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Abstract: Thermal treatment is simple and has high potential in activated carbon (AC) modification
because its functional groups, structures, and pores can be significantly modified. However, the
changes in characteristics of ACs, affecting catalytic activity, have not been investigated enough.
Therefore, in this study, a coal-based powdered AC (PAC) was thermally treated, characterized, and
subjected to the removal of an antibiotic (oxytetracycline, OTC). The PAC treated at 900 ◦C (PAC900)
showed the best OTC removal compared to the PACs treated under lower temperatures via both
adsorption and catalytic oxidation in the presence of peroxymonosulfate (PMS). The results of N2

adsorption/desorption, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy,
Raman spectroscopy, X-ray diffraction, and Boehm titration showed increases in basicity, specific
surface area, graphitic structures with higher crystallinity and more defects, and C=O in PAC900
compared to PAC. Stronger signals of DMPO-X and TEMP-1O2 were shown for PAC900+PMS
compared to PAC+PMS in electron paramagnetic resonance spectroscopy. It is suggested that a
simple thermal treatment can significantly change the characteristics of a PAC, which improves
organic micropollutants removal. The changes in the properties, affecting the performance, would
provide important information about the improvement of carbonaceous catalysts.

Keywords: activated carbon; thermal treatment; peroxymonosulfate; catalysis; antibiotic

1. Introduction

A number of studies have recently reported the removal of organic micropollutants
using persulfate (PS)-based advanced oxidation processes (AOPs) due to their great poten-
tial [1]. Peroxymonosulfate (PMS) and peroxydisulfate (PDS) can be activated via metallic
catalysts, photocatalysts, and heat [2,3]. However, their application is limited because of
the secondary contamination caused by metal leaching and high energy consumption [4,5].
In addition, the leached metals can form inactive species in the presence of an oxidant [6].

On the other hand, non-metallic carbonaceous materials have attracted considerable
interest as heterogeneous catalysts because of their high chemical and thermal stability,
large surface area, high electrical conductivity, and environmental friendliness [4,7]. Various
carbonaceous catalysts have been studied for PS-based AOP, such as graphene oxide (GO),
three-dimensional cubic mesoporous carbon, carbon nanotubes (CNTs), nanodiamonds,
graphitic carbon nitride, and activated carbon (AC) [7,8]. Among them, AC has been
widely used and studied as an efficient adsorbent of organic pollutants in the aqueous
phase due to its large specific surface area, abundant functional groups, and well-developed
pores [2,9,10]. Moreover, the specific functional groups and graphitic structure of AC can
act as reactive sites for PS activation to accelerate electron transfer and/or generate reactive
species, such as SO4

•− [9,11,12].
Despite the potential of ACs as efficient heterogeneous catalysts, they are not as effec-

tive as GO and CNTs in activating PMS and PDS [8,13], and thus, they require modifications
to enhance their catalytic activity. It has been demonstrated that the catalytic activity of
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carbonaceous materials largely depends on the degree of graphitization, the defects and
crystallinity of the graphitic structures, the types and number of surface functional groups,
and the surface area [2,7,8,13,14]. Therefore, properly changing those factors could improve
the performance of ACs in the catalytic degradation of organic pollutants.

ACs can be modified chemically, physically, and via the introduction of metal (oxide).
The basic groups and specific surface area, which are advantageous for the activation
of PMS and/or PDS, can be increased by chemical modification of AC; however, the
used chemicals may cause serious secondary pollution [15,16]. The immobilization of
metal-based particles can enhance adsorption capacity [16–19] and catalytic activity [16,20].
However, their deactivation would be serious because of the decrease in surface area,
leaching of the metals to increase the metals in treated water, and accumulation of the
leached metals on ACs and the particles, as demonstrated for Fe3O4-loaded AC [20].
Recently, microwaves and plasma have been studied for AC modification. However, their
feasibility is challenged by the intensive use of energy, and their objective is hetero-atom
doping to improve adsorption capacity [21–23], not modifying the intrinsic characteristics
of an AC.

On the other hand, not only the pore structure and surface functional groups but
also graphitic structures can significantly be modified by simple thermal treatment. The
advantages of simple thermal treatment under inert gas conditions have been demonstrated
before in a limited number of studies. For example, it was reported that an AC thermally
treated under N2 showed superior performance in dyes reduction in the presence of
sulphide compared to the ACs chemically treated with HNO3 and O3 [24]. In addition, it
was reported that PDS activation by biochar was greatly improved [12], electron transfer
of graphite was accelerated [25], the adsorption capacity of phenolic compounds was
increased [26], and the phosphorus adsorption onto an AC was enhanced [27] via simple
thermal treatment under inert gas. Those improvements are attributed to the changes in the
functional groups and structures of the carbonaceous materials. Despite encouraging reports
regarding the thermal modification of ACs, it is hard to find the details of the changes in the
characteristics, which can be assigned to the improved catalytic activity [23,24,28,29].

Therefore, in this study, a coal-based powdered AC (PAC) was thermally treated and
characterized regarding its pore structure, crystallinity, and surface functional groups. The
PACs were subjected to the adsorption and catalytic degradation of an organic micropollu-
tant, i.e., oxytetracycline (OTC). OTC was selected as a representative micropollutant. OTC
is one of the most widely used antibiotics for disease prevention and growth promotion in
livestock [30]. Most OTC is excreted non-metabolically, and it is frequently detected in sur-
face water, sewage, groundwater, drinking water, seawater, and sediments worldwide [31].
In natural water environments, OTC exposure can cause eco-toxicity and the development
of antibiotic resistance [30,31]. The efficient removal of OTC is of great concern because
OTC is poorly biodegradable, and the ozonation and photocatalytic degradation of OTC is
costly and produces toxic byproducts [32,33].

2. Results
2.1. OTC Removal by PACs Treated at Different Temperatures

OTC removal was first investigated with the PACs treated at different temperatures
(Figures 1 and S1). It was shown that the pseudo second-order rate constant (k2) of OTC
removal increased with increasing treatment temperature, regardless of the presence of an
oxidant, confirming the advantage of thermal treatment. The removal efficiency of OTC
after 60 min by the untreated PAC, PAC treated at 500 ◦C (PAC500), PAC treated at 700 ◦C
(PAC700), and PAC treated at 900 ◦C (PAC900) was 16.8%, 20.96%, 27.46%, and 41.24%,
respectively, in the absence of an oxidant, i.e., via adsorption. It was 48.86%, 59.20%, 60.7%,
and 72.01%, respectively, when PDS was introduced, while it was 68.6%, 70.2%, 70.7%, and
80.2%, respectively, in the presence of PMS.
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Figure 1. The pseudo second-order reaction constants (k2) of OTC removal in the absence of an oxidant
and in the presence of 1 mM PDS or PMS (PACs 0.1 g/L, OTC 25 mg/L, initial pH 6.0, 20 ± 2 ◦C).

It is also demonstrated that OTC removal was faster with PMS than with PDS when the
same PAC was used. The k2 of OTC removal with 1 mM PMS was 2.0, 2.1, 1.8, and 1.7 times
that with 1 mM PDS when PAC, PAC500, PAC700, and PAC900 were used, respectively. It
was reported that the radical generation from PMS is more difficult than from PDS because
of its shorter O-O bond distance and larger bond energy [34]. Therefore, the superiority of
PMS to PDS is attributable to the self-activation of PMS and the involvement of non-radical
pathways [34,35]. Because PAC900 showed the best performance, the characteristics and
OTC removal of PAC and PAC900 were investigated in detail, as follows.

2.2. Characterization of PAC and PAC900

The N2 adsorption/desorption isotherm of PAC and PAC900 commonly showed Type
IV isotherms with H4 hysteresis loop (Figure 2A), suggesting that the PACs are micro-
and mesoporous [36,37], which was evidenced by the average pore size (dp) (Table 1). It is
suggested that micropores are dominant with a small number of mesopores for PAC and
PAC900, considering the sharp increase in the adsorption amount at the P/P0 of less than 0.1
and the faint hysteresis loop at the P/P0 of 0.2–0.8 [38]. It was evidenced by the mesopore
size distribution obtained via the Barrett–Joyner–Halenda (BJH) method (Figure 2B).
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Figure 2. (A) N2 adsorption–desorption isotherms and (B) mesopore size distribution by Barrett–
Joyner–Halenda (BJH) method for PAC and PAC900.

Table 1. Specific surface areas (SBET), total pore volume (Vp), and average pore size (dp) of PAC and
PAC900.

SBET (m2/g) Vp (m3/g) dp (nm)

PAC 685.76 0.4375 2.552
PAC900 734.53 0.4665 2.541
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Thermal treatment at 900 ◦C significantly increased the specific surface area (SBET) and
total pore volume (Vp), while the dp decreased slightly (Table 1). However, N2 adsorption–
desorption isotherms and dp did not differ significantly between PAC and PAC900, indicat-
ing that the pore structure was not notably changed by the thermal treatment.

The basicity was 872 and 1004 µmol-OH−/g, while the acidity was 147 and 42 µmol-
H+/g for PAC and PAC900, respectively. The decrease in the acidity is attributable to a
decrease in acidic functional groups, such as carboxylic, anhydrides, and lactones, which
thermally decompose at 373–900 ◦K [39]. As a result, the fraction of basic groups, which
are relatively thermally resistant, increased.

The changes in the functional groups were further investigated using Fourier transform
infrared (FTIR) spectroscopy (Figure 3A). The bands were found in the FTIR spectrum of
PAC at 3500–4000, 2950, 2167, 2010, 1735, 1620, 1258, and 1175 cm−1, which are assigned to
the stretching of O–H groups, aliphatic CH2 asymmetric stretch, C≡C vibrations in alkyne
groups, C=C vibrations in alkyne groups, ketonic and carboxylic C=O stretching, C=C of
the aromatic ring, highly conjugated or graphitic C=C, C–O–C stretching vibrations, and
phenolic C-OH, respectively [40–42]. After thermal treatment, i.e., PAC900, the intensity of
the bands of OH decreased, while the bands of aliphatic CH2, ketonic and carboxylic C=O,
C–O–C, and phenolic C-OH disappeared. It is in agreement with the reduction in acidity.
Instead, the intensity was increased for the bands of C≡C of alkyne, C=C of alkyne, and
graphitic C=C, indicating an increase in graphitic structures [12,41].
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Figure 3. (A) FTIR spectra and (B) XRD patterns of PAC and PAC900.

The X-ray diffraction (XRD) patterns of both PAC and PAC900 showed three (3)
common peaks (Figure 3B). The peaks at 2θ ≈ 21◦ and 26.7◦ represent the (002) plane of the
interlayer spacing of the graphitic structures, while the broad peak at 2θ ≈ 42.6◦ is assigned
to the (100) plane of the graphitic structures. The peaks of the (002) plane were significantly
more intense for PAC900 than PAC, suggesting an increase in crystallinity, ordered graphite
structures, and sp2-C [43], by the thermal treatment.

The Raman spectra showed common bands at 1210, 1344, 1540–1550, 1588, 1610,
2678–2679, and 2604–2609 cm−1, which were assigned to the D4, D, D3, G, D2, D+G, and
2D bands, respectively (Figure 4, Table 2). The D4, D, D3, G, and D2 bands are associated
with a disordered graphitic structure and ionic impurities, disordered graphitic lattice
by sp3 hybridization including graphene layer edges, amorphous carbon, ideal graphitic
structures with sp2-C, and disordered graphitic structures in surface graphene layers,
respectively [44]. The intensity of D4, D3, and D2 bands was lower for PAC900 than
for PAC, indicating a decrease in disordered and amorphous graphitic structures and an
increase in crystallinity by thermal treatment. In addition, the intensity of the D, G, D2, and
2D bands changed, resulting in increases in the intensity ratios of the D band to G band
(ID/IG), of D band to D2 band (ID/ID2), and of 2D band to G band (I2D/IG). They suggest an
increase in the structural defects in the graphitic structures [45], of the defects associated
with charged impurities rather than the hopping defects formed by the deformation of
carbon bonds [46], and of single graphene layers [44], respectively.
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Table 2. The results of Raman spectroscopy.

D4 D D3 G D2 D+G 2D ID/IG ID/ID2 I2D/IG

PAC Center (cm−1) 1210 1344 1540 1588 1610 2679 2906 3.69 19.23 0.51
Fraction (%) 10.2 41.6 15.3 11.3 2.2 13.9 5.7

PAC900 Center (cm−1) 1200 1344 1550 1588 1610 2678 2904 3.80 33.13 0.58
Fraction (%) 7.4 46.1 13.8 12.1 1.4 12.2 7.0

The X-ray photoelectron spectroscopy (XPS) survey spectra of PAC and PAC900 show
that the C/O ratio was increased from 7.5 for PAC to 9.2 for PAC900 (Figure S2). The
C1s and O1s spectra are presented in Figure 5, and the results are provided in Table 3.
The C1s XPS spectrum of PAC shows peaks at 284.3, 285.0, 287.1, and 290.3 eV, which are
assigned to graphitic C-C/C=C, C-O/C-N, C=O of quinone and pyrone, and O-C=O of
carboxyl and ester, respectively [41]. After thermal treatment, i.e., PAC900, the fraction
of the peak of graphitic C-C/C=C (284.6 eV) increased, while that of O-C=O (290.4 eV)
decreased. The O1s spectra show common peaks of C=O of quinone, C-OH, and C-O at
530.3, 531.9, and 533.4–533.8 eV, respectively, for both PAC and PAC900 [47]. However, the
fraction of C=O increased significantly, while that of C-OH decreased notably for PAC900,
as suggested by the decrease in acidic groups and the increase in the basic groups in the
results of Bohem titration.

Table 3. The results of XPS.

C1s O1s

Graphitic
C-C/C=C C-O/C-N C=O O-C=O C=O C-OH C-O

PAC Position (eV) 284.3 285.0 287.1 290.3 530.3 531.9 533.4
Fraction (%) 56 24 9 11 46 49 5

PAC900 Position (eV) 284.6 285.4 287.6 290.4 530.3 531.9 533.8
Fraction (%) 58 24 9 9 53 38 9

The scanning electron microscopy images of PAC and PAC900 are provided in Figure S3.
The surface of PA900 was smoother than that of PAC, indicating more meso- and micropores
in PAC900, as suggested by the results of N2 adsorption/desorption (Table 1 and Figure 2).
Meanwhile, the pHpzc of PAC and PAC900 was 7.46 and 9.97, respectively (Figure S4),
indicating that PAC900 is more positively charged than PAC at the same pH [48]. This
would affect the adsorption of OTC onto the PACs via electrostatic attraction [49].
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Figure 5. C1s and O1s XPS spectra of (A,C) PAC and (B,D) PAC900.

2.3. OTC Removal by PAC and PAC900 under Different Conditions

OTC removal by PAC900 was faster than by PAC under all conditions, verifying
the benefits of thermal treatment (Figures 6, S5 and S6). Figure 6A shows that the OTC
removal was accelerated as the dose of PAC or PAC900 was increased, regardless of the
presence of PMS. It should be noted that an injection of PMS significantly improved OTC
removal when the PAC900 dose was low, but the enhancement became less significant
as the PAC900 dose was increased. The k2 of PAC900+PMS was 2.8 times that of PAC
(0.036 L/mg·min) when the PAC900 dose was 0.1 g/L. However, it was 1.07 times that of
PAC (0.308 L/mg·min) when the PAC900 dose was 0.5 g/L. This indicates that adsorption
becomes more responsible for the overall OTC removal than catalytic oxidation as the
PAC900 dose was increased. However, the k2 was increased with an increasing dose of PMS
(Figure 6B), suggesting that PMS plays a significant role, i.e., catalytic oxidation, along with
adsorption. This evidences that PMS was activated on the surfaces of PAC and that that was
enhanced on PAC900. It was reported that surface-bound reactive species, i.e., PMS*, are
formed via the electron transfer from electron donors to the PMS adsorbed on carbonaceous
materials, and the process is mediated by sp2–hybridized carbon networks [50]. This leads
to the generation of SO4

•− and/or SO5
•−, which are reactive radicals themselves and

precursors of other reactive species such as O2
•− and 1O2 [12,51].

2.4. Radical Identification and the Possible Mechanisms of OTC Removal by Thermally Treated AC

The electron paramagnetic resonance (EPR) spectra using 5,5-dimethyl-1-pyrroline
n-oxide (DMPO) showed signals of 1:2:1:2:1:2:1 for both PAC+PMS and PAC900+PMS,
representing the nitroxide of 5,5-dimethylpyrroline-(2)-oxyl-(1) (DMPO-X) produced by
DMPO oxidation [52] (Figure 7A). The DMPO-X is generated by the oxidation of DMPO by
SO4

•− and/or SO5
•− [52,53]. On the other hand, no DMPO-OH• signals were detected,

suggesting that SO4
•− and/or SO5

•− is dominantly responsible for the degradation of OTC
in PAC+PMS and PAC900+PMS. Figure 7B shows the signals of TEMP-1O2, i.e., 1:1:1, for
both PAC+PMS and PAC900+PMS.
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PAC900 (PMS 1 mM) and (B) PMS (PAC or PAC900 0.1 g/L) (OTC 25 mg/L, initial pH 6.0, 20 ± 2 ◦C).
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Figure 7. EPR spectra of PAC and PAC900 using (A) DMPO and (B) TMPO (PAC 0.5 g/L, PMS 1 mM,
DMPO, or TMPO 10 mM).

The signals of DMPO-X and 1O2 were stronger for PAC900+PMS than PAC+PMS,
suggesting that the faster OTC removal in PAC800+PMS than in PAC+PMS is attributable
to the enhanced generation of oxidative species, i.e., SO4

•−, SO5
•−, and 1O2. In particular,

the signals of 1O2 were much stronger in PAC800+PMS than in PAC+PMS, indicating a
significant contribution of 1O2 in OTC removal in PAC800+PMS because 1O2 is a strong
oxidant with a standard reduction potential of 2.2 V [51]. 1O2 can be generated by the
recombination of SO5

•− (Equation (1)) [54], from SO5
•− and H2O (Equation (2)) [55,56],

and from the self-decomposition of PMS (Equation (3)) [54,55]. Therefore, the enhanced
1O2 generation can be assigned to the improved PMS activation by PAC900 than by PAC.

SO5
•− + SO5

•− → S2O8
2- + 1O2, (1)

2SO5
•− + H2O→ 2HSO4

− + 1.51O2, (2)

HSO5
− + SO5

2- → HSO4
− + SO4

2- + 1O2. (3)

Enhanced PMS activation by thermal treatment is attributable to the changes in the
properties of the PAC. The increase in Lewis basic sites, such as C=O, can improve PMS
activation because the C=O in quinone or pyrone donates electrons to break O–O bond
to generate radicals [12]. The increase in the defects in graphitic structures, as indicated
by ID/IG (Table 3), would lead to the electron transfer to PMS due to a denser electron
population [12,25]. The π electrons can form dangling bond states at the edges and defects
because of the missing atoms in the C lattice so the electron transfer from the graphite
structures to the PMS is accelerated [57]. Most of all, it is thought that the superior
OTC removal by PAC900 is attributable to the increased graphitic structures and their
crystallinity, as suggested by Table 3 and Figures 3–5. It was reported that the well-
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crystallized graphitic structures carry abundant π electrons, which enhance the electron
transfer to PMS and reduce it to SO4

•− and/or SO4
•− (Equations (4) and (5)) [12,55,57,58].

HSO5
− + C-π→ SO4

•− + C-π+ + OH−, (4)

HSO5
− + C-π+ → SO5

•− + C-π + H+. (5)

It should also be noted that the adsorption of the organic compounds with aromatic
rings onto graphitic structures can be improved via enhanced π-π electron donor–acceptor
(EDA) interactions because graphitic structures are effective π-electron donors [59,60].
Therefore, the adsorption of OTC onto more developed graphitic structures, i.e., PAC900,
would be enhanced, as demonstrated in this study (Figures 1 and 6).

3. Materials and Methods
3.1. Materials

A coal-based PAC (NORIT® PAC 20BF) was purchased from Cabot (Alpharetta, GA,
USA). The PAC of 38–72 µm was separated by sieving, washed several times using ultrapure
water, and dried at 150 ◦C for 12 h. The PAC was subjected to thermal treatment under
Ar gas at 500, 700, and 900 ◦C (5 ◦C/min) for 2 h using a tube furnace (OTF-1200X-UL, MTI
Corp., Richmond, CA, USA), which is denoted as PAC 500, PAC700, and PAC900, respectively.

Potassium peroxymonosulfate (KHSO5·0.5KHSO4·0.5K2SO4, PMS), sodium peroxy-
disulfate (Na2S2O8, PDS), hydrochloric acid (HCl, 37%), sodium hydroxide (NaOH, ≥97%),
5,5-dimethyl-1-pyrroline n-oxide (DMPO, ≥97%), and 2,2,6,6-tetramethyl-4-piperidinol
(TEMP) were procured from Merck KGaA (Darmstadt, Germany). All chemicals were
analytical grade and used as received. Ultrapure water was supplied by Aquapuri series 5
(Younglin, Anyang, Korea).

3.2. Batch Experiments

Batch experiments were performed using 250 mL round flasks at room temperature.
The PACs and ultrapure water were mixed, and the pH was adjusted to 6.0± 0.1 using 0.5 N
HCl and 0.5 N NaOH. The standard solutions of OTC (pH 6.0) and oxidant (PDS or PMS)
were added to start the reaction. The concentrations of PAC, OTC, and PDS or PMS were
0.1 g/L, 25 mg/L, and 1 mM, respectively. Aliquots were taken at predetermined times and
filtered through a 0.45 µm polyvinylidene fluoride (PVDF) membrane. The concentration of
OTC in the filtrates was analyzed using a high-performance liquid chromatography (HPLC)
system (YL9100 Plus, Youlngin, Korea). A C18 column (Eclipse Plus, 4.6 × 250 mm, 5 µm,
Agilent, Santa Clara, CA, USA) was used, and the mobile phase consisted of 0.01 M oxalic
acid, acetonitrile, and methanol (70:20:10, v/v/v). The flow rate, the column temperature,
the detection wavelength, and the injection volume were 1 mL/min, 30 ◦C, 358 nm, and
25 µL, respectively.

3.3. Characterization

The pore structure and specific surface area of the PACs were determined using
BELSORP-max (MicrotracBEL, Osaka, Japan). The total surface area and pore volume
were obtained using Brunauer–Emmett–Teller (BET) method, while the mesopore size
distribution was calculated using the Barrett–Joyner–Halenda (BJH) method. The acidity
and basicity were measured by standardized Boehm titration [61]. FTIR spectra were
recorded at 4000–400 cm−1 with the pellets prepared from the mixture of 0.2 mg PAC and
200 mg of KBr, using an FTIR spectrophotometer (Spectrum One System, Perkin-Elmer,
Waltham, MA, USA). XRD patterns were analyzed using a DB Advance X-ray diffractometer
(Bruker, Bremen, Germany), in 2θ between 3◦ and 89.14◦. Raman spectra were obtained
using a Renishaw in Via Raman microscope (Renishaw Inc., West Dundee, IL, USA) with
an excitation wavelength of 514 nm. XPS was carried out using a K-Alpha XPS instrument
(Thermo Electron, Waltham, MA, USA) with a monochromatic Al α-Alpha radiation source,
and high-resolution spectra of C 1s and O1s were obtained in 0.1 eV steps. The PAC and
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PAC900 were sputtered with Pt, and the microscopic images were taken using a field
emission SEM (FE-SEM; Carl Zeiss, Oberkochen, Germany).

Radicals were identified using an EPR spectrometer (JES-X320, Jeol, Akishima, Japan)
at a center field, a power, and a modulation frequency of 3389.9 G, 2.5 mW, and 100 kHz,
respectively. DMPO (10 mM) was used for trapping sulfate radicals (SO4

•−, SO5
•−), while

TEMPO (10 mM) was used as the singlet oxygen (1O2) trapper. The pH drift method was
used to determine the pH of the point of zero charge (pHpzc) of the PACs [48].

4. Conclusions

A coal-based PAC was thermally treated to improve the removal of OTC in this study.
It was shown that OTC removal was improved with increasing treatment temperature from
500 to 900 ◦C, regardless of the presence of PMS. Therefore, the PAC and PAC900 were
characterized and investigated for OTC removal in detail.

N2 adsorption/desorption isotherms showed that specific surface area and total pore
volume were increased by the thermal treatment, which did not cause a notable change
in pore structures after the thermal treatment at 900 ◦C. The results of FTIR spectra, XRD
patterns, Raman spectra, Boehm titration, and XPS spectra suggest that basicity, C/O ratio,
the fraction of graphitic structures, crystallinity, and defects of the graphitic structures, and
the fraction of C=O were all higher for PAC900 than for PAC. Instead, carboxylic groups,
phenolic groups, and disordered and amorphous graphitic structures were decreased after
thermal treatment.

PAC900 showed significantly better OTC removal in the absence, i.e., adsorption,
and in the presence of PMS under various doses of PACs and PMS. The EPR spectra
of PAC900+PMS demonstrated stronger signals of DMPO-X and much stronger signals
of TEMP-1O2 than PAC+PMS, indicating enhanced PMS activation and 1O2 generation
by PAC900.

The results suggest that the improved OTC removal by PAC900 is attributable to
the enhanced electron transfer to PMS via increases in C=O, more crystalline graphitic
structures, and defects. In addition, the improved π-π EDA interactions via the increase in
the graphitic structures also contributed to the enhanced OTC adsorption onto PAC900.

The results of this study demonstrate that both the adsorption and the activation of
PMS by an AC can significantly be improved by simple thermal treatment through the
modification of its properties. These also would provide valuable information about the
design of carbonaceous catalysts with a better performance in micropollutants removal.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w14203308/s1, Figure S1: OTC removal using various PACs (A)
in the absence of an oxidant and in the presence of (B) PDA and (C) PMS (PACs 0.1 g/L, PDS or PMS
1 mM, OTC 25 mg/L, initial pH 6.0, 20 ± 2 ◦C); Figure S2: XPS survey spectra of PAC and PAC900;
Figure S3: SEM images of (A) PAC and (B) PAC900; Figure S4: Point of zero charge (pHpzc) of PAC
and PAC900; Figure S5: OTC removal at different PACs dose in (A) PAC, (B) PAC+PMS, (C) PAC900,
and (D) PAC900+PMS (PMS 1 mM, OTC 25 mg/L, initial pH 6.0); Figure S6: OTC removal at different
PMS dose in (A) PAC +PMS and (B) PAC900+PMS (PACs 0.1 g/L, OTC 25 mg/L, initial pH 6.0).
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