (PITT)
to address the disposal and destruction of PFAS-containing media and waste. This PITT
team identified four technologies with the potential to destroy PFAS-contaminated media and
waste [14]; one of these technologies was electrochemical oxidation (EC).

As an alternative to incinerating PFAS-tainted IDW, we report herein on a series of
laboratory and pilot-scale experiments that electrochemically oxidized PFAS with boron-
doped diamond electrodes (EC-BDD) with direct current. The reason BDD anodes can
degrade per- and polyfluoroalkyl substances is because of the greater overpotential they
require to oxidize water to oxygen (relative to other anodes). The oxygen overpotential
for gold, platinum, or glassy carbon anodes ranges between 1.7 and 2.2 V, but up to 2.5 V
for BDD anodes [15]. This allows BDD electrodes to produce direct anodic oxidation of
the PFAS and offer a “chemical-free” treatment for PFAS-contaminated water [16]. Our
objectives were to quantify the effects of current density, pH, electrolyte and PFAS chain
length on degradation kinetics and defluorination. We also report on the efficacy of a
custom designed, 3D printed, electrode chamber where the number of BDD electrodes
(2 vs. 4), power sources (1 vs. 2) and DC polarity switching, were varied. We then show
the results from treating a 208 L (55 gal) container of PFOA- and PFOA-tainted water
(Co = <10 µg L−1).
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2. Materials and Methods
2.1. Chemicals

Chemicals were purchased from a variety of vendors and used as received. These
chemicals included: perfluorooctanoic acid (PFOA; C8F15O2H; >95% purity) and perfluo-
rooctane sulfonate (PFOS; C8F17SO3; >95% purity) (Fisher, Fair Lawn, NJ, USA). Shorter
chain PFAS included: perfluorohexanoic acid, perfluorobutyric acid; perfluorohexane-
sulfonic acid, and perfluorobutanesulfonic acid (Fisher, Fair Lawn, NJ; >98% purity)
(Table 1). We also used 14C-labeled perfluorooctanoic acid (14C-PFOA; 55 mCi mmol−1;
American Radiolabeled Chemicals, St. Louis, MO, USA); sodium sulfate, ammonium
fluoride, and H2SO4 (Fisher, Fair Lawn, NJ, U.S.A.). All solutions were prepared with
Millipore water (18.2 MΩ cm−1 resistivity, 25 ◦C) from a Nanopure Barnstead E-pure
system (Thermo Scientific, Waltham, MA, USA).

Table 1. Compound name, acronym, formula, and structure of PFAS used in laboratory and
pilot-scale experiments.

Compound (C#) Acronym Formula Structure

Perfluorooctanoic
Acid (C8) PFOA F(CF2)7COOH
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Perfluorohexanoic
Acid (C6) PFHxA F(CF2)5COOH
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Perfluorobutyric
Acid (C4) PFBA F(CF2)3COOH
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2.2. Chemical Analysis

Carbon-14 activity (14C-activity) was determined by removing 1 mL subsamples
from the batch reactors and mixing with 6 mL of Ultima Gold liquid scintillation cocktail
(Packard, Meriden, CT, USA). Samples were then mixed and allowed to sit overnight in
the dark before analyzing on a Packard 1900TR liquid scintillation counter (LSC; Packard
Instrument, Downers Grove, IL, USA). A blank consisting of 6 mL Ultima Gold liquid
scintillation cocktail was analyzed prior to running the samples and used to correct sample
activity values (dpms).

Treating PFAS by electrochemical oxidation removes fluoride from the alkyl chain.
Thus, temporal release of fluoride into solution can be representative of PFAS degrada-
tion. In select electrochemical experiments, samples were taken during treatment for
fluoride analysis and run on a Dionex DX-120 ion chromatograph (IC). Standard solu-
tions of fluoride were first prepared and injected into the IC to create a calibration curve.
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Standards were made using ammonium fluoride. The fluoride standards used varied
between 1 and 75 mg L−1, depending on the concentration of PFAS treated. Choosing
which standards to use for data analysis was based on the potential mass of fluoride that
could be released into solution by breaking the C-F bonds. For example, defluorination of
10 mg L−1 PFOA could produce approximately 6.8 mg L−1 of fluoride; 100 mg L−1 PFOA
could yield 68 mg L−1 fluoride, if defluorination was complete. All fluoride standards
were run through the IC, and peak areas were used to generate a calibration curve through
linear regression.

When 14C-PFOA was not used in experiments, unlabeled PFOA and PFOS concentra-
tions were determined at the University of Nebraska Water Center using a Waters Xevo
TQ-S Micro triple quadrupole mass spectrometer with a 2D ultrahigh pressure liquid
chromatography interface. Using EPA Method 533 [17], linear calibration curves were
obtained for the concentration range of 0–20 µg L−1 using isotopically labelled internal
standards. Specific standard concentrations included: 0, 0.1. 0.5, 1.0, 5, 10 and 20 µg L−1.
Limit of detection (LOD) and limit of quantification (LOQ) for the analytical method were
determined by the following: duplicate analyses of standards; results from samples fortified
at a concentration near the low calibration standard signal sensitivity; and the Student’s
t-test value for the number of replicates analyzed.

2.3. Electrochemical Experiments
2.3.1. Generalized Setup of Electrochemical Experiments

Most electrochemical experiments were run under similar stirred, single batch condi-
tions. The typical experimental setup consisted of a 600 mL Erlenmeyer flask filled with
500 mL of a PFAS solution (8 µg L−1 to 100 mg L−1). Enough electrolyte salt (Na2SO4) was
added to bring the concentration to 10 mM Na2SO4. The solution was then spiked with
1 to 3 mL of stock 14C-PFOA (55 mCi mmol−1), which brought the solution’s 14C-activity to
approximately 1500 to 3000 dpms mL−1 and 0.6 mL of diluted H2SO4 acid (10% v/v with
H2O) to decrease the solution pH (2.5). The experimental unit received a magnetic stir bar,
was placed on a stir plate, and then mixed at a stir speed of 700 rpm. We used either one
boron-doped diamond (BDD) anode and a platinum coated titanium (Pt/Ti) wire cathode,
or two boron-doped diamond electrodes (NeoCoat®, La Chaux-de Fonds, Switzerland).
The NeoCoat® electrodes consisted of a polycrystalline boron-doped diamond coating
(5 µm coating, 2500 ppm B) deposited on both sides of a mesh niobium substrate. The
dimensions of the mesh BDD electrodes were 25 × 100 × 1.4 mm. A plastic holder was
fabricated that maintained an electrode spacing of 5 mm. These electrodes were connected
to a DC power supply (30 V/20 A, Extech instruments, Nashua, NH, USA) and suspended
in the solution so that they were submerged as fully as possible without the electrical
alligator clips touching the solution. Electrical current was set at either 1 or 0.4 A, unless
specified otherwise in presented graphs. Assuming an estimated electrode surface area of
25 cm2, current densities ranged from 8 to 40 mA cm−2. The supplied voltage varied with
current density and electrolyte concentration and is reported on resulting graphs.

2.3.2. Effect of Electrical Current

Using a BDD anode and cathode, we quantified the effects of electrical current on a
100 mg L−1 perfluorooctanoic acid (0.24 mM PFOA) solution. Three separate experiments
were run with the electrical current set at 0.2, 0.4 and 1 A (8, 16, 40 mA cm−2). The
experiments ran for 6 h, and 1.5 mL samples were periodically removed from the stirred
reactor to quantify temporal decreases in 14C-activity. One milliliter samples were mixed
with LSC cocktail and analyzed in a liquid scintillation counter; 14C concentrations were
then fit to a first-order rate expression (C = Coe−kt) and compared.

Preliminary experiments were also run with low concentrations of PFOS (17 µg L−1)
and PFOA (4.4 µg L−1), utilizing the BDD anode and cathodes and 8 mA cm−2. These
experiments were analyzed with a Micromass Quattro Micro Triple quadrupole liq-
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uid chromatograph/mass spectrometer with methods and results presented in the
Supplementary Materials (SM).

2.3.3. Effect of Acid Addition (pH)

The effect of pH on PFOA degradation was determined by conducting parallel ex-
periments using either two BDD electrodes, or a BDD/Pf/Ti electrode set, both run at an
electrical current of 1 A (40 mA cm−2). The PFAS test solution was a 100 mg L−1 perfluo-
rooctanoic acid (0.24 mM PFOA) solution, spiked with 14C-PFOA. We acidified the PFOA
solution with diluted H2SO4 to a pH of 2.5 and left one companion solution untreated
(no acid, pH 6–7). Batch reactors were run under the same conditions as above with volts
ranging from 16 to 20 V.

2.3.4. Effect of Electrolyte

Using the generalized electrochemical procedures and two BDD electrodes as anode
and cathode, degradation of PFOA was compared in a 10 mM Na2SO4 electrolyte salt
versus a 100 mM KH2PO4 salt concentration. The pH of both solutions was adjusted to
2.5 before starting electrochemical oxidation.

2.3.5. The Effects of Reseeding PFOA and Fluoride on Degradation

Following the generalized procedures, 14C-PFOA was reseeded into the stirred batch
reactor and treated with two BDD electrodes at pH 2.5. Reseeding occurred at 2 h and
4 h after the initial (T = 0 h) experiment was started. Temporal samples were taken every
15 min, mixed with the cocktail, and analyzed by LSC.

To determine how fluoride released into solution was possibly influencing BDD
performance, we conducted an experiment where generalized procedures were used to
treat a 40 mg L−1 fluoride solution for 2 h before spiking with 14C-PFOA and tracking
changes in 14C activity. A similar experiment was performed where 40 mg F− L−1 was
treated for 2 h and then spiked with a higher PFOA concentration (100 mg L−1 PFOA) so
that defluorination could also be monitored.

2.3.6. Measuring Defluorination

To measure electrochemical oxidation and defluorination together, we used a 100 mg L−1

PFOA solution and spiked it with 14C-PFOA. Using two BDD electrodes and direct current,
we removed solution samples from the batch reactor every 30 to 60 min for 6 h. 14C activity
was determined by mixing 1 mL of sample with 6 mL of cocktail and counting on an
LSC. Fluoride was measured directly with a Dionex DX-120 ion chromatograph using
conductivity detection.

To determine how initial concentration influenced defluorination, we treated PFOA
concentrations of 5, 10, 50 and 100 mg L−1 and ran them under standard EC conditions
using an electrical current of 0.4 A (8 mA cm−2; 12–14 V). Similarly, we determined how
fluorinated alkyl chain length influenced the rate of defluorination. We used perfluorinated
carbonates with carbon chains lengths of 8, 6, 4, and 3 carbons; specifically, these com-
pounds included perfluorooctanoic acid (C8), perfluorohexanoic acid (C6), perfluorobutyric
acid (C4), and perfluoropropionic acid (C3) (Table 1). The starting concentration of each
compound was 0.24 mM, and each compound was treated with two BDD electrodes and
run under standard conditions and 0.4 A.

2.3.7. Pilot-Scale Experiments

A 208 L barrel was filled with 189 L of tap water and spiked to ~10 µg L−1 PFOA,
~10 µg L−1 PFOS with a 10 mM Na2SO4 background matrix. We used a custom 3D printed
four-electrode, flow-through reactor that allowed the electrodes to fit perfectly into a 3D
mold and force contact with the PFAS molecules. The custom reactor was designed with the
3D CAD software SOILDWORKS (Dassault Systèmes Solidworks, Co., Waltham, MA, USA)
and then printed on MakerBot Replicator 3D printer (Brooklyn, NY, USA) using MakerBot
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filament plastic. To further seal the reactor, flex sealant was used around the periphery of
the angular joints and hose connections while a silicone adhesive sealant was used around
each electrode. Reactor pieces and electrodes were assembled with 6 mm foam gaskets
inserted between each section; electrodes were spaced 1 cm apart. PVC hose adaptors for
inlet and outlets were connected to 3D printed material using PVC primer and glue. The
final reactor design was fabricated to be semi-permanent (i.e., leak free), but still allowed
for disassembly and electrode replacement.

Once constructed, the BDD reactor was connected to a custom designed direct current
system (3E, Windsor Heights, IA, USA) that had a 500 W rheostat capable of adjusting
current (0–16 A), 4 solid state relays for switching polarities, and two timers for adjusting
positive and negative cycles. Pilot-scale experiments were run at 1 A with polarity reversed
every 30 s. Tubing adaptors and a submersible pump were used to continuously circulate
water through the reactor at a rate of 2.33 L min−1. This flow rate allowed the 189 L of
simulated IDW to cycle through the BDD reactor every 81 min. Temporal 1.5 mL samples
were collected over 450 h and analyzed via LC/MS/MS.

Before treating the pilot-scale 208 L drum of PFAS-contaminated water, the assem-
bled reactor was used to treat multiple batches of 2 L of 10 µg L−1 of PFOA in a 10 mM
Na2SO4 matrix at a flow rate of 1.7 L min−1. Variables tested with the 3D printed reac-
tor were the number of BDD electrodes (2 vs. 4), power sources (1 vs. 2) and polarity
(constant vs. switching).

3. Results and Discussion
3.1. Electrochemical Oxidation of PFAS

A series of laboratory batch experiments were undertaken using a boron-doped dia-
mond (BDD) anode to electrochemically (EC) oxidize PFAS compounds. The advantage elec-
trochemical oxidation has over other technologies, is that BDD anodes can initiate an elec-
tron removal from both the ionic heads of PFOA and PFOS-like structures [18–22] (Figure 1).
The key factor for enhanced oxidation via EC-BDD treatment is the interaction the EC-
generated hydroxyl radicals have with the electrode surface. In general, high oxidation
power anodes are characterized by weak electrode–hydroxyl radical interactions resulting
in a high current efficiency for organic oxidation and a low electrochemical activity for
oxygen evolution. Based on this, boron-doped diamond can be considered as one of the
ideal anode materials for electrochemical mineralization of organic contaminants [23].

While the exact mechanisms for electrochemical oxidation of PFAS are complex and
still being investigated, there is general agreement that the rate-limiting step is the direct
electron transfer at the anode, which results in cleavage of the head group (-COOH vs.
–SO3H) to produce the corresponding perfluoroalkyl radical (Figure 1); the perfluoroalkyl
radical can then quickly react with •OH, O2, or H2O and degrade to the one-carbon shorter
perfluoroheptanecarboxylate (i.e., perfluoro alkyl carbonate, Figure 1). The newly produced,
1-carbon shorter carboxylate then undergoes the same degradation cycle as the original
PFOA, sequentially converting the carboxylic acid head to carbon dioxide, the fluorine
atoms to hydrogen fluoride, and the CF2 to another carboxylic acid group.

As discussed by Radjenovic et al. [16], the use of high PFAS concentrations
(i.e., 10–100 mg/L) in laboratory experiments likely overestimates EC oxidation perfor-
mance and makes extrapolating results to environmentally relevant matrices difficult.
While we used high PFOA concentrations when fluoride analysis was also performed, the
use of 14C-PFOA provided the advantage of making analysis simple, quick, and negated
any PFAS cross contamination interferences. Moreover, by measuring the 14C activity of
the solution (dpms mL−1), converting to µCi, and then using the specific activity of the
PFOA label (55,000 µCi mmol−1), the PFOA concentration could be calculated. In most
batch experiments that used only 14C-PFOA, the typical starting concentrations (Co) were
6.8 to 10 µg PFOA L−1, which would be environmentally relevant for many contaminated
IDW matrices.
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3.2. Effect of Electrical Current

Potential is the major driving force for electrochemical oxidation of PFAS. Applied
current density is a key experimental parameter that affects PFAS degradation and de-
fluorination efficiency because it regulates the capability of the electron transfer rate and
OH radical generation on the electrode surface. In the PFOA decomposition process,
Ochiai et al. [24] found that when the current density was higher than 0.6 mA/cm2, the
direct electron oxidation was no longer the main mechanism. Using DC settings that
would produce 0.6 mA/cm2, we observed no change in PFOA concentrations. By using
higher electrical current, however, we observed both near linear (zero) and first-order PFAS
degradation rates (Figure 2). Based on previous research [25], we believe these observa-
tions can be explained by creating kinetic conditions that are either “current-controlled”
or “mass-transport controlled”. Under current-controlled conditions, the rate-limiting
condition is electron transfer at the BDD anode to form the perfluoroalkyl radical (Figure 1).
When PFAS is in abundance (i.e., not limiting), the rate of degradation is constant and
controlled by the electron transfer at the BDD interface (i.e., zero-order, Figure 2). Under
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mass-transport controlled, the PFAS becomes limiting, and the degradation rate is con-
trolled by the transfer of the PFAS to the BDD electrode (Figure 2). In other words, the
reaction becomes concentration-dependent or first-order. By increasing the amperage from
0.2 to 0.4 and 1.0 A, the reaction rate changed from current-controlled to concentration-
dependent (Figure 2).
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3.3. pH Adjustment

Previous studies have reported mixed results regarding pH effects on PFAS degrada-
tion during electrochemical oxidation [16]. Niu et al. [25] reported that pH affects •OH
generation, oxygen overpotential and life span of BDD anodes. Further, lower pH can in-
hibit oxygen evolution, which can improve PFAS degradation. In most cases, however, pH
effects have been reported to be slight to modest. Reasons for the lack of strong pH effects
may be attributed, in part, to the lack of true pH-stat conditions. This is due to the surface
acidity of the anode, which decreases the solution pH over time. While treating PFOA,
Lin et al. [26] recorded bulk pH decreases of 0.5 to 1.5 units during 90 min of electrolysis.

Zhuo et al. [15] tested PFOA degradation by BDD anodes at different pH values
(3, 9, 12). They found degradation rates were slightly higher at pH 3 versus 12. Lin et al. [26]
similarly treated PFOA by electrochemical oxidation at pH 3, 5, 7, 9, and 11 and found
pH 5 produced the highest degradation rate. Nienhauser et al. [27] treated a 4-carbon
perfluorobutanesulfonic acid (PFBS), a 6-carbon perfluorohexanesulfonic acid (PFHxS) and
an 8-carbon PFOA with EC-BDD at pH 3, 7 and 12; they found little pH effect for PFOA
but slower kinetics at pH 12 for the 4- and 6-carbon PFAS. Given these results, we adjusted
pH to determine if reaction rates could be increased. Our results of lowering pH provided
mixed results in influencing degradation kinetics.

Using two BDD electrodes, the difference between a neutral pH and acidic (pH = 2.5)
was negligible (Figure 3A). Moreover, using BDD/Pt/Ti electrodes, we compared degrada-
tion rates with and without pH adjustment. Results from two freshly made PFOA solutions
showed that pH adjustment did not affect degradation kinetics (Figure 3B). Although pH
did not influence degradation, it is noteworthy that the BDD/Pt/Ti electrodes (Figure 3B)
produced the fastest degradation kinetics with a first-order rate of 1.478 h−1 and was greater
than the degradation kinetics observed with two BDD (Figure 3A). While this combination
was effective, the lifespan of the BDD anode was shortened due to mineral deposits.
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Figure 3. (A) Effect of pH adjustment on PFOA kinetics; (B) degradation of 14C-PFOA with BDD
anode and Pt/Ti cathode, with and without pH adjustment; (C) degradation of 14C-PFOA in al-
kaline PFOA solution (pH 8) with BDD anode and cathode, with and without pH adjustment
(pH adjust = 2.5); (D) effects of acidifying samples before mixing with liquid scintillation counting
(LSC) cocktail.

An example where pH appeared to influence degradation rates was when we treated
a solution from our pilot-scale IDW barrel (i.e., pilot-scale) with both BDD anodes and
cathodes, we observed faster kinetics by lowering the pH (Figure 3C). Given that the
IDW barrel solution was alkaline (pH ~8), and not neutral as observed in the previous
acidifying experiments (i.e., experiments Figure 3A,B), we determined if the pH effect
on PFOA degradation kinetics was real, as reported by Zhuo et al. [15], or an artifact of
using temporal changes in 14C-activity as an indicator of degradation. In other words,
electrochemical oxidation of 14C-PFOA produces 14CO2 through direct anodic oxidation
(Figure 1A) but the produced CO2 is more soluble in an alkaline solution than a neutral
or acid solution and thus a higher pH may cause some 14CO2 to stay in solution rather
than escape as a gas. If some 14CO2 stays in solution, then monitoring temporal changes in
14C-activity includes both 14C species (14C-PFOA + 14CO2) and would yield a degradation
rate that is slower than the actual degradation rate. By comparing 14C-activity of samples
acidified versus not acidified before mixing with scintillation cocktail, we showed that
an alkaline solution indeed retained some 14CO2, if not first acidified (Figure 3D). Thus,
when the pH of the 14C-PFOA solution being treated is not lowered prior to EC treatment,
individual samples need to be acidified to drive out any dissolved 14CO2 in solution.
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3.4. Electrolyte

Supporting electrolytes are used to provide an electro-conductive medium and mini-
mize the voltage drop and resistance of the electrochemical reactor [15,26]. High electrical
conductivity leads to faster electron transport and a better degradation rate for organic pol-
lutants. Zhuo et al. [28] found that the electrochemical oxidation of 6:2 FTS decreased in the
trend of NaClO4 > NaCl > Na2SO4. To avoid the potential for organochloride byproducts,
chlorate, or perchlorate from forming, we compared Na2SO4 versus KH2PO4 and found no
differences in rate constants (Figure 4). It is important to note that by increasing the salt
concentration, lower voltages produced similar amperage. Thus, if amperage or current
density was similar (8 mA cm−2, Figure 4), kinetic rates were similar.
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3.5. Reseeding PFAS to BDD Electrodes

To gain insight into the robustness of the EC-BDD system to continually degrade PFAS,
we reseeded PFOA back into the batch reactor. By monitoring disintegrations per minute
(dpms) following reseeding of 14C-PFOA into the BDD-treated solution, the initial drop in
dpms increased after the second and third reseedings (52%→ 65%→ 72%, Figure 5A). We
also noticed a similar behavior when we electrochemically treated a 40 mg L−1 fluoride
solution before adding 14C-PFOA (Figure 5B). Results showed that the addition of fluoride
increased the initial decrease in 14C-PFOA (Figure 5B) but caused a plateau; similarly, in a
similar but separate experiment using a higher PFOA concentration, the defluorination rate
was higher during the first 2 h with BDD electrodes that had been previously exposed to
fluoride; but with time, defluorination plateaued after 4 h (Figure 5C). These observations
indicate that at least initially, preconditioning the electrodes with fluoride may have altered
the electrode surface.

Previous researchers have documented that adsorption of fluoride to the BDD elec-
trodes can occur. Guan et al. [29] observed in their electrochemical system that PFOA
decomposed on the BDD anode to generate radicals containing fluorine, which reacted
and bonded with the BDD surface. They confirmed this surface adsorption with XPS
measurements. Guan et al. [29] also showed that the fluorinated surface showed water
repulsion (i.e., more hydrophobic) and suggested that enrichment of the BDD with fluoride
may be altering PFAS reaction rates over time. While the fluoride pretreatment may have
initially increased defluorination (Figure 5C), it did not last, as observed by the plateau
(Figure 5C) and may have promoted additional anodic wear. Anodic wear of BDD can lead
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to the formation of oxygenated sites and observable wear of BDD electrodes [30–33]. This
changing surface chemistry can affect the reproducibility of electrode performance in water
treatment [32].
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3.6. Defluorination and Fluoride Mass Balance

By using 14C-labeled PFOA and measuring temporal loss of 14C-activity and fluo-
ride generation, we were able to quantify the transformation rate of the parent structure
(i.e., 14C-PFOA) as well as the transformation of the subsequently formed shorter chain
degradation products (Figure 6). Results showed nearly complete transformation of the
PFOA molecule with approximately 60% defluorination (Figure 6). Both PFOA removal
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and F- generation plateaued after approximately 3 h with defluorination occurring at a
slightly lower rate than PFOA degradation (Figure 6).
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Uwayezu et al. [34] used similar direct current EC-BDD conditions in treating PFOA,
and reported 99.5% PFOA degradation and 50% fluoride recovery. They also confirmed the
detection of shorter chain (4, 5, 6, and 7 carbon) fluorinated carboxylates. Zhou et al. [15]
similarly documented the formation of shorter chain perfluorinated carboxylates follow-
ing BDD treatment of both PFOA and PFOS. Given that shorter chain perfluorinated
compounds are being formed by the EC-BDD treatment (Figure 1) and we observed defluo-
rination rates slowed down after 3 h of treatment (Figure 6), we investigated defluorination
rates of various chain length perfluorinated carbonates by using them as starting substrates
(Table 1). In these experiments, we used the same starting molar concentration (0.24 mM).
Our goal was to determine if any of the shorter chain perfluorinated compounds were
resistant to electrochemical oxidation via the EC-BDD treatment. These results confirmed
that the shorter chain degradation products formed during the destruction of the parent
PFOA or PFOS (Figure 1) were also mineralized by the EC-BDD treatment method.

Results showed that fluoride generated from the perfluorinated compounds were
generally linear during the first 3 to 5 h (Figure 7A) with the longer chain length compounds
producing a higher percentage of defluorination. Although defluorination rates were
slightly slower for the shorter chain compounds, our results confirm that these compounds
were not resistant to EC-BDD oxidation. Radjenovic et al. [16] reported that longer chain
PFAS are more hydrophobic and have a higher affinity to adsorb to electrode surfaces
than shorter chain PFAS, and that this would enhance electrooxidation and defluorination.
Barisci and Suri [35] specifically treated short and long chain pefluorocarboxylic acids with
Si/BDD electrodes and found overall defluorination was greater with longer carbon chain
lengths. Short chain PFAS are characterized as having lower molecular polarizabilities [36],
which is the ability of a compound to form a dipole in an electrical field, and is the one
molecular descriptor that corresponds with observed reaction rates of PFAS treated by
electrochemical oxidation [16,36].

Given that we have observed both zero-order and first-order removal rates of PFOA
under varying conditions (Figure 2), we determined initial concentration effects on defluo-
rination rates. Results showed that higher fluoride recovery rates were observed at higher
concentrations (Figure 7B), but all concentrations plateaued after approximately 3 h.
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3.7. Pilot-Scale Experiments

The custom printed 3D reactor was designed to be compatible with 2 or 4 BDD
electrodes and suitable for treating a 208-L container (Figure 8). Before pilot-testing of the
3D reactor with 189 L of PFAS water, the 3D reactor was tested by treating 14C-PFOA in the
laboratory (2 L). By using only 14C-PFOA (no unlabeled PFOA), the initial concentration
was in the 8 to 10 µg L−1 (ppb) range, which was calculated from the specific activity
(µCi mmol−1) of the PFOA.

Laboratory results using 14C-PFOA and the 3D reactor with different power sources
(pilot-scale vs. laboratory-scale) showed that reaction rates could be influenced by adjusting
the number of electrodes, power sources and polarity (Figure 9). By using 4 BDD electrodes
over 2 BDD, reaction rates increased from k = 0.738 h−1 to 1.256 h−1 (Figure 9). Similarly,
using two power sources was superior to a single power source (k = 0.855 vs. 1.577 h−1)
and by switching the polarity of the electrodes every 30 s, degradation rates were greater
than rates obtained using a constant polarity (k = 0.854 vs. 1.256 h−1) (Figure 9).
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Figure 8. (A) Schematic of 208 L barrel experiment with components consisting of barrel, direct-
current power supply, and 3D printed, four-BDD electrode chamber; (B) photograph of 3D printed
electrode chamber; (C) photograph of direct current power supply.

Results from our 208 L pilot-scale experiment using LC/MS/MS analysis indicated
that micrograms per liter (ppb) PFAS concentrations can easily be degraded by electro-
chemical oxidation using BDD anodes. The pilot-scale reactor and pump moved liquid
at 2.33 L min−1, meaning the 189 L of simulated IDW was cycled through the 3D reactor
every 81 min. Results showed that PFOS was transformed relatively quickly and was
below detection in less than 200 h. By contrast, PFOA was transformed approximately
three times slower and was reduced to 0.114 µg L−1 at the end of the experiment. In a
preliminary batch experiment, we also observed faster kinetics with PFOS over PFOA
(Figure S1). Using a BDD flow-through reactor, Maldonando et al. [37] also observed faster
kinetics with PFOS than PFOA. Nienhauser et al. [27] also found that 4, 6, and 8-carbon
PFASs with a sulfonated head group degraded 2–3 times faster than their carboxylic coun-
terparts. Radjenovic et al. [16] noted however, how reactions rates of mixed PFAS could be
influenced by starting concentrations. For instance, Liang et al. [38] showed that at PFOA
and PFOS concentrations of 10 mg L−1, PFOS degradation was slower in the presence of
PFOA, whereas Wang et al. [36] working with microgram per liter concentrations observed
similar rate constants of perfluoroalkyl acids when treated individually or in mixtures.
Fenti et al. [39], who used a Magnéli-phase TinO2n−1 mesh anode in a flow-through electro-
chemical reactor reported faster kinetics for PFOA (0.033 h−1) than PFOS (0.022 h−1); these
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rate constants reported by Fenti et al. [39] are in the range similar to those observed in our
pilot-scale experiment (Figure 10). Given EPA’s new health advisory levels for PFOA and
PFOS (0.004 ng L−1 for PFOA and 0.02 ng L−1 for PFOS), additional treatment time would
be needed for PFOA destruction under the current treatment.
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Figure 9. Temporal changes in 14C-PFOA when treated with 3D printed reactor us-
ing: (A) 2 versus 4 BDD electrodes; (B) 1 versus 2 power sources; and (C) constant versus
switching polarities.

At the end of the pilot-scale experiment, the BDD reactor was disassembled and
photographed (Figure 11). Although polarity was switched every thirty seconds, the inflow
of the IDW solution through the 3D reactor remained constant and, therefore, all IDW
solution entered the same port. This resulted in a buildup of salt on the first BDD electrode
(Figure 11). Adding an additional valve to periodically reverse flow direction during the
treatment of the IDW may help to alleviate salt buildup in future tests.
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Figure 10. Temporal changes in PFOA and PFOS concentrations in 208 L barrel pilot-scale experiment.

Given only synthetic solutions of IDW were tested in this study, we acknowledge
treating actual IDW is a logical progression and will be more challenging. Other re-
searchers have been successful in treating real world solutions, such as landfill leachates.
Maldonado et al. [36] found that PFOS and PFOA degradation was six times slower in a
landfill leachate matrix than in a water matrix using similar conditions (current density,
flow through cell); they attributed the slower kinetics to the presence of co-contaminants
in the landfill leachate. While treating an ion exchange regenerant, Maldonado et al. [40]
found PFAS reaction kinetics were three-fold slower than a synthetic solution and attributed
the difference to the presence of co-contaminants.

While the costs of BDD electrodes remain high and a potential roadblock to full
scale use, alternative electrodes, such as Magnéli-phase Ti4O7 anodes offer a lower cost
alternative [36]. The use of the electrodes in batch, flow-by and flow-through modes is also
a consideration, especially when treating larger quantities of IDW. While more elaborate
BDD electrode reactor assemblies have been successfully used in the past [40,41], with
some being commercially available (ElectroCell, Amherst, NY, USA), we showed herein,
that a low-cost, 3D-printed reactor was functional and capable of treating larger volumes
(189 L) of PFAS-contaminated water at a modest cost. Material costs for the printed 3D
reactor were less than USD 100. The cost of the additional main components included the
four commercial BDD electrodes (USD 1180, NeoCoat®, La Chaux-de Fonds, Switzerland),
and the custom designed direct current system (USD 2668, 3E, Windsor Heights, IA, USA).
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4. Conclusions

A series of laboratory and pilot scale experiments were performed to quantify the
efficacy of electrochemical oxidation of PFAS using boron-doped diamond electrodes. By
using 14C-labeled PFOA, we showed that low concentrations of PFOA (µg L−1) could easily
be measured with a liquid scintillation counter and reaction kinetics quantified without
the concern of cross contamination. By tracking temporal changes in both 14C-activity
and fluoride concentrations, we showed oxidation of the carboxylic head (-14COOH to
14CO2) was possible, and up to 60% of the bonded fluorine was released into the solution.
We showed that the shorter chain degradation products formed during the destruction of
the parent contaminant were also degraded and defluorinated by the EC-BDD treatment.
LC/MS/MS analysis indicated micrograms per liter (ppb) PFAS concentrations were
easily degraded by electrochemical oxidation using BDD electrodes. By increasing current
density (amperage), observed kinetics changed from current-controlled (zero-order) to
mass-transfer controlled (first-order). Reversing polarity improved the lifespan of the BDD
electrodes. A low-cost, 3D printed, four-electrode BDD reactor was successful in treating
189 L of simulated IDW in a 208-L container. Periodically alternating the flow direction of
the IDW into the 3D reactor may reduce salt buildup and improve performance.
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