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Abstract: Estimating flood hazard, vulnerability, and flood risk at the household level in the past
did not fully consider all relevant parameters. The main objective of this study is to improve this
drawback by developing a new comprehensive and systematic methodology considering all relevant
parameters and their weighting factors. This new methodology is applied to a case study of flood
inundation in a municipal area of Nan City in the Upper Nan River Basin in Thailand. Field and
questionnaire surveys were carried out to collect pertinent data for input into the new methodology
for estimating flood hazard, vulnerability, and risk. Designed floods for various return periods were
predicted using flood simulation models for assessing flood risk. The flood risk maps constructed for
the return periods of 10–500 years show a substantial increase in flood risk with the return periods.
The results are consistent with past flood damages, which were significant near and along the
riverbanks where ground elevation is low, population density is high, and the number of household
properties are high. In conclusion, this new comprehensive methodology yielded realistic results and
can be used further to assess the effectiveness of various proposed flood mitigation measures.

Keywords: flood hydrology; flood hazard; vulnerability; flood risk; households; flood mitigation

1. Introduction

Floods are the most frequent type of disasters. They can cause widespread devastation,
loss of life, and damage to personal property and public infrastructure. Between 1998 and
2017, floods affected more than 2 billion people, or 29% of the world population [1]. Floods
cause more than USD 40 billion in damage worldwide annually [2]. The number of deaths
due to the fact of significant floods worldwide from 1906 to 2014 was reported by Ritchie
and Roser [3] (updated in 2020) as shown in Figure 1. In 1931, deaths were as high as
3.7 million in China, while in 1974, there were 28,700 deaths in Bangladesh [4].

People who live in floodplains or lack information on flood warning and flood hazard
awareness are the most vulnerable to floods. Floods are expected to increase in frequency
and intensity due to the anticipated increase in extreme precipitation as a result of continued
climate change [5].

Many people tend to live in floodplain areas to satisfy needs for water and transporta-
tion. However, living in floodplain areas increases the risk to their assets, household, and
life security during flooding [6–8]. A flood hazard, vulnerability, and risk assessment is
necessary to determine the probability that a flood of a particular intensity may occur
over an extended period of time [9]. A risk assessment aims to estimate this flooding
probability from over a period of years to decades to support flood mitigation planning
and management activities [10].
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Figure 1. Number of deaths due to the fact of floods worldwide from 1900 to 2020 [3]. 

Extreme flood events can be more harmful to people living in the floodplain areas 
[11]. Another important consequence of floods is damage to physical infrastructures such 
as bridges, main roads, public buildings, and service facilities [12–14]. This type of struc-
tural damage is often defined as the amount of money needed to repair or rebuild. On the 
other hand, damages to populations and their household properties are related to socio-
economic conditions [15,16]. From flood hazard and flood vulnerability, flood risk can be 
determined, and flood risk maps can be constructed for various return periods for flood 
mitigation planning and management. A flood risk map can be helpful for land-use plan-
ning and management, reducing flood damage and saving human lives, agricultural 
products, and private and public properties. 

Previous studies [17–23] considered flood hazard as a function of flood depth only 
or flood depth and velocity. This study considered all parameters including flood depth, 
velocity, inundation duration, and their weights. For the total vulnerability at the house-
hold level, this study considered all parameters including the sensitivity of the popula-
tion, adaptive capacity, exposure of household properties, and their weights. These pa-
rameters have not been fully considered in the past. 

The main aim of this study was to develop a comprehensive and systematic method-
ology for determining flood risks considering all hazard and vulnerability parameters and 
their weights using flood simulation models, questionnaire surveys, and the analytic hi-
erarchy approach (AHP) [24,25]. The computational framework is given in Section 3 on 
the research structure and methodology. 

The comprehensive and systematic methodology developed in this study is the main 
contribution, as it will be an essential foundation for properly assessing flood hazard, vul-
nerability, and flood risk in the future. 

Hence, the objectives of this study were as follows: 
(a) To simulate floods in the Upper Nan River and its floodplain in the municipal area 

of Nan Province; 
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Extreme flood events can be more harmful to people living in the floodplain areas [11].
Another important consequence of floods is damage to physical infrastructures such as
bridges, main roads, public buildings, and service facilities [12–14]. This type of structural
damage is often defined as the amount of money needed to repair or rebuild. On the other
hand, damages to populations and their household properties are related to socioeconomic
conditions [15,16]. From flood hazard and flood vulnerability, flood risk can be determined,
and flood risk maps can be constructed for various return periods for flood mitigation
planning and management. A flood risk map can be helpful for land-use planning and
management, reducing flood damage and saving human lives, agricultural products, and
private and public properties.

Previous studies [17–23] considered flood hazard as a function of flood depth only
or flood depth and velocity. This study considered all parameters including flood depth,
velocity, inundation duration, and their weights. For the total vulnerability at the household
level, this study considered all parameters including the sensitivity of the population,
adaptive capacity, exposure of household properties, and their weights. These parameters
have not been fully considered in the past.

The main aim of this study was to develop a comprehensive and systematic method-
ology for determining flood risks considering all hazard and vulnerability parameters
and their weights using flood simulation models, questionnaire surveys, and the analytic
hierarchy approach (AHP) [24,25]. The computational framework is given in Section 3 on
the research structure and methodology.

The comprehensive and systematic methodology developed in this study is the main
contribution, as it will be an essential foundation for properly assessing flood hazard,
vulnerability, and flood risk in the future.

Hence, the objectives of this study were as follows:

(a) To simulate floods in the Upper Nan River and its floodplain in the municipal area of
Nan Province;

(b) To develop a comprehensive and systematic methodology to determine flood hazard,
flood vulnerability, and flood risk in a municipal area at the household level;

(c) To apply the developed methodology to assess flood hazard, flood vulnerability, and
flood risk at the household level in the Nan Municipality area considering floods of
various return periods;
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(d) To analyze and discuss the consequences of flood hazard, vulnerability, and flood risk
on local residents and the physical environment.

2. Study Area

The Upper Nan River Basin in Northern Thailand has a drainage area of
8709.50 km2 [26]. Its main drainage way is the Nan River. It has an annual average
temperature of 26.3 ◦C, relative humidity of 75.9%, wind speed of 0.9 knots, evaporation of
1457.4 mm, and rainfall of 1371 mm.

The basin drainage area from the river gauging station (N1) at Nan Province up to its
headwater boundary of the river basin has an area of 5663 km2 [27]. Another river gauging
station upstream of station N1 is the Tha Wang Pha station (N64). The basin study area is
subdivided into five sub-basins, namely, Upper Nan, Nam Yao (W), Nam Yao (E), Nam
Samun, and Nam Nan part-2 as shown in Figure 2 [28].
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These five sub-basins contribute runoff to the Nan River which flows from north to
south through Nan’s municipal area of 7.6 km2 on the right bank of the Nan River as
shown in Figure 3. The municipal area is an urban area that has 31 villages that are mainly
residential. The Nan River flows through the municipal area for a distance of 7 km. In this
river reach, overbank flow occurs frequently during high flood periods. The municipal
area has flooded often in the past. Large flood inundations occurred in 2006 [29] and 2011
due to the fact of heavy tropical storms [30]. Considerable flood damages and casualties
were reported in both years.
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3. Research Structure and Methodology
3.1. Research Structure

The research structure and methodology of this study is well described in Figure 4.
The research structure has two parallel paths: Path A for flood hazard estimation and Path
B for vulnerability estimation. The flow of work in Path A is from Block A.1 to Block A.4 as
shown in the figure. The flow of work in Path B is from Block B.1 to Block B.9. The output
of Block A.1, or flood hazard, and the output of Block B.9, or vulnerability, are multiplied
to obtain the flood risk as shown in Block C near the bottom of the figure. The flood risk
maps are constructed, as shown in Block D, based on the computed flood risk in Block C.
From here onward, flood risk analysis and assessment were carried out to obtain a risk
reference for further evaluation of risk reduction of proposed flood control measures. The
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methodology for the computational flood hazard, vulnerability, and flood risk analysis is
described in detail in the following section.

Water 2022, 14, 161 FOR PEER REVIEW 5 of 30 
 

 

measures. The methodology for the computational flood hazard, vulnerability, and flood 
risk analysis is described in detail in the following section. 

 

 

    C. Computation of flood risk by Equation 11  for return periods  
of 10, 50, 100 and 500 years in the municipality study area 

B.9. Construction of total vulnerability 
map in the floodplain municipality area 
for 30 m by 30 m grids 

B.8. Computation of total flood vulnerability 
index of each village using Equations 3 and 4 

B.7. Computation of 
household vulnerability of 
each village, Equations 5–
10

B.6. Computation of  
household sensitivity, 
adaptation and exposure 

B.3. Computation of 
population vulner-
ability of each village  

B.1.Collection of 
population data of 
each village in the 
study area  

A.Setting up HEC-HMS hydrologic model and 
HEC-RAS hydrodynamic model for flood 
simulation 

B. Establishing  Equations 3 and 4 for 
estimation of total vulnerability 

D. Construction of flood risk maps in the municipality study area  for all return periods 
for flood risk assessment 

B.2.Computation of 
population density 
of each village 

B.5. Collection of 
household socio-economic 
& adaptation data of each 
village   

 A.3. Computation of flood depth, 
velocity, duration and compute flood 
hazard using Equations 1 and 2 for 
return periods of 10, 50, 100 and 500 

A.2. Calibration of HEC-RAS model to 
simulate flood depth, flood velocity, 
flood duration in Nan River at station 
N1 and its floodplain area in 2006-
2011 and verification in 2012-2017  

 A.4. Construction of  hazard maps in the floodplain 
municipality area based on 30 m by 30 m grids for all 
return periods 

A.1.  Calibration of HEC-HMS model 
to simulate flood runoff of Nan 
River basin at Station N1, Nan River 
in 2006-2011 and verification in 
2012-2017  

B.4. Establishing 
Equations 5–10 for 
computing household 

Path A: Method of flood hazard 
estimation 

Path B: Method of  total vulnerability 
estimation  

 
Figure 4. Methodology and computational procedure for calculation of the flood hazard, flood dam-
age vulnerability, and flood risk at the household level in the municipal study area. 

Figure 4. Methodology and computational procedure for calculation of the flood hazard, flood
damage vulnerability, and flood risk at the household level in the municipal study area.



Water 2022, 14, 161 6 of 28

3.2. Methodology
3.2.1. Determination of Flood Hazard

The flood hazard index (FHI) is expressed by Equation (1) in which FHIT is the flood
duration index, FHID is the flood depth index, and FHIV is the flood flow velocity index.
The symbols α, β, and µ are their weighting factors, respectively.

FHI = α FHIT + β FHID + µ FHIV (1)

where
α+ β+ µ = 1 (2)

The values for FHIT, FHID, and FHIV are determined according to the specified
ranges of the computed flood duration, flood depth, and flood velocity in the study area as
shown in Table 1. The computed flood duration is classified into five ranges: very low, low,
medium, high, and very high as shown in Table 1. The corresponding FHIT of each class is
specified as 1, 2, 3, 4, and 5, respectively. The same method is applied to the FHID and FHIV.
The sum of the weights α, β, and µ is equal 1. The weights α, β, and µ are determined using
the analytic hierarchy process (AHP) of multi-criteria decision analysis [24,25,31–33] based
on field and questionnaire surveys. The details of determining α, β, and µ by using AHP is
explained in the Appendix A. Finally, the hazard level of FHI is specified as very low when
FHI ≤ 1, low when 1 < FHI ≤ 2, medium when 2 < FHI ≤ 3, high when 3 < FHI ≤ 4, and
very high when 4 < FHI ≤ 5.

Table 1. Classification of flood hazard parameters, hazard levels, and hazard indices.

Hazard Parameters Hazard Level Hazard Index

Flood Duration, T (h) FHIT

T ≤ 60 Very Low 1
60 < T ≤ 100 Low 2
100 < T ≤ 120 Medium 3
120 < T ≤ 140 High 4

140 < T Very High 5

Flood Depth, D (m) FHID

D ≤ 0.60 Very Low 1
0.60 < D ≤ 2.00 Low 2
2.00 < D ≤ 2.25 Medium 3
2.25 < D ≤ 2.50 High 4

2.50 < D Very High 5

Flood Velocity, V (m/s) FHIV

V ≤ 0.10 Very Low 1
0.10 < V ≤ 0.50 Low 2
0.50 < V ≤ 0.60 Medium 3
0.60 < V ≤ 0.70 High 4

0.70 < V Very High 5

3.2.2. Determination of Total Flood Damage Vulnerability

The total flood damage vulnerability index (FVI) for each village is calculated as the
sum of the weighted flood vulnerability index of the population, FVIpop, and the weighted
flood vulnerability index of households, FVIhh. The total vulnerability index (FVI) of each
village is calculated by the following equations:

FVI = wpop FVIpop+whhFVIhh (3)

wpop+whh = 1 (4)
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The weights wpop and whh are determined using AHP. The level of total vulnerability
FVI is specified as very low when FVI ≤ 1, low when 1 < FVI ≤ 2, medium when 2 < FVI ≤ 3,
high when 3 < FVI ≤ 4, and very high when 4 < FVI ≤ 5.

In determining FVIpop, population vulnerability, VIpop, is represented by population
density (person/km2) and is classified into five ranges in ascending order as given in
Table 2. These five ranges are represented by the integer numbers 1, 2, 3, 4, and 5 for the
index FVIpop: very low, low, medium, high, and very high respectively. The household
vulnerability index, FVIhh, is determined by the value of the household vulnerability. VIhh
and its ranges according to Table 2. The VIhh of the household samples is expressed as a
function of three major contributing factors, namely: sensitivity F1, adaptive capacity F2,
and exposure F3 according to the following equation:

VIhh = [w3F3 − w2F2]w1F1 (5)

w1 + w2 + w3 = 1 (6)

where w1, w2, and w3 are the weights of F1, F2, and F3, respectively. The major contributing
factors F1, F2, and F3 are defined in [24,25]. Equation (5) was developed in this study based
on the original equation in [34–36] by including the weights w1, w2, and w3 in Equation (5).
The weighting factors w1, w2, and w3 were introduced to normalize the relative importance
of F1, F2, and F3. The values of w1, w2, and w3 were determined by the AHP using data
from collected samples of questionnaires and field surveys. Equation (6) requires that the
sum of the weighting factors w1, w2 and w3 is equal to one.

Table 2. Classification of population vulnerability, household vulnerability, vulnerability levels,
and indices.

Range of Population Vulnerability,
VIpop (Person/km2) Vulnerability Level FVIpop Index

VIpop ≤ 1000 Very Low 1
1000 < VIpop ≤ 2000 Low 2
2000 < VIpop ≤ 3000 Medium 3
3000 <VIpop ≤ 4000 High 4

4000 < VIpop Very High 5

Range of Household
Vulnerability, VIhh (Equation (5)) VulnerabilityLevel FVIhh Index

VIhh ≤ 22.6 Very Low 1
22.6 < VIhh ≤ 29.2 Low 2
29.2 < VIhh ≤ 35.8 Medium 3
35.8 < VIhh ≤ 42.4 High 4

42.4 < VIhh Very High 5

Each major contributing factor is divided into various components in which each
component is further classified into sub-classes. An impact score is assigned to each class,
as shown in Table 3, according to the influence or impact of the class on its component.
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Table 3. Major contributing factors of household vulnerability and their components in Phumin-Thali village.

Major Con-tributing
Factors Fi in Equations (5)
and (6)

Weights Wi of Fi in
Equations (5) and (6)

Components
Ci of Factor Fi in Equation (7)
& Definitions

Classification of Component
Ci in Equation (7) into j
Classes and Their Ranges

% of Total Collected
Samples

Impact Score Kj of
Class j in % in
Equation (8)

Weights
θi of Ci in Equations
(8) and (9)

Remarks on Definition of Each
Class of Ci

F1 =
Sensitivity W1 = 0.26

C1 = family size
Class 1 = family members > 5;
Class 2 = members between 3–5;
Class 3 = less than 3

Q1 = 16.7
Q2 = 33.3
Q3 = 66.7

100
67
33

θ1 = 0.386 Larger family is more sensitive
to flooding

C2 = gender of householder Class 1 = female;
Class 2 = male

Q1 = 33.3
Q2 = 66.7

100
40 θ2 = 0.193 Female is more sensitive to

flooding than male

C3 = health of householder

Class 1 = very poor;
Class 2 = poor;
Class 3 = good;
Class 4 = very good

Q1 = 0
Q2 = 16.7
Q3 = 50.0
Q4 = 33.3

100
75
50
25

θ3 = 0.129 Very poor health person is most
sensitive to flooding

C4 = land use type
Class 1 = houses + orchards;
Class 2 = houses + shops;
Class 3 = houses only

Q1 = 0
Q2 = 50
Q3 = 50

100
67
33

θ4 = 0.055
House + orchard land is most
vulnerable and most sensitive
to flooding

C5 = household damages, THB

Class 1 = damages >10,000;
Class 2 = damages 5000–10,000;
Class 3 = damages <5000;
Class 4 = no damage

Q1 = 0
Q2 = 33.3
Q3 = 16.7
Q4 = 50.0

100
75
50
25

θ5 = 0.096
Household with higher damage
potential is more sensitive
to flooding

C6 = public damages (THB/m2)

Class 1 = damages >750;
Class 2 = damages 750–501;
Class 3 = 501–250;
Class 4 = less than 250

Q1 = 0
Q2 = 100
Q3 = 0
Q4 = 0

100
75
50
25

θ6 = 0.077
Public property of higher
damages is more sensitive
to flooding

C7 = household ownership Class 1 = owner;
Class 2 = tenant

Q1 = 66.7
Q2 = 33.3

100
0 θ7 = 0.064 Owners are more sensitive to

flooding than tenants

F2 =
Adaptive Capacity W2 = 0.11

C1 = education level
of householder

Class 1 = university;
Class 2 = higher secondary;
Class 3 = secondary;
Class 4 = primary;
Class 5 = illiterate

Q1 = 16.7
Q2 = 33.3
Q3 = 0
Q4 = 50.0
Q5 = 0

100
80
60
40
20

θ1 = 0.129 Higher educated person has more
adaptive capacity to flooding

C2 = type of employment
of householder

Class 1 = Govt. officer;
Class 2 = private worker;
Class 3 = agriculture;
Class 4 = daily wage
Class 5 = unemployed

Q1 = 16.7
Q2 = 0
Q3 = 0
Q4 = 83.3
Q5 = 0

100
80
60
40
20

θ2 = 0.096 Government officer has highest
adaptive capacity to flooding

C3 = householder income
(THB/month)

Class 1 = income >25,000;
Class 2 = income 25,000–20,001;
Class 3 = 20,000–15,001;
Class 4 = 15,000–10,001;
Class 5 = 10,000–5001;
Class 6 = less than 5000

Q1 = 16.7
Q2 = 16.7
Q3 = 0
Q4 = 16.7
Q5 = 16.7
Q6 = 33.3

100
83
67
50
33
16.7

θ3 = 0.386
Householder with higher income
has more adaptive capacity
to flooding

C4 = household saving deposit Class 1 = yes;
Class 2 = no

Q1 = 100
Q2 = 0

100
0 θ4 = 0.193 Household with saving deposit

has more adaptive capacity

C5 = flood insurance Class 1 = yes;
Class 2 = no

Q1 = 0
Q2 = 100

100
0 θ5 = 0.055 Household with flood insurance

has more adaptive capacity
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Table 3. Cont.

Major Con-tributing
Factors Fi in Equations (5)
and (6)

Weights Wi of Fi in
Equations (5) and (6)

Components
Ci of Factor Fi in Equation (7)
& Definitions

Classification of Component
Ci in Equation (7) into j
Classes and Their Ranges

% of Total Collected
Samples

Impact Score Kj of
Class j in % in
Equation (8)

Weights
θi of Ci in Equations
(8) and (9)

Remarks on Definition of Each
Class of Ci

F2 =
Adaptive Capacity W2 = 0.11

C6 = land price
(THB/m2)

Class 1 = land price >7500
Class 2 = 7500–5001;
Class 3 = 5000–2501;
Class 4 = 1–2500

Q1 = 0
Q2 = 0
Q3 = 100
Q4 = 0

100
75
50
25

θ6 = 0.064
Household in high price land is
richer and has more adaptive
capacity

C7 = flood notification Class 1 = yes;
Class 2 = no

Q1 = 100
Q2 = 0

100
0 θ7 = 0.077 People with flood notification

have more adaptive capacity

F3 =
Exposure W3 = 0.63

C1 = distance from river, m

Class 1 = distance <500,
Class 2 = 501–1000;
Class 3 = 1001–1500;
Class 4 = 1501–2000;
Class 5 = more than 2000

Q1 = 100
Q2 = 0
Q3 = 0
Q4 = 0
Q5 = 0

100
80
60
40
20

θ1 = 0.408 Area at shorter distance to river is
more exposed to flooding

C2 = ground elevation, m

Class 1 = elev. 190–195,
Class 2 = 196–200,
Class 3 = 201–205,
Class 4 = 206–210,
Class 5 = elev.211–215

Q1 = 100
Q2 = 0
Q3 = 0
Q4 = 0
Q5 = 0

100
80
60
40
20

θ2 = 0.204 Area with lower elevation is more
exposed to flooding

C3 = inundation depth in
2011, m

Class 1 = depth >2.0;
Class 2 = 1.1- 2.0;
Class 3 = 0.1–1.0;
Class 4 = less than 0.1

Q1 = 0
Q2 = 83.3
Q3 = 16.7
Q4 = 0

100
75
50
25

θ3 = 0.102 Area having larger inundation
depth is more exposed to flooding

C4 = flood velocity in
2011, ms−1

Class 1 = velocity >2.0;
Class 2 = 1.1–2.0;
Class 3 = 0.1–1.0;
Class 4 = less than 0.1

Q1 = 16.7
Q2 = 50
Q3 = 33.3
Q4 = 0

100
75
50
25

θ4 = 0.082
Area having higher flood flow
velocity is more exposed
to flooding

C5 = duration of inundation in
2011, days

Class 1 = duration > 7;
Class 2 = 3.5–7;
Class 3 = 0.5–3.5;
Class 4 = less than 0.5

Q1 = 0
Q2 = 50
Q3 = 50
Q4 = 0

100
75
50
25

θ5 = 0.136 Area having longer flood duration
is more exposed to flooding

C6 = number of flooding events
in 2011

Class 1 = 3 flooding events or
more;
Class 2 = 2 flooding events;
Class 3 = 1 flooding event;
Class 4 = none

Q1 = 0
Q2 = 33.3
Q3 = 66.7
Q4 = 0

100
75
50
25

θ6 = 0.068
Area having more frequent
flooding is more vulnerable
to flooding
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For example, the sensitivity F1 is further classified into 7 contributing components
C1–7 in which C1 = family size, C2 = gender, C3 = health, C4 = land use type, C5 = household
damage, C6 = public property damages, and C7 = ownership of household. The sensitivity
F1 is computed as:

F1 =∑n=7
i=1 Ci (7)

where Ci is the ith contributing component of the sensitivity factor F1, and n = 7 is the total
number of the component Ci of F1.

Each contributing component Ci of F1 is computed as:

Ci = θi

m

∑
j=1

QjKj (8)

∑n=7
i=1 θi= 1 (9)

where the weight θi of Ci is determined by AHP based on the collected samples from
questionnaires and field surveys; m is the number of classes of the collected samples for
the component Ci, arranged from the highest to the lowest significance of vulnerability;
Qj is the number of samples of class j as a percentage of the total collected samples of all
classes; Kj is the assigned impact score of the class j between 0% and 100%. A score of 100%
is assigned to the class that has the highest impact on vulnerability. More details regarding
the calculation are given in the next section on the computational procedure.

The component C1 for F1 is calculated as follows:

C1= θ1

3

∑
j=1

QjKj (10)

where Qj is the number of family samples in the jth class with the assigned impact score Kj,
and θ1 is the weight of C1 to be determined by AHP.

The same overall procedure described above is applied to the other two major con-
tributing factors, namely: adaptation F2 and exposure F3. For the adaptation capacity F2,
there are seven components as shown in Table 3, namely: education level of householders,
their employment, household income, saving deposit, insurance for flood events, land
price, and notification of flood events.

The exposure F3 in Table 3 is composed of six major components, namely: the distance
from the river, ground elevation, the inundation depth in 2011, the flood velocity in 2011,
the duration of inundation in 2011, and the number of flooding events in 2011. The year
2011 was the only year that flood inundation data in the study area were available. The
exposure factor F3 was calculated based on the sum of its weighted components in which
the weights were determined using AHP.

After obtaining the values of the three major contributing factors, namely, sensitivity
F1, adaptation F2, and exposure F3, they were substituted into Equation (5) to calculate
household vulnerability, VIhh. The computed household vulnerability, VIhh, of each village
was fitted into the five classified ranges: very low, low, medium, high, and very high as
shown in Table 2. Then, the value of FVIhh corresponding to VIhh was represented by an
integer number from 1 to 5 according to Table 2.

Finally, the vulnerability indices of population density, FVIpop, and of household
FVIhh were substituted into Equation (3) to compute the total vulnerability, VI.

Each village area occupies many grids of 30 by 30 m, which are used in calculating the
flood hazard. As the grid size is relatively much smaller than the area of each village, all the
grids in the same village are considered to have the same value of the total vulnerability, FVI.
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3.2.3. Determination of Flood Risk

By using the same grids for hazard and vulnerability, the flood risk index, FRI, for
each grid in the study area was computed as the product of the FHI and the total flood
damage vulnerability index, FVI. The flood risk index (FRI) is calculated as:

FRI = FHI × FVI (11)

Equation (11) does not explicitly include exposure. This is different from the equation
given in [16], which includes exposure. In this study, exposure data were collected from
the questionnaires and field surveys as shown in Table 3. This exposure term, F3, was
considered in Equation (5) when calculating household vulnerability, Vhh, and the total
vulnerability, FVI. The computed values of the FRI were classified into five ranges corre-
sponding to very low for 1 < FRI ≤ 5, low for 5 < FRI ≤10, medium for 10 < FRI ≤ 15, high
for 15 < FRI ≤ 20, and very high for 20 < FRI ≤ 25.

3.3. Data Collection
3.3.1. Hydrological Data

For the hydrological model simulation and the hydrodynamic model simulation, the
hourly hydro-meteorological data from four stations (i.e., 331201, 331301, 331401, and
331402), as shown in Figure 2, and the daily river discharge and water level data at two
stations at N1 (Nan) and N64 (Tha Wang Pha) were collected from the regional offices of the
Thai Meteorological Department and of the Royal Irrigation Department (RID), Thailand.
The river cross-sections, floodplain geometry, land topography, and DEM were collected
from the Nan Provincial Office, the Regional Office of the Royal Irrigation Department (RID),
and from the Geo-Informatics and Space Technology Development Agency (GISTDA).

3.3.2. Vulnerability Data

The following data were collected for the analysis: (a) land-use maps in the Nan River
Basin from the Land Development Department (LDD); (b) population data and household
flood damage and public infrastructure damage date in Nan Municipality from the Nan
Provincial Administration; (c) socioeconomic and household data were collected from field
and questionnaire surveys in the study area. The number of household samples collected
for the questionnaire survey was estimated using Yamane’s equation [37]:

n =
N

1 + Ne2 (12)

where n is the number of household samples; N is the total number of households in the
study area, which was 6310; e is the allowable error taken equal to 10%. The value of n was
calculated and found to be approximately 100.

3.4. Computational Procedure
3.4.1. Computation of Flood Hazard

The HEC-HMS rainfall–runoff model and the HEC-RAS flood routing model are con-
nected as shown in Figure 5 in computing flood discharges and depths. The computational
procedure is as follows:
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(a) Rainfall–runoff computation: The HEC-HMS rainfall–runoff model [38] was applied
to compute the runoff hydrograph using hourly rainfall input at four stations in the
Upper Nan Basin. The hourly rainfalls at the four stations were averaged over the
basin area using the Thiessen polygon method. The river basin was divided into
seven sub-basins in which the hourly average rainfalls were used in each sub-basin.
The computed runoff was used as the upstream boundary condition of the HEC-RAS
flood routing model [39]. The HEC-HMS model requires a digital elevation model
(DEM), soil and land-use maps, soil characteristics, and input rainfall hyetographs.
The HEC–Geo HMS model, which is an extension of HEC-HMS, prepares raster layers
of delineated sub-basins and river network systems for exporting to HEC-HMS as
base maps. By inputting rainfall data, land cover, and soil maps to HEC-HMS, the
model computes daily runoff hydrographs for each sub-basin. The HEC-HMS model
was calibrated and verified against the observed daily discharges at station N64 at
Tha Wang Pha and at station N1 at Muang Nan. The calibration period was during the
wet period from June to December 2006–2011, and the verification period was from
June to December 2012–2017. In the model calibration, the model parameters, such as
initial and maximum storages of canopy, SCS curve number, time of concentration,
and lag of unit hydrograph, were assumed and adjusted by trial and error to obtain a
satisfactory agreement between the observed and computed discharge hydrographs;

(b) Flood routing computation: The 1D and 2D HEC-RAS flood routing model [39]
for the Upper Nan River and its floodplain were used to route the runoff from the
upstream station N1 along the Nan River to the downstream end station, which is
7 km downstream of station N1. The river passes through the municipal area, which
is in the river floodplain. The geometrical inputs to HEC-RAS were the measured
river cross-sections every 1.2 km and the floodplain topography from the digital
elevation model with a 30 by 30 m resolution with a 1 m contour interval. The river
cross-sections from the field measurements and the floodplain topography from the
DEM were merged using HEC-GEO RAS, an extension of HEC-RAS, to obtain the
complete river and floodplain cross-sections [40]. This geometry data was input into
HEC-RAS for flood flow simulation. In the HEC-RAS model, the 1D flow routing
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procedure was used to compute the 1D flow in the Nan River, and the 2D flow routing
was used to compute the 2D flow in the floodplain;

(c) The hydrological inputs to HEC-RAS were the observed daily upstream discharge at
station N1 as the upstream boundary condition. At the downstream end of the model,
there was no river gauging station; thus, a depth–discharge relationship according to
the Manning equation was used. The model was calibrated and verified by trial-and-
error adjustment based on the values of the Manning roughness coefficient n;

(d) Calculation of flood hazard index: The FHI was computed for each grid of 30 × 30 m
in the municipality’s floodplain area using Equation (1). The flood duration index
(FHIT), the depth index (FHID), and the velocity index (FHIV) were determined by
using the results of the HEC-RAS model and the classification in Table 3. As shown in
Figure 4, for Blocks A.1 to A.4, the computed FHID, FHIV, and FHIT were substituted
into Equation (1) to compute the FHI. The hazard weighting factors α for flood
duration, β for flood depth, and µ for flood velocity in Equation (1) were determined
using AHP [24,25].

3.4.2. Computation of Total Vulnerability

As shown in Figure 4, for Blocks B.1 to B.8, the total vulnerability of the study area
was computed as a function of the vulnerability of the population and the vulnerability of
households. According to Equations (3) and (4), the total vulnerability is equal to the sum of
the weighted vulnerability of the population and the weighted vulnerability of households.
The weights of the vulnerability of the population and of household vulnerability were
determined using AHP based on the questionnaire surveys.

The vulnerability of the population of each village was computed from the population
density (number of persons/km2) of each village from census data. For the household
vulnerability, VIhh, each major contributing factor of VIhh was composed of a number of
components in which each component was further subdivided into classes with assigned
impact scores. For example, the major contributing factor F1, or sensitivity, had seven
components (C1–7), namely: family size, gender, health, land-use type, household damage,
public damage, and household ownership as shown in Table 3. An example of calculating
the component C1 or family size of F1 in Table 3 for Phumin-Thali village is given here.
The family size was subdivided into three classes: class 1 for households with more than
five family members; class 2 for between three and five family members; class 3 for fewer
than three family members. The impact scores of 100%, 67%, and 33% were assigned to
each family class according to the information from local residents on vulnerability to
their families. A score of 100% was assigned to class 1, because it is most sensitive to
vulnerability. The number of collected household samples in Phumin-Thali village was six.

The component C1 of the major contributing factor F1 was classified into three classes
(m = 3). In class 1 (j = 1), the number of the families was equal to one. Hence, Q1 was equal
to 16.67% of the total collected samples of six, and the impact score K1 was assigned to be
100%. In class 2 (j = 2), the number of families was equal to two or Q2 = 33.33% and assigned
K2 = 67%. In class 3 (j = 3), the number of families was three or Q3 = 50% and K3 = 33%.
The weighting factor θ1 of the sensitivity factor F1 was determined by AHP and equal to
0.386. This is shown at the beginning of Table 3. Knowing Q1, Q2, Q3, K1, K2, K3, and θ1,
the value of the component C1 of F1 is equal to θ1 (Q1K1 + Q2K2 + Q3K3)/100 = 21.41%.

The same procedure was repeated for the remaining classes 2 and 3 of the component
C1 of the factor F1 as shown in Table 3. In this way, the components C1–7 were calculated
using Equation (8) and summed to obtain the major contributing factor F1 according to
Equation (7).

The same overall procedure was repeated for the major contributing factors F2
and F3. Hence, the total vulnerability, VI, and its index, FVI, was determined from
Equations (3) and (4).
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3.4.3. Computation of Flood Risk

As shown in Figure 4, the FRI was computed as the product of the FHI and the FVI.
The distribution of flood risk over the municipal area can be represented by a flood risk
map of grids of 30 by 30 m resolution. The maps of flood hazard and risk of a spatial
resolution of 30 × 30 m were constructed for 10, 50, 100, and 500 year return periods. The
flood risk index of each grid for each return period was classified into five levels of equal
intervals, namely: very low for 1 < FRI ≤ 5, low for 5 < FRI ≤ 10, medium for 10 < FRI ≤ 15,
high for 15 < FRI ≤ 20, and very high for 20 < FRI ≤ 25.

4. Results
4.1. Calibration and Verification of the HEC-HMS Rainfall–Runoff Model and HEC-RAS Flood
Routing Model

The HEC-HMS rainfall–runoff model, which covers the Upper Nan River Basin area
from its headwater to the model outlet at the gauging station N1, was calibrated and verified
against the observed daily discharges at gauging stations N64 at Tha Wang Pha and N1 at
Mueang Nan. The calibration period was during the wet period from June to December
in 2006–2011, and the verification period was from June to December in 2012–2017. In the
model’s calibration, the model parameters, such as initial and maximum storages of canopy,
SCS curve number, time of concentration, and lag of unit hydrograph, were assumed
based on previous studies [21,40] and adjusted by trial and error to obtain a satisfactory
agreement between the observed and computed discharge hydrographs (Figure 6). The
model’s performance was evaluated using the following statistical parameters, namely:
coefficient of determination (R2), Nash–Sutcliffe efficiency (NSE), percent bias (PBIAS),
volume ratio (Vr), and normalized root mean square error (NRMSE). The results of the
model’s calibration at stations N64 and N1 were found to be satisfactory with coefficients
of determination of 0.72 and 0.76; Nash–Sutcliffe efficiencies of 0.67 and 0.64; percent biases
of 15.78 and 15.11; volume ratios of 0.95 and 0.89; normalized root mean square errors of
12.29% and 14.36%, respectively. The statistics showed acceptable agreement in both the
model’s calibration and verification.

The HEC-RAS flood routing model covers the Nan River reach from the river gauging
station N1 to the downstream end station 7 km downstream and its floodplain in the
municipal area. The model was calibrated by comparing the computed and observed
daily water levels at station N1 during the peak flood periods in 2006–2011, while in the
floodplain, there was no water level data. According to [41], the Manning roughness
coefficient n of 0.03 was initially assumed for the river and its floodplain in the calibration.
The assumed Manning roughness coefficients were adjusted by trial and error and were
found to be 0.032 for the river and 0.035 for the floodplain. These Manning n values
matched with the roughness condition of the river channel and its floodplain, which is
moderately rough according to [9]. The model was verified with the observed flood water
levels at the river gauging station N1 during the flood periods in 2012–2017. The values of
the performance statistics of both the model’s calibration and verification were as follows:
coefficient of determination of 0.97 and 0.95; Nash–Sutcliffe efficiencies of 0.89 and 0.80;
percent biases of 24 and 38; volume ratios of 1.0 and 1.0; normalized root mean square errors
of 7.36% and 11.16%, respectively. The statistics showed acceptable agreement for both
the model’s calibration and verification. The computed maximum flood water levels and
discharges in the municipality’s floodplain area downstream of station N1 were compared
with the measured high-water marks. The model was successfully calibrated and verified
as shown in Figure 7.
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The results of the calibration and verification of the HEC-RAS model for the river flow
during flood peak periods are shown in Figure 7. As shown in the results, the performance
statistics showed acceptable agreement for both the model’s calibration and verification.
The comparison of the computed and observed inundation depths of high-water marks in
the floodplain at the three locations, namely, Phuang-Payom, Phumin-Thali, and Mueang
Len, were found to be satisfactory with percentage errors of 6.7, 6.3, and 9.1, respectively.
This assures the accuracy of the model simulation in the floodplain.

The HEC-RAS model was applied to calculate the flood duration, flood depth, and
flood velocity in the municipality’s floodplain area for the flood return periods of 10, 50,
100, and 500 years. It was found that the computed flood duration, T, varied from 74 to
151 h; the flood inundation depth, D, from 1.5 to 2.97 m; the flood flow velocity, V, from
0.34 to 0.81 ms−1.

From the results of the HEC-RAS model, flood hazard maps of the municipal area for
the return periods of 10, 50, 100, and 500 years were constructed as shown in Figures 8 and 9
respectively.

4.2. Flood Hazard

In Equation (1), the flood duration index (FHIT), flood depth index (FHID), and flood
velocity index (FHIV) were computed based on the results of the HEC-RAS model and the
criteria in Table 2. They were substituted into Equation (1) to compute the FHI.

The hazard weighting factors α for flood duration, β for flood depth, and µ for flood
velocity in Equation (1) were determined by AHP [24,25] as described in the Appendix A.
It was found that weight α was 0.63 for the flood duration, β was 0.26 for the flood depth,
and µ was 0.11 for the flood velocity. The sum of the three weights was equal to unity
according to Equation (2).

The values of the FHI of each grid was computed for floods in the return periods of
10, 50, 100, and 500 years. In the municipal area of 7.6 km2, the total flooded area for the
100 year return period was found to be 1,614,545 km2, or 21.24% of the study area. The
remaining part of the study area had no flood inundation. According to the ranges of
classification, the hazard index of the flooded area of 1,614,545 km2 was classified into a very
high hazard area of 307,638 km2, or 19.05% of the study area; a high hazard of 25,622 km2,
or 1.59%; a medium hazard of 68,432 km2, or 4.32%; a low hazard of 1,014,760 km2, or
62.85%; a very low hazard of 198,094 km2, or 12.26%. The high and very hazardous areas
were in Phumin-Thali village in the south of the study area, and another major flooding
location was in the area of Suriyapong Camp in the north of the study area.

4.3. Total Flood Vulnerability

The total vulnerability index, FVI, was determined for each village using
Equations (3) and (4). The computed population vulnerability index, FVIpop, and the
computed household vulnerability index, FVIhh, were substituted into Equation (3). The
weights wpop for population vulnerability and whh for household vulnerability were de-
termined using AHP based on the data collected from the Nan Municipality and from the
questionnaire survey. The weights wpop and whh were found to be 0.33 and 0.67, respec-
tively. This shows that the household vulnerability, FVIhh, has much more influence on the
total vulnerability, FVI, than the population vulnerability, FVIpop.

The computed total vulnerability index, VI, was further classified into five ranges of
equal intervals corresponding to the index values FVI of 1, 2, 3, 4, and 5 and named very
low, low, medium, high, and very high, respectively, as shown in Table 2. Figure 10 shows
the vulnerability level of different villages in the municipal area.
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As shown in Figure 10, it was found that the areas along the right bank (west bank) of
the Nan River and in the southern part near Phumin-Thali village were highly vulnerable
and highly sensitive to floods compared to the other parts of the municipality.

From the computed total vulnerability index, FVI, of each village, it is found that
10 villages, namely, Chiang Kang, Phumin-Thali, Pouang Phrayom, Phra Nate, Mueang
Len, Tha Chang, Don Khwan, Huea Khaung, Phrayaphu, and Don Sri Saim, located near
the Nan River and its tributary Chao Fa canal have very high flood vulnerability.

4.4. Flood Risk

In calculating the flood risk, the municipal area was divided into grids of 30 by 30 m.
In each village in the municipality, the hazard varied from one point to another depending
on the flood conditions and topography. For the total vulnerability, it was considered to
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be the same everywhere, as the village was the smallest unit in the questionnaire survey.
The computed FRI for all grids in the same village was classified into five levels with equal
intervals, namely: very low for 1 < FRI ≤ 5, low for 5 < FRI ≤ 10, medium for 10 < FRI ≤ 15,
high for 15 < FRI ≤ 20, and very high for 20 < FRI ≤ 25. The maps of the computed flood
risks for the 100 and 500 year return periods are shown in Figures 11 and 12 respectively.
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From the maps, it was found that the risk level and inundation area increased sig-
nificantly by four times for the return period from 100 to 500 years. In Figures 11 and 12,
the highest risk areas consistently appear in the most southern part of the municipal area,
near to the wastewater treatment plant, where the Phumin-Thali and Phuang-Payom vil-
lages are situated. There, the ground elevation is low; flood depth and flood duration
are large; the population density and number of household properties are high. For the
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100 year return period, more than half of the two villages are projected to be inundated and
heavily damaged.

These two villages have the highest total vulnerability and highest hazard. Other
locations with the highest or at high risk are along the right bank of the Nan River, es-
pecially in the northeastern part of the municipal area around Mueang Len village and
Suriyapong Camp. The medium- and low-risk areas are in the inner part of the municipality
approximately 1 or 2 km away from the riverbank. In the central part of the municipal area
and in the northwestern part, the flood risk is very low or none, due to the fact of their
higher ground elevations.

5. Discussions

Globally, the costs of flood losses and corresponding adaptations are generally pre-
liminary and subject to a number of assumptions. Uncertainties are largely due to the fact
of projected climate changes and estimation of flood damages as well as methodological
shortcomings [42]. Options for adaptation measures and assumptions of vulnerability and
exposure under various scenarios of socioeconomic conditions and physical environments
are important factors in changes of flood risks. An attempt to overcome these shortcomings
in risk assessments was conducted in the present study by developing a comprehensive
and systematic method for flood risk assessment at the household level and to demonstrate
its application in a municipal area of Nan Province in Thailand.

The discussion of the results of this study is as follows:

1. The performance of the HEC-HMS model was evaluated using the following statistical
parameters, namely: R2, NSE, PBIAS, Vr, and NRMSE. The results of the model’s
calibration at stations N64 and N1 were found to be satisfactory as shown in the
results, and. the performance statistics showed acceptable agreement in both the
model’s calibration and verification;

2. The comparison of the computed and observed inundation depths of high-water
marks in the floodplains at Phuang-Payom, Phumin-Thali, and Mueang Len villages
were found to be satisfactory with percentage errors of 6.7, 6.3, and 9.1, respectively.
This assures the accuracy of the model’s simulation in the floodplain. Importantly, the
results show the reliability of the HEC-RAS flood simulation model and the data used
in the calculation;

3. The flood hazard was calculated by using Equations (1) and (2) in which the weights
α, β, and µ representing flood duration, depth, and velocity, respectively, were sys-
tematically determined by AHP. In the other previous studies [17,18,20], the weights
α, β, and µ for flood duration, depth, and velocity, respectively, in Equation (1) were
specified by the researchers according to their experiences without using AHP. These
weights could be subjective or questionable. By using the AHP, the weights α, β, and
µ of 0.63, 0.26, and 0.11, respectively, were obtained. In AHP, the relative importance
of a flood duration, depth, and velocity of 1, 3, and 5 was assigned according to the
results of field and questionnaire surveys. A sensitivity analysis was conducted to
determine the effects of change on the relative importance of flood duration, depth
and, velocity from the original values of 1, 3, and 5 to the new values of 1, 5, and 9,
respectively. By using AHP, the new weights α, β, and µ were found to be 0.72, 0.21
and 0.06, respectively. In percent, the changes were +14.3% for weight α, −19.2% for
β, and −45.4% for µ. The changes in weights α and β were considered to be small
and acceptable. The change in weight µ of −45.4% was negative and moderate. Based
on the field and questionnaire surveys in this study, it was revealed that the damaging
effect of flow velocity in the municipal area was much smaller compared to flood
duration and depth; therefore, the change in weight µ of −45.4% was considered
non-significant. Hence, weights α, β, and µ of 0.63, 0.26, and 0.11, respectively, were
considered reasonable;

4. As shown in Figures 8 and 9, the flood hazard increased both spatially and in magni-
tude with the increase in the flood return periods. The 10 year flood hazard along the
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right bank of the Nan River was smaller than the 50 and 100 year floods, and it was
much smaller compared to the 500 year flood. Significant flood hazard occurs in the
Phumin-Thali and Phuang-Payom villages in the southern part of the municipality.
The locations of the observed high-water marks are shown by the small red circles in
Figure 10. It can be seen that the center of the municipal area has higher ground eleva-
tion than the surrounding area and, hence, it has less of a flood hazard. On the other
hand, in the Mueang Len area in the northeastern part of the municipality, the hazard
is significant when the flood magnitude is greater than the 100 year return period;

5. For total flood vulnerability, the weights Wpop and Whh in Equation (3) were found
to be 0.33 and 0.67, respectively. This shows that FVIhh had much more influence
on FVI than FVIpop. For household vulnerability, FVIhh, the relative importance of
the major contributing factors, namely, sensitivity F1, adaptation F2, and exposure F3
were set to be 1, 3, and 5, respectively. By using AHP, the weights of w1 of sensitivity
F1, w2 of adaptation F2, and w3 of exposure F3 were found to be 0.63, 0.26, and
0.11, respectively. The same sensitivity analysis was conducted for the case of flood
hazard, and it was found that the values of 0.63, 0.26, and 0.11 for weights w1, w2,
and w3, respectively, were the most reasonable ones. In previous studies [21,23], the
weights w1, w2, and w3 were not determined by AHP but were assumed to be equal
to one. Such an assumption could be incorrect, as the values of the sensitivity F1,
the adaptation F2, and the exposure F3 were calculated on different bases, and they
were not normalized. In this study, each major contributing factor was considered
to have various contributing components Ci as shown in Table 3. The weight θi of
each component Ci was determined by AHP based on the collected samples from the
questionnaire surveys as given in Table 3;

6. The distribution of the total vulnerability index, FVI, in the municipal area is shown
in Figure 10. Depending on the sensitivity, adaptive capacity, and exposure of the
households and population, the very high and highly vulnerable areas were found
along the right bank of the Nan River, from upstream to downstream. These areas
included Phumin-Thali, Phuang-Payom, and the Mueang Len villages. The medium
vulnerable areas are in the central and western parts. Only two villages in the western
rim of the municipal area, namely, Pha Mai and Don Swan, have very low vulnerability,
because they have very low population densities and are located on higher ground
elevations, far away from the river;

7. Flood risks depend on flood hazard probabilities and vulnerabilities. Therefore, flood
risks also change with flood probabilities or flood return periods. The study’s results
show that when the flood hazard changes, the flood risk also changes correspondingly;

8. To mitigate flood problems in the municipal area, various flood control or mitigation
measures can be proposed such as dredging of the Nan River channel and its tribu-
taries, raising crest elevations of river flood control levees, or construction of flood
bypass channel around the Nan municipal area. The effectiveness of each measure in
reducing the flood hazard can be evaluated by using the hydrological model (HEC-
HMS) and the hydrodynamic flood routing model (HEC-RAS). Hence, the changes in
flood risk in Nan Municipality can be determined. More details can be found in [21].

6. Conclusions

The main results of the present study can be summarized as follows:

1. The novelty of this study is the development of an advanced comprehensive and sys-
tematic methodology in determining flood hazard, total flood vulnerability, and flood
risk at the household level in a municipal area. This is an important improvement
over previous studies in which the flood and vulnerability parameters were not all
considered. Moreover, these parameters were not systematically determined;

2. The methodology was applied to a case study of a municipal area of 7.6 km2 in Nan
Province, Northern Thailand. The study area was located in the floodplain on the
right bank of the Nan River;
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3. The HEC-HMS hydrological model and the HEC-RAS flood flow simulation model
were applied to predict flood depths, velocities, and durations for the return periods
of 10, 50, 100, and 500 years;

4. The model computed results showed that significant flood hazards occur in Phumin-
Thali and Phuang-Payom villages in the southern part of the municipal area and in
Mueang Len village in the northeastern part of the area. These villages have low
ground elevations, and they are near to Nan River. The central part of the municipal
area had less of a flood hazard, as it has a higher ground elevation, and it is far
from the river. The computed results were found to be consistent with the past flood
situations during the field survey;

5. The questionnaire survey in the municipal area reported that the flood duration had
the most significant impact on households, while the flood depth and velocity had
lesser impacts;

6. In-depth analysis of the total vulnerability in the municipal area showed that the
vulnerability of the population constituted one-third of the total vulnerability, while
the household vulnerability constituted the remaining two-thirds;

7. From the computed flood risks, flood risk maps were constructed for various return
periods. The maps show that Phumin-Thali and Phuang-Payom villages, located near
the right bank of the Nan River, are under very high risk, and more than half of the
villages will be inundated and prone to high flood damages. This is consistent with
past flood situations;

8. The flood risk in the municipal area increased by approximately four times for the
increase in the return period from 10 to 500 years;

9. Overall, the methodology developed in this study yielded realistic results, and it
should be applied to other study areas.

Author Contributions: The first author (T.T.) contributed 65%, and the second author (T.P.) con-
tributed 35% of this research article. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Most of the data and information used in this study such as river
basin characteristics, river geometry, field survey and questionnaire survey can be obtained from
Reference [21]. Other additional data can be obtained from References [22,26–30].

Acknowledgments: The authors express their acknowledgements to the Royal Irrigation Department,
the Thai Meteorological Department, the Land Development Department, and the Nan Provincial
Administration for their full cooperation in providing useful data in this study. Acknowledgments
are also extended to the Asian Institute of Technology for the support in this study.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The AHP procedure starts from a pairwise comparison with a rating scale from 1
to 9. Generally, and in this study, scale 1 represents the most important flood parameter
and scale 9 represents the least important. From the results of field and questionnaire
surveys, the effect of flood duration was reported to have the highest impact on people’s
living conditions in the municipal study area and, hence, it was considered to be the most
important. On the other hand, the flood depth and flood velocity were found to have
less and lesser effects, respectively. A pairwise comparison of the three flood parameters
was conducted, and the results were formulated in the form of a 3 × 3 judgment matrix
as shown in Table A1. The diagonal elements of the matrix are equal to 1, as they are
compared to themselves. In the first row, the matrix element values for flood duration,
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depth, and velocity were judged, according to their relative importance, to be 1, 3, and 5,
respectively. According to the AHP, the successive elements of column 1 are the reciprocal
of the row elements that is 1, 1/3, and 1/5 for flood duration, flood depth, and flood
velocity, respectively. Next, from the second diagonal element of the 3 × 3 matrix, the
element values of the row from the second diagonal element to the right-hand side were
assigned to be 1 and 3 according to the relative importance of depth and velocity. For the
column below the second diagonal element, the element values are the reciprocal of the
mentioned row elements, that is 1 and 1/3, respectively.

The judgment matrix was then normalized. For example, in the first column of the
matrix in Table A2, each element of column one was normalized by dividing the value of
each element by the sum of all elements of the first column, i.e., 1 + 1/3 + 1/5 = 23/15.
Hence, the normalized elements of column one in Table A2 are 15/23, 5/23, and 3/23. The
same procedure was repeated for the remaining two columns. Then weight α for flood
duration was calculated as the average of the normalized elements of the first row that is
(15/23 + 9/13 + 5/9)/3 = 0.63. By the same procedure, weight β for flood depth and weight
µ for flood velocity were calculated and equal to 0.26 and 0.11, respectively, as shown in
Table A2. The sum of the three weights α + β + µ = 1.00 as given by Equation (2).

The judgment matrix was then normalized. For example, in the first column of the
matrix in Table A2, each element of column one was normalized by dividing the value of
each element by the sum of all elements of the first column, i.e., 1 + 1/3 + 1/5 = 23/15.
Hence, the normalized elements of column one in Table A2 are 15/23, 5/23, and 3/23. The
same procedure was repeated for the remaining two columns. Then weight α for flood
duration was calculated as the average of the normalized elements of the first row, that is
(15/23 + 9/13 + 5/9)/3 = 0.63. By the same procedure, weight β for flood depth and weight
µ for flood velocity were calculated and equal to 0.26 and 0.11, respectively, as shown in
Table A2. The sum of the three weights α + β + µ = 1.00 as given by Equation (2).

The judgment matrix was then normalized. For example, in the first column of the
matrix in Table A2, each element of column one was normalized by dividing the value of
each element by the sum of all elements of the first column, i.e., 1 + 1/3 + 1/5 = 23/15.
Hence, the normalized elements of column one in Table A2 are 15/23, 5/23, and 3/23. The
same procedure was repeated for the remaining two columns. Then weight α for flood
duration was calculated as the average of the normalized elements of the first row, that is
(15/23 + 9/13 + 5/9]/3 = 0.63. By the same procedure, weight β for flood depth and weight
µ for flood velocity were calculated and equal to 0.26 and 0.11, respectively, as shown in
Table A2. The sum of the three weights α + β + µ = 1.00 as given by Equation (2).

Table A1. Judgment matrix for pairwise comparison of AHP.

Judgment Index Flood Duration Water Depth Flow Velocity

Flood Duration 1 3 5
Water Depth 1

3 1 3
Flow Velocity 1

5
1
3 1

Sum 23
15

13
3 9

Table A2. Determining normalized weights for the thematic layer.

Judgment Index Flood Duration Water Depth Flow Velocity Normalized
Weights (WI)

Flood Duration 15
23

9
13

5
9 0.63

Water Depth 5
23

3
13

3
9 0.26

Flow Velocity 3
23

1
13

1
9 0.11

Sum 1.00 1.00 1.00 1.00
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The consistency of the calculated weights α, β, and µ was determined using con-
sistency indicators such as principal eigenvalue (λmax), consistency ratios (CR), and the
consistency index (CI).

According to [24,25], the principal eigenvalue should be equal to the number of flood
hazard parameters, which was three for satisfactory weights. The principal eigenvalue
λmax, the CR, and the CI were computed using the following equations:

λmax =
n

∑
i=1

[
n

∑
j=1

aijwi

]
(A1)

CR =
λmax − n

n − 1
(A2)

CI =
CR
RI

(A3)

where i is the row number of the judgment matrix in Table A1, j is the column number, λmax
is the principal eigenvalue, n is the number of rows or columns of the square matrix, aij is
the element of judgment matrix, Wi is the normalized weight of row i in Table A2, CR is
the consistency ratio, CI is the consistency index, and RI is the random inconsistency index
according to [24,25].

The principal eigenvalue (λmax) computed using Equation (A1) was equal to
(23/15 × 0.63 + 13/3 × 0.26 + 9 × 0.11) = 3.083. This was approximately equal to three,
which is the number of flood hazard parameters. The consistency index and consis-
tency ratio should be approximately zero for perfect weights. The CI was computed by
Equation (A2) as:

CI =
λmax − n

n − 1
=

3.083 − 3
3 − 1

= 0.0415 ∼= 0 (A4)

where n is the number of elements of the eigenvector, which was three.
The CR = CI/RI = 0.0415/RI, where RI = 0.59 for n = 3 according to [24,25]. Therefore,

CR = 0.0415/0.59 = 0.07.
It was found that both CI and CR were small numbers and were near to zero and,

hence, they were very acceptable weight estimations.
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