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Abstract: Landslide hazard management usually requires time-consuming campaigns of data ac-
quisition, elaboration, and modeling. However, in the post-emergency phase management, time
is a factor, and simpler but faster methods of analysis are needed to support decisions even in the
short-term. This paper analyzes the Theilly landslide (Western Italian Alps), which was recently
affected by a series of reactivations. While some instrumental campaigns are being carried out to
support the design of protection measures, simple tools are also needed to assess the hazard of future
reactivations and to evaluate the possibility of damming the torrent at the footslope. Therefore,
state-of-the-art empirical methods were used and customized for the specific case study: a set of
intensity–duration rainfall thresholds depicting increasing hazard levels was defined to monitor
and forecast possible reactivations, while a methodology based on hydro-morphometric indices
was applied to the case of study, to assess the possible evolution scenarios (landslide that does not
dam the river, formation of a stable dam, formation of an unstable dam), based on the landslide
volume. The proposed empirical methodologies have the advantage of requiring only ready-available
input data and quick elaborations, thus allowing the rapid set up of tools that could be used for
hazard management.

Keywords: landslide; hazard; risk; Alps; rainfall threshold; landslide dam; empirical methods;
morphometric index

1. Introduction

Landslides are a serious threat to life, buildings and infrastructures [1–3]; in addition,
in specific environments they may be responsible for disastrous cascading events such as
river damming (and subsequent outbursts) [4–7]. Landslide characteristics vary deeply
according to the nature of the geomorphological setting and the external triggering and
predisposing factors. Therefore, the correct management of landslide risk in a given case of
study requires the acquisition of information and the performance of a site-specific analysis
by means of instrumental investigations, monitoring, sophisticated physical models, and
powerful software programs. However, it is usually time consuming to get reliable input
data, design and carry out investigations, process the data, and perform analyses. For
this reason, empirical methods are viable options to get preliminary results and, although
consisting mostly in simplified approaches, they have been established in many fields of
landslide research. For instance, empirical rainfall thresholds are widely used instead of
physically based models to assess the timing of occurrence of landslides and to set up
early warning systems [8,9]. Physically based models are undoubtedly more rigorous
and sophisticated, but their use is limited by the difficulty of getting reliable input data
with sufficient accuracy for the many input parameters they require [8,10,11]. For this
reason, the simpler approach based on empirical rainfall thresholds is the most widely
employed in operational civil protection procedures for landslide hazard forecasting and
management [12,13]. Caine [14] was the first to establish an empirical relationship between
two simple rainfall parameters (namely, intensity and duration) and shallow landslide
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occurrence across the world. Since then, the empirical rainfall threshold approach gained
popularity and was used also for operational implementations into warning systems [15]
and several successful applications are reported [16–18].

Another example is the analysis of river damming by landslides occurring in narrow
valleys: the possibility of formation of a dam and its evolution (i.e., the permanent creation
of a lake or its collapse with release of flood waves) is a very complex task that requires
the definition of a geological conceptual model of the landslide and the use of complex
models, which in turn requires the definition of many geotechnical and hydrological input
parameters [19–21]. For this reason, several authors proposed empirical indices that can
be used to assess the damming potential of landslides [22–25]: such indices are usually
based on a combination of morphometric, geotechnical and hydrological attributes and
can be used for a fast estimation of river damming hazard [26]. For instance, [22] proposed
two indices based on the ratio between the landslide volume and the drained surface and
on the ratio between the valley width and the landslide velocity to account for the river
blockage and the subsequent material removal by the flowing water. In the years, other
indices were proposed, and an interesting direction of applied research was to identify
parameters empirically linked with landslide dam evolution but, at the same time, being
straightforward enough to assess to maximize the potential applicability of the technique.
For instance, [23] proposed a dimensionless blockage index based on the dam height, the
landslide volume, and the upslope catchment area, arguing that all these parameters could
be easily estimated by means of a field survey or GIS analyses, thus allowing for a quick
hazard assessment.

The main objective of this manuscript is to showcase the practical utility of expeditious
empirical methods by describing and discussing the case of the Theilly landslide, located in
the Western Italian Alps. The Theilly landslide has a complex history of reactivations, and
while investigation and complex analysis are promoted to gain a deeper understanding
of the slope setting, to design and execute a more effective generation of remedial works,
there is the need to immediately address the risks associated with possible reactivations
and cascading effects including river damming. Thus, given also the absence of previous
research published on the site, the objective of this work is to establish a simple method
to monitor and forecast the possible evolution of the landslide with easily available data
and make use of consolidated but simple empirical methodologies, while in the meantime
more thorough investigations are carried out to assist more complex methods of analysis
and the design and implementation of effective countermeasures.

Test Site Description

The study area is located in northern Italy (Figure 1a) in the municipality of Fontainemore
(AO), on the right bank of the Lys stream, immediately upstream from the confluence with
the Theilly stream (Figure 1b). The morphology of the valley was formerly shaped by
glacial activity until the Pleistocene, afterwards it was deeply engraved by the Lys stream,
assuming a typical V-shape in the lower part of the mountainsides.

The slope affected by the landslide is very steep, except for a nearly flat glacial terrace
near the village of Theilly (about 840–850 m asl) just above the landslide crown (Figure 1c).
The slope has a thick cover of sediments of mixed origin, including sedimentary bodies of
glacial origin (with a medium-fine matrix), slope debris coming from the upslope sectors
(coarse debris with blocks and boulders), weathered regolith derived from the gneissic
bedrock, and anthropogenic fill soil.

Erosive processes are active on the slope. They are partly mitigated by the effect of
the vegetation, where present, and are particularly intense at the edge of the terrace. In the
nearby sectors of the slope, the evidence of past landslides activity is also present.
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Figure 1. (a) Location of Theilly landslide, Western Alps, northern Italy; (b) Theilly landslide, the 
green point identifies the head of the scarp; (c) DTM of the valley where Theilly landslide is located 
(d) Detail of the heterogenic sedimentary cover of the slope. 

The slope affected by the landslide is very steep, except for a nearly flat glacial terrace 
near the village of Theilly (about 840–850 m asl) just above the landslide crown (Figure 
1c). The slope has a thick cover of sediments of mixed origin, including sedimentary bod-
ies of glacial origin (with a medium-fine matrix), slope debris coming from the upslope 
sectors (coarse debris with blocks and boulders), weathered regolith derived from the 
gneissic bedrock, and anthropogenic fill soil.  

Erosive processes are active on the slope. They are partly mitigated by the effect of 
the vegetation, where present, and are particularly intense at the edge of the terrace. In 
the nearby sectors of the slope, the evidence of past landslides activity is also present. 

Figure 1. (a) Location of Theilly landslide, Western Alps, northern Italy; (b) Theilly landslide, the
green point identifies the head of the scarp; (c) DTM of the valley where Theilly landslide is located
(d) Detail of the heterogenic sedimentary cover of the slope.

To protect the village from erosion and landslide processes, in 2011 some remedial
works began, but they were not completed as in 2016 a major landslide was triggered by a
very intense rainstorm (25–28 September 2016) (Figure 1b). The landslide was a shallow
planar debris slide that partially dislocated the filling material and the remedial works
(mainly gabions) under construction. The slope stayed in a quiescent state of activity until
2019, with some minor slides occurring in autumn 2018 and spring 2019 after intense
rainfall events. On 24 November 2019, due to exceptionally intense rainfalls, a major
planar slide was triggered again in the debris cover of the slope, and the saturated material
evolved in a slow debris flow, partially reaching the Lys stream.
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At present, local authorities are promoting geotechnical and geophysical investiga-
tions to gain a deeper understanding of the slope structure, to assist the design and the
implementation of more effective remedial works. However, in the meantime, there is
the urgency to quickly develop simple tools to manage the landslide hazard related to
possible reactivation of landslides and the possibility of damming the Lys stream at the
footslope. These concerns justified the adoption of the simple but “ready-to-use” empirical
methodologies described in the following sections, to be temporarily used until the main
analysis and remedial works are completed.

2. Materials and Methods
2.1. Rainfall Threshold Analysis

Rainfall thresholds are mathematical equations, usually defined by empirical methods,
defining the rainfall conditions associated with the occurrence of landslides [9]. The rainfall
threshold model used for this study is the widely acknowledged intensity–duration (I–D)
power law relationship, firstly proposed by Caine [14], and still at present the most used
worldwide [9]:

I = α ∗ D−β (1)

where I [mm/h] is the intensity of the triggering rainfall event, D [hours] is the duration of
the triggering rainfall event, α and β are dimensionless empirical parameters, specific of the
study area. The equation can be represented in a bi-logarithmic diagram with a straight line
that divides the stability condition field (under the threshold) and the rainfall conditions
associated with previous landslide occurrences (above the threshold). Among the many
possible rainfall parameters used in the literature [9], I and D were chosen also because
they are considered the most appropriate in the case of shallow landslides on relatively
permeable material, which have a rapid and straightforward response to intense peaks
of precipitation [27,28]. It was verified by a field survey that the Theilly slope matches
these characteristics. Moreover, the analysis of pluviographs and reports of past events
highlighted that, in all the documented reactivations, the role of antecedent rainfall was
negligible, snow melting processes were absent, and the main triggering factor was a
relatively short but very intense rainfall.

After selecting the rainfall threshold model, it was necessary to gather the input data
for the threshold definition. The input data consist of a dataset of past landslide occurrences
with known time and location and a dataset of rainfall measures to extract the rainfall
conditions that led to slope instabilities.

There is not a consensus on what is the minimum number of events to calibrate a thresh-
old: the literature accounts for rainfall thresholds calibrated with hundreds or thousands of
landslide events [29–34], as well as thresholds calibrated with less than 10 events [35,36].
In any case, we considered that the only known reactivations of Theilly landslides (three
major events and four minor ones) were not enough for a robust calibration, also because a
robust threshold analysis demands that a certain number of events is excluded from the
calibration process to perform an independent validation. Consequently, the calibration
dataset was built considering the largest possible number of landslide events occurred
in the vicinity of Theilly, in similar geological and meteorological settings, while Theilly
reactivations were used to validate the threshold and to assess its forecasting effectiveness.

The landslide event dataset was built using a web datamining algorithm based on
a semantic search engine applied to internet news [37]. This method detects landslide
news on the Internet and has the intrinsic feature of identifying only events that resulted
in significant impacts, which had a resonance on the media, making it a good source
of information for model validation [38]. This method allowed compiling a dataset of
20 internet new items related to 12 landslides that occurred in the period 2010–2019 and
that are located in an area that can be considered near and similar to the test site (Figure 2).
The landslides news days used for the extraction and calibration of the threshold are
presented in Table 1.
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Figure 2. Overview of the rainfall and landslide data collected in the same physiographic setting of
Theilly landslide.

Table 1. Landslides news used for the calibration.

Day of Landslide Occurrence

3 September 2012
3 September 2012

17 May 2013
25 June 2016

23 November 2016
25 March 2017

4 September 2017
12 January 2018

29 May 2018
11 June 2018

1 November 2018
22 November 2019

The selection of the measuring rain gauge is a critical point in the rainfall
analysis [9,39–41]. The hourly rainfall measurements from the regional rain gauge network
were used to characterize the triggering rainfall of the landslide calibration dataset. In
particular, the Lillianes–Granges’s rain gauge was chosen as a reference to characterize
the rainfalls that reactivated the Theilly landslide and to validate the applicability of the
threshold to the specific case of Theilly. This rain gauge was selected as it is the nearest to
Theilly landslide (1.3 km distance), at similar elevation and in the same valley, just in front
of the unstable slope (Figure 2).

The input data were processed with a tool called MaCumBA (Massive Cumulative
Brisk Analyzer) [42], which automatically matches rainfall and landslide data, analyzes the
triggering rainfall records, selects for each landslide the most appropriate rain gauge and
extracts the intensity and the duration of the triggering rainfall. The I–D couples for every
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landslide are plotted in a bi-logarithmic graph and a statistical threshold is identified with
a specific confidence level (95% in this work). Further details on the method can be found
in [42].

2.2. Landslide Dam Analysis

To provide useful elements for the understanding and management of multi-risk
scenarios concerning the interaction between the landslide and the dynamics of the wa-
tercourse flowing at the foot of the slope, the case study was characterized by a series of
state-of-the-art hydro-morphometric indices. These indices are commonly used as fast
methods in preliminary investigations to estimate, in the event of a landslide that reaches a
watercourse, which one of the following scenarios is more likely: no river dam formation,
the formation of a stable river dam, or the formation of an unstable river dam. A methodol-
ogy recently developed by [26] was selected for the analyses, because of the advantage of
being based on the joint use of two morphometric indices that are easy to assess, as the data
needed can be quickly collected from field surveys and GIS analysis on widely available
data [26].

The first index, called MOI (Morphological Obstruction Index), is defined as follows:

MOI = log
(

Vl
Wv

)
(2)

where Vl [m3] is the volume of the landslide and Wv is the width of the valley [m]. The index
can be used to estimate the volume that is capable of generating a river dam according
to [26]:

• MOI < 3.00 non-formation domain
• 3.00 < MOI < 4.60 uncertainty domain
• MOI > 4.60 formation domain

The second index, the Hydromorphological Dam Stability Index (HDSI), is defined as
follows:

HDSI = log
(

Vl
tan (S) ∗ Ab

)
(3)

where Vl [m3] is the volume of the landslide, S [◦] is the local slope of the waterbed and
Ab [km2] is the upslope contributing area subtended by the point affected by the possible
dam. The product between S and Ab is commonly used in hydrology and geomorphology
to characterize the erosive power of water courses. The relationship with the volume of
the landslide allows to estimate the conditions that lead the erosive power of the river to
prevail over the landslide body and, consequently, to characterize the stability or instability
of any river dam generated by a landslide. The threshold values identified by [26] are as
follows:

• HDSI > 7.44 stability domain
• 7.44 < HDSI < 5.74 uncertainty domain
• HDSI < 5.74 instability domain

The threshold values of the MOI and HDSI were defined by [26] following an analysis
based on a dataset of hundreds of cases of river dams documented in Italy. These analyses
made it possible to develop and test, with statistical techniques, a methodology for the
combined use of the MOI and HDSI indices, allowing to determine a series of critical
volumes that can be interpreted as threshold values to discriminate between the three
possible states of evolution that could occur if the landslide reaches the watercourse at the
foot of the slope: no river dam formation, the formation of a stable dam, or the formation
of an unstable dam [26].

The geomorphological parameters in Equations (2) and (3) (namely, Wv, S, and Ab)
were extracted from open-access high resolution DTMs (Digital Terrain Models) provided
by the Valle d’Aosta Region. After a field survey and an analysis of the ancillary data
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(DTMs and a 1:5000 topographic map), the critical hydraulic section for a possible river
dam at the foot of the unstable slope was identified as in Figure 3, in correspondence
with an artifact that protects the banks from erosion but also diminishes the hydraulic
section. ArcGIS Pro® software was used to assess the hydro-morphometric parameters
was used to calculate the hydro-morphometric parameters in correspondence of the critical
section, identified as possible damming point (Figure 3). Then, their values were entered in
Equations (1) and (2), in which the MOI and HDSI were also substituted by the threshold
values identified by [26]. Finally, Equations (1) and (2) were solved for the volumes, in
order to identify the threshold volumes that separate the possible states of evolution of a
river dam.
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3. Results
3.1. Rainfall Threshold Analysis

The first result of the rainfall threshold analysis described in the previous section was
a rainfall threshold defined by the following equation:

I = 6.71 ∗ D−0.67 (4)

This threshold is intentionally conservative, because the calibration procedure was car-
ried out setting a relatively low (5%) proportion of rainfall events associated with landslides
that fall below the threshold (missed alarms), which usually comes at the cost of many
errors of commission (false positives—events above the threshold, but without landslides).
Therefore, this threshold may be interpreted as the minimum rainfall conditions associated
to the triggering of landslides and cannot be used effectively for warning purposes.

To pass from the triggering threshold defined by MaCumBA to a warning model, the
empirical procedure proposed by [29] was taken into account and customized for the case
study at hand, taking also into account the effect of non-landslide events and the existing
civil protection procedures operated in Italy. The threshold defined by MaCumBA was
considered as the base threshold of a set of three thresholds defining four criticality states.
The base threshold (Equation (4)) was used to separate the “absent criticality level” state
from the “ordinary criticality level”. Then, the threshold was translated upward to find two
higher thresholds and define increasing warning levels (“moderate criticality” and “high
criticality” levels). In this work, the procedure was guided by the necessity of empirically
linking the thresholds to different degrees of frequency of possible errors of commission
(i.e., false positives, or false alarms). Thus, the thresholds and subsequently the states of the
system were defined based on the progressive filtering of the false alarms obtained in the
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calibration dataset. In particular, the moderate criticality threshold was defined translating
upward the base threshold until only an average of one false alarm per year would be
committed (10 events above the threshold without any triggered landslide). For the high
criticality threshold, the translation ended when no false alarms were committed in the
calibration dataset.

At the end of the procedure, the following equations (Equations (5) and (6)) completed
the set of thresholds identified for the study area.

I = 29 ∗ D−0.67 (moderate criticality threshold) (5)

I = 66 ∗ D−0.67 (high criticality threshold) (6)

The set of the rainfall thresholds, with the corresponding calibration data, are repre-
sented in Figure 4 and Table 2.
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Figure 4. The set of rainfall thresholds and the calibration dataset of events.

Table 2. Rainfall events associated with landslides in the calibration period.

End Day of the Event Intensity (mm/h) Duration (h) Amount of Rain (mm)

5 September 2012 0.22 169 37
5 September 2012 0.22 169 37

19 May 2013 1.12 107 120
25 June 2016 6.25 12 75

25 November 2016 0.84 96 81
26 March 2017 1.11 84 93

5 September 2017 0.34 112 38
13 January 2018 0.44 333 146

31 May 2018 0.63 116 73
12 June 2018 1.97 35 69

1 November 2018 1.08 121 131
27 November 2019 0.70 129 90

The effectiveness of the thresholds set as a possible warning system for the Theilly
landslide was evaluated using the reactivation events of the Theilly landslide from 2016 to
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present as a validation dataset (Table 3). The reactivation events were split in two groups:
“major events” (landslide events with a consistent displacement of material along the slope
and/or with damages to the protection structures) and “minor events” (landslide events
with lesser amounts of material mobilized and no damages to the existing structures).

Table 3. Theilly landslide reactivation events.

Theilly Landslide Events

25 November 2016 major and first activation
11 October 2018 minor event

7 November 2018 minor event
4 and 7 April/2019 two minor events
24 November 2019 major event

3 October 2020 major event

The reactivation events were characterized in terms of intensity and duration of the
triggered rainfall event, as shown in Tables 4 and 5, and they were compared with the
rainfall thresholds (Figure 5).

Table 4. Rainfall events associated with major reactivations.

End Day of the Event Intensity (mm/h) Duration (h) Amount of Rain (mm)

25 November 2016 3.46 102 353
27 November 2019 1.43 130 186

4 October 2020 3.96 70 277

Table 5. Rainfall events associated with minor reactivations.

End Day of the Event Intensity (mm/h) Duration (h) Amount of Rain (mm)

11 October 2018 2.97 34 101
7 November 2018 2.72 247 671

4 April 2019 1.98 41 81
7 April 2019 3.82 11 42

Figure 5 highlights that the proposed set of thresholds is in accordance with the activity
of Theilly landslide. Indeed, all the reactivation events are above the ordinary criticality
threshold (thus, there are not missed alarms). Furthermore, all the “major events” are
plotted at least above the moderate criticality threshold and the most critical events, namely
the 2016 event and the 2020 event, are plotted above the high criticality threshold (within the
maximum warning level). The other major event (2019 event) is plotted above the moderate
criticality threshold inside the moderate warning level. Regarding the “minor events”, two
of them fall inside the ordinary warning level, one above the moderate criticality threshold
and one above the high criticality threshold.

The validation shows satisfactory outcomes also concerning the false alarms that
would have been issued in the case of the use of the proposed set of thresholds at Theilly.
As expected, a relatively high number of false alarms (namely, 39) are present at the
“ordinary criticality” level: as anticipated, this is normal in the case of a minimum threshold
for possible activations, not to be used for operational response. Concerning the moderate
criticality level, only one false alarm (11 May 2021 event) is committed, in accordance with
the criteria used in the calibration. Conversely, the higher state of alert has one false alarm
that occurred on the 9 January 2018. In this case, the calibration criterion is not satisfied but
the error committed is conservative (i.e., hazard is overestimated), thus allowing for the
use of the threshold system as a cautionary operational tool for hazard management.
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3.2. Landslide Dam Analysis
3.2.1. MOI Index Analysis

The result of this analysis consisted in deriving the critical landslide volumes for the
formation and non-formation of a river dam. The two domains can be viewed in Figure 6,
which shows a graph with the values of Wv on the abscissas and the values of Vl on the
ordinates. According to [26], two lines with equations V = 180.3 W2 and V = 1.7 W2.5

separate the three domains of dam formation. Using ArcGIS Pro® software, the width of
the critical section was measured, obtaining Wv = 36.15 m.
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Knowing the value of the valley width, the threshold volumes of the two domains in
the case of Theilly landslide were calculated:

Threshold volume of the formation domain (formation of a barrier for higher volumes):
Vl form = approximately 236,000 m3

Threshold volume of the non-forming domain (no barrier formation for lower vol-
umes): Vl nf = approximately 13,400 m3

The intermediate volume values correspond to an uncertainty domain where the
statistical analysis of the literature includes both cases of formation and non-formation of
river barriers (Figure 6).

3.2.2. HDSI Index Analysis

Subsequently, the HDSI index was used to calculate the threshold volumes character-
izing the stability or instability of a possible river dam. Using ArcGIS Pro® software, the
DTM was processed to derive the flow accumulation raster for the whole area. As a result,
it was possible to identify the area of the basin upstream of the previously identified critical
section (Figure 7) as:

Ab = 234.3 km2
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The other morphometric parameter needed to assess the HDSI index is the local slope
gradient of the riverbed at the critical section (S). It was derived from the DTM using the
corresponding function of ArcGIS Pro, resulting in the value S = 5.1◦.

To estimate the threshold volumes for the dam stability and instability, the threshold
values of the HDSI parameter identified by [26] were considered: HDSI = 7.44 defines the
stability domain and HDSI = 5.74 the instability domain. The HDSI formula (Equation (3))
was solved for the volume:

V = tan(S) ∗ Ab ∗ 10HDSI (7)

After substituting the threshold HDSI values and the values of the hydro-morphometric
indices (S and Ab) characterizing the test site, the following results were obtained:

• Stability critical volume (for HDSI = 7.44): Vlst = 5.76 ∗ 108 m3

• Instability critical volume (for HDSI = 5.74): Vlinst = 1.15 ∗ 107 m3

Volumes greater than Vlst can be correlated with a stable dam in the long term, values
lower than Vlinst can be associated with an unstable dam, for intermediate values the
evolution is uncertain.

From a graphical point of view, the results can be displayed in a graph (Figure 8)
by setting the product Ab∗tan(S) on the x-axis (intrinsic condition of the critical section
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threatened by the Thielly landslide) and deriving the corresponding threshold volumes on
the y-axis.
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4. Discussion

The outcome of the analyses can be temporarily used for hazard management of Theilly
landslides until more complex analyses (including geo-gnostic campaigns) are accomplished.

The proposed set of rainfall thresholds can be used for monitoring purposes by using
the automatic real-time rainfall records of the reference rain gauge and, in case a projection
for the next days is desired, combining also the rainfall forecasts disseminated at least daily
by the Regional Functional Center (the office in charge of weather monitoring, forecasting,
and surveillance). These rainfall values can be easily compared with the set of thresholds
to derive the expected scenario and the most appropriate form of intervention:

• If the thresholds are not overcome, no relevant event is expected.
• If the lower threshold (ordinary criticality) is overcome, the minimum rainfall con-

ditions for landslide triggering are reached: it is possible that mass movements or
erosional processes are reactivated along the slope. However, their occurrence is
not certain, and the occurrence of false alarms is also likely, as demonstrated by the
empirical calibration procedure. No counteraction is expected except for intensifying
the monitoring duty.

• If the moderate criticality threshold is overcome, the reactivation of mass movements
or severe erosional processes should be expected. Local authorities should be contacted
to receive a first-hand description of the evolution of the hazard scenario.

• When the high criticality threshold is overcome, the reactivation of larger mass move-
ments or severe erosive processes should be expected. In addition to the aforemen-
tioned actions, an inspection to the site is recommended during or shortly after the
event, and extraordinary maintenance should be performed on the remedial works
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and on the surroundings of the slope (e.g., cleaning of the drainages and outlets,
removal of debris, and so on).

In the event of a landslide detaching from the slope, it is possible to make a quick
estimate of the interaction with the Lys river, based on the volume of the landslide that
reaches the riverbed:

• for volumes less than 13,400 m3, a river dam would not form;
• from 13,400 m3 to 236,000 m3, the river dam formation is uncertain, and in the case of

formation, the dam would be unstable;
• from 236,000 m3 to 11.5 × 106 m3, an unstable river dam would form;
• from 11.5 × 106 m3 to 576 × 106 m3, a dam would form with uncertain evolution;
• over 576 × 106 m3, a dam would form and would be stable even in the long term.

Based on field inspections and on the analysis of the documentation of past landslide
events in Theilly (technical reports, event reports, newspapers), it seems unlikely that
the dynamics of the slope could evolve into the detachment of a single mass greater than
13,000 m3 that would entirely reach the Lys riverbed. Therefore, in general terms, the
formation of river dams due to the evolution of the slope of this study could be considered
unlikely. Moreover, in the event of a mass movement, it is possible to estimate the volumes
involved and compare them with the threshold values shown above, in order to have quick
feedback on the evolution of the phenomenon.

5. Conclusions

The slope below the village of Theilly, located in the Western Italian Alps, has tradi-
tionally been affected by erosion and landslide processes. Recently (since 2016), several
reactivations occurred and required the quick development of methods to assess the hazard
associated with the site, namely the reactivation of mass movements and the possibility
of damming the river at the footslope. Therefore, some recently developed empirical
methods were applied and customized for the Theilly case study. An empirical procedure
called MaCumBA [42] was applied to derive an intensity–duration rainfall threshold to
identify the minimum rainfall conditions associated with slope instabilities. By means
of a site-specific empirical calibration, the threshold was further developed into a set of
three thresholds, which identify four criticality levels, each connected to an expected event
scenario and a corresponding suggested countermeasure from the operational point of
view. The interaction between the landslide and the river flowing at the footslope was
assessed by means of a set of recently proposed empirical hydro-morphometric indices [26],
which were applied to the case of study with an innovative approach, to identify a set of
threshold values of the landslide volume for which, if a landslide would reach the riverbed,
the following scenarios should be expected: (i) formation of a stable dam, (ii) formation of
an unstable dam, (iii) no river barrier formation.

This manuscript demonstrates that, when time is a crucial factor, empirical method-
ologies can be reliable options to perform a quick hazard analysis and to assist decision
makers. To do so, however, a rigorous site-specific calibration is required, and it should be
stressed that such tools should be considered a short-term solution, to be used while more
thorough analyses are carried out. Indeed, concerning this case of study, further research is
in progress to define a 3D model of the hillslope (by means of geophysics and geotechnical
survey) and to perform finite element slope stability modeling, with the objective to gain
advanced knowledge of the slope characteristics before designing appropriate remedial
works. These activities are costly and time consuming; therefore, the proposed methods
were based on easily available input data and the outcomes quickly provided a set of
tools that could be readily used to forecast the evolution of Theilly landslide and tem-
porarily manage the associated multi-hazards until definitive remedial works are designed
and completed.
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