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Abstract: Along with fluvial floods (FFs), surface water floods (SWFs) caused by extreme overland
flow are one of the main flood hazards occurring after heavy rainfall. Using physics-based distributed
hydrological models, surface runoff can be simulated from precipitation inputs to investigate regions
prone to soil erosion, mudflows or landslides. Geomatics approaches have also been developed to
map susceptibility towards intense surface runoff without explicit hydrological modeling or event-
based rainfall forcing. However, in order for these methods to be applicable for prevention purposes,
they need to be comprehensively evaluated using proxy data of runoff-related impacts following
a given event. Here, the IRIP geomatics mapping model, or “Indicator of Intense Pluvial Runoff”,
is faced with rainfall radar measurements and damage maps derived from satellite imagery and
supervised classification algorithms. Six watersheds in the Aude and Alpes-Maritimes departments
in the South of France are investigated over more than 2000 km2 of rural areas during two flash-flood
events. The results of this study show that the greater the IRIP susceptibility scores, the more SWFs
are detected by the remote sensing-based detection algorithm. Proportions of damaged plots become
even larger when considering areas which experienced heavier precipitations. A negative relationship
between the mean IRIP accumulation scores and the intensity of rainfall is found among damaged
plots, confirming that SWFs preferably occur over potentially riskier areas where rainfall is lower.
Land use and soil hydraulic conductivity are identified as the most relevant indicators for IRIP to
define production areas responsible for downslope deteriorations. Multivariate logistic regression
is also used to determine the relative weights of upstream and local topography, uphill production
areas and rainfall intensity for explaining SWF occurrence. This work overall confirms the relevance
of IRIP methodology while suggesting improvements to its core framework to implement better
prevention strategies against SWF-related hazards.

Keywords: surface water flood; intense pluvial runoff; susceptibility mapping model; rainfall radar;
Sentinel-2; logistic regression

1. Introduction

With more extreme precipitations expected in the 21st century due to climate change [1,2],
increased attention has to be paid to the understanding and modeling of floods as of now.
Comparably to river overflowing, inland flood events occurring outside the vicinity of active
waterways have had devastating effects worldwide in the past decades. They have been observed
all around Europe, both in urban and rural areas, and not only around the Mediterranean border
where severe storms happen on a more frequent basis (see [3] for some examples). In France and
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Switzerland, surface water floods have been estimated accountable for respectively 50% and 45%
of all flood damage claims in the past years [3,4]. Triggered by more or less intense rainfall, such
floods can appear anywhere on a given territory depending on land use, soil type and topography.
In this work, the phrase surface water floods (SWFs [3]) will be referred to when considering the
various observed impacts of intense overland flow of rainwater on the land surface, as opposed
to fluvial floods (FFs) which are confined to the proximity of streams. Another commonly used
term is pluvial flood, which is defined as the result of an extreme precipitation event that creates
a flood independent of an overflowing water body. Even though some differences might exist
within these two terminologies (pluvial floods are often used in the urban context), both will be
used as synonyms here. However, this paper will only focus on rural areas, in relation with the
implemented methodology (see Section 2 for details).

Contrary to FFs which can be thoroughly studied in instrumented basins thanks to
accurate time series of streamflow, data associated with SWFs are much harder to come
by. Scarcity of observational data concerning intense overland flow [5–7] assumably stems
from multiple combined factors: (i) its potential to appear anywhere in a given area; (ii) its
ephemeral nature and (iii) the small spatial scale over which it can materialize [3,8,9].
Indirect measures of SWF impacts are thus used to estimate their occurrence in space
and time as well as their severity. We refer to these types of observation as “proxy”
data of intense runoff-related impacts. Many proxies exist. Some are obtained from field
missions providing ground truth information. Others consist in damage claims contained in
insurance records and disaster databases (both agricultural and urban). The latter have been
fairly used in the literature to both analyze the spatio-temporal likeliness of SWF occurrence
and the validation of pluvial flood prediction models (e.g., [4] in France, but for both FFs
and SWFs, [3] in Switzerland and [10] in the Netherlands). Other proxy sources include
aerial photos, videos, interviews or local reports. However, none of these sources can be
considered completely exhaustive. Insurance records, depending on country legislation
and structure, tend to be a very profitable and relevant tool, but suffer from spatial biases
towards economically valuable zones [11]. Hence, SWF occurring in uninhabited and
non-cultivated areas are not recorded. With the growing availability of satellite imagery at
high spatial resolution and high revisit frequency, the detection of SWF footprints on the
ground becomes more and more accessible, at least in rural areas [11]. This paves the way
for large scale, exhaustive, automatic and repeatable identification of land surface damages
in the following days of an extreme weather event, both for operational needs (damage
assessment and restoration works) and evaluation of predictive hydrological models.

Among the great variety of hydrological models, some were specifically designed to study
and simulate overland flow and intense runoff-related processes such as erosion and sediment
yield [12]. Some are physics-based, such as KINEROS [13,14], conceptual, e.g., CEQEROSS [15],
or based on a hybrid approach (LISEM [16] and WEPP [17]). The 2D hydraulic FloodAreaHPC
model was for instance used for pluvial flood hazard public mapping by Tyrna et al. [18] in
Germany. Several geomatics methods have also been developed to map the risks associated
with intense runoff. They mostly rely on decision trees depending on topography, land use
and soil type, and do not perform any hydrological simulation per se (e.g., STREAM [19]).
Other more urban-specific approaches exist. They usually associate susceptibility maps to
vulnerability indicators specific to urban networks (population density, buildings distribution,
role of various infrastructures). Other flood models were tested in this context, for example
on small scale events in Switzerland [20,21]. Bernet et al. [20] assessed the relevance of four
models (among which the FLO-2D distributed physics-based model and the MFD geomatics
method) to predict SWF occurrence in rural areas while Zischg et al. [21] investigated the
performance of the BASEMENT 2D inundation model rather in urbanized areas. Various
sources such as event documentations, field observations, aerial photos or insurance claim
data were used for performance evaluation.

The IRIP method (French acronym for Indicator of Intense Pluvial Runoff) [12] consti-
tutes a static approach to mapping susceptibility towards the three processes associated
with overland flow: production, transfer and accumulation. Without explicit hydrological
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modeling, IRIP simply consists in building score maps ranging from 0 (no susceptibility) to
5 (high susceptibility) through the attribution of binary indicators (0 or 1 value) represent-
ing various spatially distributed landscape factors such as topography, land use and soil
type. Contrary to most distributed hydrological models, IRIP does not rely on an extended
set of input parameters and does not require any calibration. Since this method does not
simulate runoff dynamics per se, its main goal is rather to allow for the implementation of
quick and large-scale preventive strategies against intense runoff hazards. In order to be
fully operational, evaluation using observational data is crucial. If spatially comprehensive
in situ measurements of overland flow are burdensome to come by, Dehotin et al. [22]
managed to implement a field network to monitor rainfall events, soil water content and
surface runoff occurrence during a whole year at nine locations in a small rural watershed.
Along with multi-factor analysis of runoff occurrence, they confirmed that accumulation
and production-prone areas in the IRIP susceptibility maps were associated with a higher
surface runoff frequency (see Figure 18 of [22]). However, they did not investigate further
the relationship between runoff occurrence and IRIP scores. In other works, risk regulatory
zonings of surface runoff and soil erosion as well as post-event survey data of impacts on
infrastructures and transport networks such as roads and railways were used to evaluate
the IRIP model on several case studies in France [23–25]. IRIP was also applied in the
same context to other regions (near Antibes in [26] and the Bayonne area in [27]). Recently,
Braud et al. [6] suggested a robust and generic method to evaluate the IRIP susceptibility
maps using runoff-related proxy data in the railway context. They developed a workflow
based on contingency tables (χ2 test and false alarm ratios) between areas at risk and
observed impacts taking into account hazard levels. However, none of these works could
pretend using largely exhaustive and unbiased proxy data on extensive zones to thoroughly
evaluate the IRIP method.

The goal of this paper is to use areas impacted by all kinds of extreme rainfall-related
disturbances such as gullies, deposits, landslides or mudflows, as proxy data for SWF oc-
currence. Affected zones were identified using an optical and radar remote sensing-based
probabilistic change detection method at 10 m spatial resolution developed in [28,29]. This
new repeatable approach was designed specifically to allow for identification of ground
deteriorations far from the main hydrographic network. Based on land cadastre plot delin-
eation, land cover mapping [30] and supervised classification methods [31], it allows for the
production of maps giving plot-wise probability of damage detection. For this, the machine
learning algorithm relies on intra-plot change pixel statistics of vegetation-specific spectral
indices. Thanks to these proxy data, this study seeks to comprehensively investigate the
quality and limitations of IRIP maps over six watersheds during two extreme Mediter-
ranean events for which the satellite-based method was successfully validated [29]. In
order to study the significance of different factors such as land use, pedology or topography
on SWF occurrence, the sensitivity to the different IRIP input indicators is also analyzed
through contingency statistics and logistic regression, allowing us to suggest improvements
to the current methodology. In other works for instance, Niehoff et al. [32] examined
the role of land cover conditions on storm-runoff generation using spatially distributed
process-based hydrological modeling and found that land-use impacts were specifically
relevant during high intensity storms and in small-scale watersheds.

Since the IRIP method only indicates susceptibility to overland flow processes, compari-
son to actual damages can only be performed if spatially distributed rainfall measurements are
available. Indeed, regardless of a site’s susceptibility to runoff, the presence or absence of soil
degradations following a given event should be conditional to the actual amount and intensity
of rainfall received. Bernet et al. [33] and Spekkers et al. [10] worked on characterizing rainfall
events leading to SWF on a country scale (Switzerland for the former and the Netherlands for
the latter). They both found that high maximum rainfall intensities over short time windows
were a major self-sufficient damage predictor. However, Spekkers et al. [10] emphasized
the need to add runoff generating mechanisms as explanatory variables in his models
to account for the remaining significant amount of unexplained variance. Therefore, in
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order for this study to be as comprehensive as possible, analysis of the IRIP intense runoff
model is performed considering not only the location of SWF damages but also the spatial
distribution of rainfall intensities through radar measurements over the studied events.

To our knowledge, this paper is the first attempt to evaluate a surface runoff suscepti-
bility mapping model using SWF damage proxies derived from satellite remote sensing. Its
strength lies in the combination of large scale validated damage maps and rainfall radar
measurements to estimate the relevance and suggest improvements to the IRIP method
with an operational prospective objective. In addition, the damage proxy maps along with
the methodology applied in this paper should be adequate to evaluate the performance and
limitations of any other surface runoff mapping model. The paper is organized as follows:
Section 2 describes the study areas as well as the multiple materials and methods that were
set up in this work. IRIP evaluation results are outlined in Section 3, along with a sensitivity
analysis of the model’s input indicators for the production map. The relevance of IRIP’s
accumulation factors and precipitation intensity to predict SWF proxy locations is also
investigated through logistic regression in that section. Results are discussed in Section 4
while Section 5 presents the concluding statements and opens up on future methodological
developments for both remote sensing of SWF and modeling of pluvial runoff.

2. Materials and Methods
2.1. Study Areas

This paper focuses on two extreme flash-flooding Mediterranean events. One of them
occurred in the Aude department on 15 October 2018, while the other took place in the
mountainous region of Alpes-Maritimes on 2–3 October 2020 (“tempête Alex”). Although
landscape and topography greatly differ between these two regions, both episodes induced
heavy losses from FFs and SWFs due to high intensity precipitations (up to 250 mm
locally in 6 h in Aude [34] and 90 mm in only 1 h at Coursegoules rain station in Alpes-
Maritimes [35]). Three watersheds in Aude were selected to be modeled by IRIP over a
region of interest of more than 1700 km2: Fresquel, Aude-Sou-Lauquet and Aude-centre.
For the Alpes-Maritimes study area, the Tinée, Vésubie and Roya basins, representing
1400 km2 of steep mountainous woodlands were examined. Selection of these 6 catchments
corresponded to the regions of interest over which identification of SWF damages had
already been conducted in [29] (see Section 2.2). In this paper, in relation to the work of
Cerbelaud et al. [29], evaluation of the IRIP method relied on plot territorial subdivision.
For this, the Aude and Alpes-Maritimes official department land cadastre datasets were
retrieved. Characteristics of the study areas with regard to SWF detection are detailed in
Table 1 (unaffected versus damaged plots, see Section 2.2).

Table 1. Characteristics of the study areas depending on satellite detection of SWF damages. Urban
areas and plots within 50 m of an active stream were removed from the analysis (Section 2.5).

Aude Alpes-Maritimes

Unaffected Damaged Unaffected Damaged

Number of plots 73,023 12,477 87,758 6591
Total area (km2) 626 191 628 242

Plot size (ha): 25–50–75th 0.14–0.32–0.68 0.36–0.75–1.62 0.03–0.10–0.28 0.09–0.25–0.88
Slope (◦): mean (sd) 6.8 (6.8) 3.4 (5.2) 27.4 (12.0) 24.3 (15.7)

Mean—max—sd rainfall over:
15 min (mm) 12–23–4 13–23–4 17–39–7 18–37–7
60 min (mm) 30–62–10 31–62–10 38–107–18 41–107–20

24 h (mm) 128–233–42 129–233–41 209–529–80 234–529–87

In addition, a map describing the location and topography of all the watersheds in
both study sites is provided in Figure 1.
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Figure 1. Location and maps of the study areas in the South of France. Top left: Aude (Fresquel,
Aude-Centre and Aude-Sou-Lauquet watersheds); Bottom right: Alpes-Maritimes (Tinée, Vésubie
and Roya watersheds).

2.2. Sentinel Plot-Based Change Detection (SPCD) Method: SWF Damage Proxy Maps

This study is directly subsequent to the works of Cerbelaud et al. [29]. Because actual
intense rainwater runoff leading to SWFs is hardly ever observable, they used an original
approach aiming at identifying the related footprints on the ground, especially at a distance
from the main hydrographic network. The idea was to associate the plot delineation from
the official French land cadastre, land use (LU) data and closely timed images from optical
(Sentinel-2) and SAR (Sentinel-1) remote sensing to develop a repeatable plot-based change
detection method. Identification of damaged areas at 10 m spatial resolution relied on using
a machine learning (ML) algorithm, namely the Gaussian Process Classifier (GPC [31]).
Explanatory variables consisted of plot-wise statistics depicting various spatial patterns
measured from the temporal variations of vegetation-specific spectral indices. The model
was run with a single training sample from one study site, while validation was performed
on three distinct events in contrasted environments or at a different season. For this,
numerous ground truths confirmed by photo-interpretation of very high resolution (VHR)
optical imagery (Pléiades satellite, IGN orthophotos) were collected. Interested readers will
refer to [11,28,29] for complete details about the method and the associated results.

In this work, the maps produced by this satellite-based method (hereafter referred to
as SPCD method, for “Sentinel Plot-based Change Detection” method) will be considered
as proxy data of SWFs for the evaluation of IRIP susceptibility maps (Figure 2). Although
damage identification of ground truths was not completely exhaustive on the Aude and
Alpes-Maritimes validation samples (producer accuracies from 70% to 85%), false discovery
rates (or commission errors) inferior to 9% partly ensured that most areas detected by the
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SPCD method could be considered with great confidence as proxy data for IRIP maps.
Moreover, the very large areas covered (more than 1000 km2 for both study sites) could
reasonably guarantee consistent and significant evaluation statistics.
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2.3. The IRIP Susceptibility Mapping Method

The present description of the IRIP model relies mostly on the original methodolog-
ical paper from Dehotin and Breil [12]. It is inspired by [6,24,25], but with up-to-date
improvements especially concerning the incorporation of rainfall climatological data in
the methodology. The IRIP method was designed to represent all the processes related to
intense surface runoff occurrence from (i) the generation to (ii) the transfer and (iii) the
accumulation of rainwater flow anywhere on a given territory. It is a geomatics method that
performs generic mapping at the basin scale without any explicit hydrological modeling.
It provides distributed information on the three processes associated with SWF hazards
by defining susceptibility levels from 0 (no risk) to 5 (very high risk). For this, 5 binary
indicators (=1 if favorable to runoff, =0 otherwise) are computed and summed up for
each of the three susceptibility maps, using four types of input data commonly found in
hydrological modeling. As the IRIP model focuses on SWF hazards occurring outside the
river network, it is complementary to FF risk mapping. First of all, in order to initialize
IRIP, a Digital Elevation Model (DEM) of both study sites (IGN BD ALTI® 25 m here) needs
to be processed to determine watershed boundaries and flow directions. The final spatial
resolution of the IRIP maps is constrained by that of the DEM.

2.3.1. Production Map

Overland flow of rainwater is more likely to arise over poorly infiltrating surfaces,
shallow or saturated soils, and anywhere with little topography. These conditions can
result in runoff buildup by infiltration excess and/or saturation excess following heavy
rainfall [36]. Land use (LU) data allows discriminating impervious bare surfaces, prone
to the production of surface runoff, from infiltrating and rough surfaces that can absorb
rainwater and slow down overland flow. Here, each of the 23 classes of the OSO French
land cover product [30] available at a 10 m spatial resolution are designated as prone to
surface runoff (=1: urban and agricultural, bare grounds mostly) or unfavorable (=0: forests,
woody heaths, grasslands) to define a first binary indicator (Figure 3a).
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Figure 3. Framework of the IRIP method for generation of intense runoff susceptibility maps:
(a) production, (b) transfer and (c) accumulation. * “Permeability” and “Saturated water content”
indicators are computed by comparing the values found respectively for the saturated hydraulic
conductivity (Ks) and the saturated water content over the first 30 cm of the soil (θsat) (using ESDAC
hydrodynamic characteristics) to the 30-year 1-h and 24-h rainfall intensities (30-year recurrence
interval). ** “Slacking crust” and “Erodibility” indicators are computed according to Cerdan et al. [37]
using a soil texture triangle and a simple threshold (favorable to runoff if ≥3). *** For topography
indicators, slope and (Beven) topographic index are compared to thresholds δs and δt derived using
a k-means clustering algorithm (k = 2).

Three other indicators for the production map are derived using soil type (ST) in-
formation from the European Soil Data Centre (ESDAC) [38]: slacking rate, permeability
and saturated water content. Within the ESDAC database, clay, sand and silt proportions
(%) for soil texture are available at 500 m resolution for all of Europe. Cerdan et al. [37]
methodology is then used to determine slacking (and erodibility for the transfer map, see
next subsection) rates using soil texture triangles. Hydrodynamic characteristics of the
top 30 cm soil layer such as saturated hydraulic conductivity (cm.day−1) and saturated
water content (cm3.cm−3) can be directly downloaded at 250 m resolution through ESDAC
(thanks to hydraulic pedotransfer functions developed by Toth et al. [39]). In turn, these two
attributes are faced respectively with the 1-h (for infiltration excess) and 24-h (saturation
excess) mean rainfall intensities corresponding to a 30-year return period for each study
area. This period was selected because most substantial disorders seem to start appearing
on hillsides at such a recurrence interval. For this, a large 10-year time series (2006–2016)
of quantitative precipitation estimations from Panthere radar-based gridded product (see
Section 2.4 for more details) was collected over France at a 5-min time step and 1 km2

spatial resolution.
Furthermore, the DEM is processed to consider a combination of the local slope and

Beven topographic index [40,41] as a 5th indicator related to topography (Figure 3a). For
these two variables, a k-means clustering algorithm is applied making use of both the
iterative minimum distance [42] and the hill-climbing [43] methods to derive respective
thresholds δs and δt and divide the grid values into two classes (=1 if >δ, i.e., favorable to
runoff, and =0 if ≤δ). This last indicator is then assigned a score of 1 if either the slope or
the topographic index is favorable, and 0 if both are not. The Beven topographic index is
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used because it reveals areas prone to buildup of surface water, where both the upslope
drained area is high (resulting in large potential for overland flow) and the local slope is
small (preventing a quick water discharge). It is defined as follows:

TI = ln
( a

tan b

)
, (1)

where a stands for the upslope drained area and tan b the local slope in radians. Eventually,
urban areas identified in the OSO map are systematically given a favorable value of 1 for
all four LU/ST indicators for the computation of the production map.

2.3.2. Transfer and Accumulation Maps

The first input indicator for the two other maps of susceptibility to transfer and
accumulation reflects the need for significant uphill runoff production to induce SWFs.
Therefore, for each grid cell, the modal value (i.e., the most represented value) of all IRIP
production pixels is estimated among the associated uphill drained area. If this value is
greater or equal to 3, the first indicator for both the transfer and the accumulation maps is
deemed favorable (=1), and unfavorable otherwise (Figure 3b,c).

Runoff transfer occurs in areas where water can build up speed and flow downwards [44].
Consequences are eroded bedrocks and flattened/uprooted vegetation. A soil erodibility
indicator is thus introduced by applying Cerdan et al. [37] method (as for slacking).

Runoff accumulation materializes where water can slow down or even get trapped and
where flows can gather and intensify to induce SWF damages such as mud and sediment
load deposits. Consequently, the Beven topographic index is adopted alone using the same
threshold δt to determine a 0 or 1 contribution to the accumulation map.

Susceptibility maps to transfer and accumulation of surface runoff are further com-
puted through 3 topography-related indicators (Figure 3b,c): drained area, local slope and
break of slope. The drained area indicator reflects the need for important uphill contribu-
tion, with a 2.5 ha threshold derived from Lagadec [5]. The local slope and break of slope
indicators have opposite conditions for transfer and accumulation. Indeed, steep slopes
favor transfer while low slopes facilitate water accretion. The same threshold δs was used
in both cases. Eventually, convex breaks of slope are deemed favorable to overland flow
transfer, as opposed to concave breaks for accumulation.

The final accumulation maps on the six studied watersheds can be seen in Figure 4
(25 m resolution), along with the Sentinel imagery subset chosen for the SPCD proxy maps
(Section 2.2 and Figure 2). For each study area, all plots featuring the same maximum IRIP
accumulation score X are referenced in the remainder of this paper as “IRIPX“ plots.
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Sou-Lauquet watersheds) and (b) Alpes-Maritimes (Tinée, Vésubie and Roya watersheds) areas.
Susceptibility scores to surface runoff accumulation range from 0 (no or low susceptibility) to 5 (very
high susceptibility).
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2.4. Rainfall Radar Data

Quantitative precipitation estimations (QPEs) by Panthere radar-based gridded prod-
ucts from Météo-France were retrieved on 48 h windows around each of the two events
(Figure 5, [45]). These rainfall estimates rely on the same basic physical principles as all
active radar-based instruments. Looking up from the ground, the goal is to use relation-
ships between signal attenuation mostly in the X- or C-band and the drop-size distribution
(DSD) to estimate the latter. The Panthere QPE uses a dual-polarized C-band antenna
to estimate rainfall at a 1 km2 resolution every 5 min. Since cloud physics and weather
radar polarimetry are still vast open research activities, radar signal inversion to estimate
precipitations still suffers from various sources of uncertainties and constitutes a very
challenging topic in hydrometeorology [46,47]. Nevertheless, radar data was shown to
be more suitable than rain gauge stations to distinctly capture and characterize extreme
precipitation at fine scales and over short durations [48].
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Figure 5. Maximum 60-min quantitative precipitation estimation (QPE) measured by Panthere
radar-based gridded products from Météo-France on the (a) Aude and (b) Alpes-Maritimes events.

For this work, maximum rainfall amounts were computed over consecutive periods
of 5, 15, 30, 60, 180, 360, 720 and 1440 min on the overall 48 h data windows available, for
each 1 km2 grid cell of the study areas. It allowed capturing the different maximum rainfall
intensities experienced by every 1 km2 area over a given period of time, even though each
grid cell may have experienced them at different times within the event.

2.5. Validation Workflow and Evaluation Metrics

Many methods have been used for the evaluation of flood mapping models using
localized flood impacts [6,20,21,24,25]. The vast majority of them are based on the use of
contingency tables and the computation of detection rates and false-alarm ratio. For IRIP,
all works to date have used buffers around localized impacts (25 or 50 m) to compensate
for uncertainties and approximations in flow paths derived from DEM data (1 or 2 pixels
of the BD ALTI® 25 m). In [6], for instance, if at least one IRIP transfer or accumulation
pixel with a score ≥ 4 out of 5 was found within the buffer zone around an impact, it was
considered as a “hit”. In this study, following the SPCD damage identification operating
mode, detection rates and false alarms were defined and measured at the plot scale (see
Table 1 for size characteristics). Because of the spatial resolution of Sentinel satellite imagery
(10 m), most SWF damages identified by the SPCD method resulted from accumulation
mechanisms. Indeed, erosion footprints are on average more elongated (only a few meters
wide) and thus often require finer image resolution for identification. Therefore, only IRIP
accumulation pixels were considered for evaluation in this work.

When facing IRIP with localized SWF impacts, information on rainfall spatial and
temporal distribution is critical to better delineate the evaluation area, as no surface runoff
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should be observed from little rainfall accumulation or low-intensity precipitation. Given
that the events are often very localized in time, the use of distributed products with short
time steps (e.g., 5 min) appears also essential [49].

In this work, we thus propose a quantitative comparison between the IRIP accumula-
tion maps and the SPCD-derived SWF damages taking into account the maximum rainfall
intensities over short time steps (Figure 6).
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Figure 6. Evaluation framework of this study. Both SWFs and FFs are identified in the SPCD maps.

Within each cadastre plot of the regions of interest, we selected the maximum IRIP
accumulation score (25 × 25 m2 pixels) for evaluation. The maximum rainfall intensity
measured over 60 consecutive minutes during a 48 h window around the event was de-
termined at its native spatial scale of 1 km2. For the SPCD probability maps, a simple
0.5 threshold was set to determine whether the plot belonged to the “damaged” or “un-
affected” class. In order to be sure that most damages were due to surface runoff (SWF)
and not to river overflowing (FF), a 50 m buffer zone was applied around all active streams
using the French BD Carthage 2017 [50]. All plots within this buffer were then removed
from the analysis (damaged or not). In addition, urban areas were also removed from the
evaluation framework given that SPCD does not perform detection on this particular land
cover type (mainly because of its spatial resolution). Other variables used to determine the
relative influence of each IRIP input indicator to explain SFW damage location were also
aggregated at the plot scale (see Section 3.3 for the associated results).

2.6. Multivariate Logistic Regression

Logistic regression is a simple and very efficient type of machine learning algorithm for
categorical classification [51]. It consists in modeling the probability of a discrete outcome
Y (binary here), called dependent variable, given a set of input data X = (x1, . . . , xn), called
explanatory variables or predictors (Figure 7). For this, the conditional probability of Y
being equal to 1 (as opposed to 0), knowing X, is assumed to be given by a sigmoid-type
function called logistic function f: t → f(t) (see Figure 7). The regression coefficients βi
are usually estimated using a maximum likelihood (ML) estimation as loss function. A
seemingly analogous measure of the R2 found in linear regression is McFadden’s pseudo
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R-squared [52], ρ2, which gives a representation of the extent to which the maximized
likelihood of the fitted model is close to 1 using the available predictors. It is important to
be aware that, empirically, ρ2 usually takes much lower values than those found for R2 in
linear regression, as stated in [53] (p. 306): “while the R2 index is a more familiar concept to
planner who are experienced in OLS, it is not as well behaved as the ρ2 measure, for ML estimation.
Those unfamiliar with ρ2 should be forewarned that its values tend to be considerably lower than
those of the R2 index. [ . . . ]. For example, values of 0.2 to 0.4 for ρ2 represent excellent fit.”.
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Figure 7. Representation of the functioning of a logistic regression. For each explanatory variable,
the odds ratio OR quantifies the change in the odds of the outcome variable Y being equal to 1 (here
of a plot being damaged) for a ∆x unit increase in the predictor x.

Results are commonly discussed through the computation of odds ratios (ORs). De-
pending on the nature of predictors, they need to be computed by taking into account the
range over which they roughly evolve. In the Results Section 3, OR represent, for each
explanatory variable, the change in the odds of Y being equal to 1 (as opposed to 0) when
the predictor varies between its 25th and 75th percentile values (∆x variation in Figure 7).

3. Results
3.1. Evaluation of IRIP Maps through Rainfall Estimation and Damage Identification

Spatial statistics and contingency graphs were produced following the evaluation
framework on the two studied events and are summarized in Figure 8. Firstly, 52% of the
SPCD-identified damaged plots during the Aude event featured an IRIP accumulation
score of at least 4 out of 5 compared to 26% for the rest of the unaffected area. These ratios
amounted to 41% versus 13% for Alpes-Maritimes (Figure 8, left panel). Considering the
number of plots involved (slightly less than 100,000 for each event), IRIP score differences
between damaged and unaffected areas were extremely significant (χ2 test, p < 0.0001).
In addition, for the latter event, 75% of damaged plots were tagged with a 3+ score, as
opposed to 38% for the remaining lands. As a consequence, these first simple results
reveal that IRIP scores do provide a fairly good indication towards susceptibility to SWF
occurrence. Nevertheless, IRIP clearly does not give a perfectly discriminating breakdown
of affected areas. The Aude region in particular seemed to be overly tagged at medium or
high risk of intense overland flow occurrence (IRIP scores ≥ 3 for more than 70% of the
unaffected plots) in the current IRIP framework, especially regarding level 3. This calls for
improvements to the methodology to better discriminate certain susceptibility levels, for
instance with a more extended score scale (e.g., from 1 to 10).



Water 2022, 14, 393 12 of 22

 
 

 

 
Water 2022, 13, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/water 

 

 Figure 8. Left panel: Distribution of IRIP accumulation scores among unaffected and SPCD-identified
damaged plots in both study events. Right panel: Ratio of SPCD-identified damaged plots among
all plots featuring a given IRIP accumulation score. The X-axis represents the minimum threshold
considered for rainfall intensity over 60 min (Panthere data). Color bars refer for each scatter
point to the number of plots over which the ratio is computed. Upper and lower panels correspond
respectively to Aude and Alpes-Maritimes areas. Color legend for IRIP scores applies to all graphs.
Lecture note, top right panel: for instance, 25% of IRIP4 plots (in red) were identified as damaged
over the Aude study area. This ratio increases up to 36% when considering all plots that experienced
at least a maximum rainfall intensity of 50 mm within 60 min.

Secondly, once again with statistics performed over a great number of observations,
a clear and significant segregation appeared in terms of damage proportion among the
various IRIP accumulation scores (Figure 8, right panel). For the Aude (Alpes-Maritimes)
event, 13% (9%), 25% (17%) and 56% (55%) of respectively all IRIP3, IRIP4 and IRIP5 plots
were detected as damaged by the SPCD method. Moreover, these proportions increased for
both events when considering the areas that experienced higher rainfall intensities. Indeed,
the proportion of damaged IRIP5 (IRIP4) plots was found to increase up 20% (10%) for
the highest quantiles of precipitation (Figure 8, right panel). For both events, following
a rather flat and stable part, the 35–40 mm.h−1 threshold seemed to trigger an increase
in the proportion of damaged plots among those indicated at risk by IRIP. Interestingly,
this threshold corresponds to a saturated hydraulic conductivity of around 1.10−5 m.s−1,
exceeding most commonly found values except for sandy soils [54]. Such rainfall intensity
also corresponds to between 5 and 10-year return periods for Aude and Alpes-Maritimes
regions [45]. More interpretations are provided in Sections 4.1 and 4.2. Consequently, IRIP’s
score methodology can be confirmed as relevant to define susceptibility levels towards
intense surface runoff occurrence.

Eventually, a negative relationship between the mean IRIP accumulation scores and
rainfall intensities was found over damaged plots (Figure 9). This tendency was present
for all time periods of rainfall measurement, but was the strongest for the lowest ones
(the 5, 15 and 30-min precipitation intensities). Therefore, SWFs rather occur over more
susceptible areas when rainfall is lower. This confirms that the higher the intensity of
rainfall, especially during short time windows, the more areas should be prone to intense
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overland flow whatever their susceptibility, and thus the less high IRIP scores should be
relevant to predict SWF occurrence.
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Figure 9. Mean IRIP accumulation scores of SPCD-identified damaged plots (5th, 25th, 50th, 75th
and 95th percentiles) as a function of the maximum rainfall amount measured in 5 min (Aude and
Alpes-Maritimes, ~19,000 plots). Where rainfall was comparatively lower, SWFs were detected on
average over more susceptible areas.

3.2. Sensitivity Analysis of IRIP through Land Use and Pedological Characteristics Used for the
Production Map

Land use (LU) and pedological characteristics (ST) are crucial factors controlling the
generation of overland flow following heavy rainfall. In this section, a sensitivity analysis
of IRIP final evaluation scores is performed on the 4 LU/ST-related input binary indicators
for the IRIP production map (Figure 3a): land cover, permeability, saturated water content
and slacking crust. For this, each of these indicators was removed from the computation of
the production map, leading to lower final scores for the accumulation map.

Land cover and permeability were found to be the highest contributors to overall
IRIP accumulation scores (Table 2, middle columns). The detection rate, defined as the %
of IRIP≥4 plots within all SPCD-identified damaged plots, was particularly lower when
these two indicators were removed from the production score board (Table 2, left columns).
On the contrary, the saturated water content and slacking crust contributed little to the
final evaluation scores. This is consistent with the flash-flood dimension of the studied
events, where Hortonian runoff is expected to play a major role, along with land use
characteristics [32]. The false alarm rate on IRIP≥5 plots, i.e., the % of unaffected plots
within all IRIP≥5 plots, was around 45% for both events, and down to around 25% when
considering the areas that experienced the most precipitations. Oddly, false alarm rates
decreased when removing certain indicators, in some cases dramatically (e.g., −14% on
Aude with no permeability in high rainfall plots) pointing out that these factors were
responsible for wrongly indicating high susceptibility in areas that were left unaffected. The
negative effects associated with the removal of the most contributing indicators, i.e., land
use and permeability, were found to add themselves up and even be amplified (as in Aude)
or overlap (Alpes-Maritimes) when removed together. No systematic conclusion could
thus be drawn from it. These outcomes call for a more thorough sensitivity analysis of
IRIP regarding production factors. Since IRIP currently only considers a binary production
contribution depending on a score threshold of 3 out of 5, a better discrimination of
the influence of this factor on the final accumulation map should be implemented (see
Section 4.3 for suggestions).
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Table 2. IRIP detection rate (number of IRIP≥4 plots among SPCD-identified damaged plots), ratio
of overall IRIP≥4 plots and false alarm rate on IRIP≥5 plots on both study events in the default
framework. Differences measured on these ratios are given in the following rows, depending on
which indicator was removed from the computation of the production map.

Aude Alpes-Maritimes

Detection
Rate (%)

Ratio of
IRIP≥4 Plots
Overall (%)

False Alarm
on IRIP≥5
Plots 1 (%)

Detection
Rate (%)

Ratio of
IRIP≥4 Plots
Overall (%)

False Alarm
on IRIP≥5
Plots 1 (%)

Default framework: All indicators 52% 29% 44% (26%) 41% 15% 45% (26%)
No land use −7% −6% −1% (−10%) −12% −9% +2% (+2%)

No permeability −7% −6% −2% (−14%) −12% −9% −5% (−3%)
No (land use + permeability) −30% −19% −0% (−2%) −16% −10% −5% (−1%)
No saturated water content −2% −2% +0% (+6%) −1% −1% +0% (+3%)

No slacking crust −0% −0% −1% (−2%) −3% −1% −2% (+2%)
1 Numbers in parentheses for the false alarm rate refer to the cases for which a minimum threshold of maximum
rainfall intensity (90th percentile) was considered for contingency statistics.

3.3. Relevance of Input Indicators for IRIP Accumulation Maps and Rainfall Estimates to Explain
SPCD-Derived SWF Locations Using Multivariate Logistic Regression

In parallel to IRIP’s formal evaluation, a multivariate logistic regression was run to
try to explain the location of damaged plots as detected by the SPCD method. To this
end, the input indicators for the IRIP accumulation map were used before being binarized.
Prior to this, correlation statistics were performed on all plots within each study site to
avoid collinearity issues within the predictors. The drained area was found correlated
(>0.4, p-value < 0.001, not shown) with the Beven topographic index and was thus dropped
from the set of explanatory variables. Since the model seeks to explain the location of
deteriorations that were event-specific and over a large region, rainfall distribution needed
to be added among the predictors so as to determine the genuine influence of each IRIP
indicator towards SWF occurrence. The list of input variables for the logistic regression
was thus eventually composed of:

i. Modal value for IRIP uphill production score, otherwise called mode (from 0 to 5,
depending mostly on land cover and soil type, see Figure 3a);

ii. Slope in radians (roughly from 0 to 30◦ in Aude and to 70◦ in Alpes-Maritimes);
iii. Break of slope (convex, flat or concave);
iv. Beven topographic index (ranges roughly from 0 to around 25);
v. Maximum rainfall intensity measured over 60 consecutive minutes during a 48 h

window around the event.

As the multivariate logistic regression was performed at a plot scale, plot-specific
predictors needed to be computed. They consisted of the maximum pixel value contained
inside each plot, except for the break of slope for which the presence of a concave break
was simply searched for.

Results are displayed in Figure 10. Pseudo R squared values reached 0.12 for Aude
and 0.16 for Alpes-Maritimes, which indicated fair to good fit of the model [53]. Substantial
conclusions can be drawn from the odds ratios. An OR greater than 1 implies that the odds
of a plot being damaged increases when the predictor varies between its 25th and 75th per-
centile values. Despite the differences in landscape and topography between the two sites,
odds ratios were very similar for the Beven topographic index (around 2.20), the modal
value for IRIP uphill production score (1.95) and the maximum rainfall intensity (1.25).

Interestingly, the local slope index behaved in opposite manners at the two study
sites. For Aude, low local slopes were associated with a greater probability of SWF damage
occurrence, as opposed to high slopes for Alpes-Maritimes. This is highly relevant as to
the nature of the deteriorations detected in the two sites. For the Aude floods of 2018,
most were due to water accretion in low areas within agricultural plots. On the contrary,
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during the Alex storm in Alpes-Maritimes, a great number of SWFs were observed through
landslides and mudflows on steep mountain slopes. Either way, the odds ratios for the
maximum local slope predictor were rather low, especially in Alpes-Maritimes (1.05), which
pointed to a smaller weight among the overall influence of topography and rainfall factors
for intense overland flow occurrence. Eventually, the presence of concave breaks of slope
was found either non-significant (p-value > 0.1 on Aude) or with a fairly low odds ratio
(19% increase in odds on Alpes-Maritimes).
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Figure 10. Odds ratios representing the change in the odds of being damaged (as opposed to non-
affected) when the predictor varies between its 25th and 75th percentile values. Box height indicates
the 95% confidence interval for the OR. McFadden pseudo R squared ρ2 are given in the figure
subtitles. All coefficients are statistically significant at the 1‰ confidence interval, except for the
concave break of slope indicator in the Aude regression. For instance, the odds of being damaged are
multiplied by 2.3 (or increased by 130%) when the Beven topographic index increases by roughly
5 points on the Aude study event.

Examples of SWF damages identified by the SPCD method are displayed in Figure 11
(Aude) and Figure 12 (Alpes-Maritimes). In Figure 11, the plots received a maximum 46 mm
of rainfall within 60 min during the event. Gullies can be observed downhill from high local
slopes and within a water pathway materialized by flow direction arrows and high values
of the Beven topographic index. Furthermore, IRIP uphill production mode is close to its
maximum value of 5. The resulting logit score (probability of damage p) from the fitted
model is 0.89, indicating the likely presence of an identified SWF, as confirmed by the SPCD
damage map. In Figure 12, a mudflow detected by the SPCD method in Alpes-Maritimes
was similarly found a high logit score of 0.78, in relation with a 41 mm.h−1 rainfall intensity
and incriminating topographical and runoff production factors.

Overall, the conclusions from the logistic regression pointed to a larger influence of the
Beven topographic index and the IRIP uphill production mode in explaining the location of
SWF damages. Consequently, greater weights and larger segmentation should be attributed
to these indicators in comparison with the slope and break of slope factors (see Section 4.3).
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Figure 11. Examples of lands affected by SWF with gullies in Aude. Maximum rainfall intensity in
60 min (Panthere data), associated characteristics used by IRIP and resulting logit score on an affected
plot (black contour) can be seen in the top left panel. Top left figure: Pléiades image from 3 November
2018. Top right figure: Probability of damage detection by SPCD method. Bottom left figure: Flow
direction, local slope (◦) and Beven topographic index (DEM-derived). Bottom right figure: IRIP
uphill production mode used in the generation of IRIP accumulation map.
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Figure 12. Examples of lands affected by SWF with mudslides in Alpes-Maritimes. Maximum
rainfall intensity in 60 min (Panthere data), associated characteristics used by IRIP and resulting
logit score on an affected plot (black contour) can be seen in the top left panel. Top left figure: IGN
orthophotos from 5 October 2020. Top right figure: Probability of damage detection by SPCD method.
Bottom left figure: Flow direction, local slope (◦) and Beven topographic index (DEM-derived).
Bottom right figure: IRIP uphill production mode used in the generation of IRIP accumulation map.
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4. Discussion
4.1. IRIP SWF Evaluation Results

SWF inundation models have usually featured rather low performances when faced
with localized impacts. Indeed, countless factors have to be taken into account simultane-
ously, making it very hard to implement comprehensive evaluation frameworks [10]. In
Bernet et al. [20], four different models, from distributed physics-based to “only” DEM-
based, were evaluated at the grid cell level. All models had a low evaluation performance
with detection rates around 20–30% for half of the case studies, and around 40–50% for the
best models on some other events. Only one event was well captured by all the models
(see Figure 6 of [20]). The results were limited due to poor observational data based on an
external map that indicated ponded water areas but omitted overland flow paths. The very
small areas covered in each case study (~0.5 km2) did not allow either for a good rainfall
representativeness with radar measurements being thus constant at the 1 km2 scale.

Concerning IRIP, results may differ significantly between pixel-based and buffer-based
evaluation methodologies. But there is always a trade-off between detection rates and false
alarm rates. Lagadec et al. [24] evaluated IRIP maps on the Lézarde catchment (210 km2,
northern France) using buffers around proxies derived from witness interviews and field
expertise. From 41 incidents listed on 21 railway sections from 1995 to 2012, promising
probabilities of detection were achieved (73–90%) using IRIP ≥ 4 transfer and accumu-
lation scores. High false alarm ratios were yet obtained (77–92%), which was explained
by the presence of hydraulic mitigation structures as well as the lack of data concern-
ing rainfall spatial variability of the associated events. In another work, detection rates
between 94 and 100% and false alarm rates from 20 to 26% were reached by comparing IRIP
maps to 17 railway sections selected for hydraulic regeneration works (out of 61 sections)
on the Bréauté to Fécamp railway line (20 km long) [25]. These great values partly resulted
from the limited number of observations combined to a very good field knowledge that
allowed to “calibrate” IRIP, using specific input data and parameterizations adapted from
the default framework. Braud et al. [6] eventually assessed the IRIP model on an 80 km
railway line in Normandy (north of France) using a comprehensive database of runoff-
related impacts (59 sections) covering the whole 20th century. To overcome high false
alarm ratios, they combined susceptibility levels to vulnerability stakes and mitigation
measures in a unique evaluation framework. By doing so, they improved the false alarm
ratio from 62% to 28% while keeping a steady detection rate of 86%.

In this work, no adaptation was made to IRIP’s default framework and very generic
countrywide data were used for both sites. Fair evaluation scores were obtained (around
50% detection rates with 25% false alarms on high precipitation areas), but on an infinitely
more significant and exhaustive database (1000 km2 + area with some 90,000 plots for
each event) and taking into account rainfall intensity distribution. Furthermore, as SWF
evaluation proxies obtained through the SPCD method are derived solely using radiometric
information from multispectral images (in addition to not relying on damage claims), they
are independent from IRIP’s input factors (which are mostly DEM-based), making this
comparison highly meaningful.

Still, rather low results may be explained on IRIP’s part by several rationales: (i) the
coarse resolution of IRIP input data (25 m for the DEM, 10 m for land use and 500 m for
pedology); (ii) potentially inadequate land use and soil texture susceptibility knowledge;
(iii) the presence of mitigation structures such as hedges, terraces and hydraulic networks
that are not taken into account in IRIP and (iv) antecedent soil moisture conditions which
are overlooked. The very large dataset of SWF occurrences derived from satellite imagery
also suffers from uncertainties inherited from the Sentinel plot-based change detection
algorithm: (i) land cadastre subdivision and miscellaneous plot sizes; (ii) LU homogene-
ity hypothesis within plots and (iii) instrument spatial resolution and location accuracy
(see [29] discussion for more details). Nevertheless, because IRIP does not aim at exactly
predicting SWF damages but rather at giving a broad representation of the areas that are
more or less susceptible, all the results of the present study already appear very satisfying.
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4.2. Space-Time Distribution of Rainfall and SWF Occurence

In this work, the IRIP method was confirmed as relevant to indicate susceptibility
towards surface runoff occurrence considering damage detection by satellite imagery but
also rainfall distribution during two extreme events (Figures 8 and 9). The 35–40 mm.h−1

threshold triggering an increase in the proportion of damaged plots among all high IRIP
score plots was consistent with the findings of Dehotin et al. [22]. Indeed, from the results
of a 1-year field experiment, they found that surface runoff was observed (either from
saturation or infiltration excess) in around 40% of measured events when rainfall intensity
was lower than 30 mm.h−1, 80% between 30 and 60 mm.h−1, and up to 100% for 60 mm.h−1

and more. However, these observations did not mention whether significant deteriorations
of the land surface had resulted from the occurrence of surface runoff. Marra et al. [49]
studied the relationship between debris flow and distribution of precipitation in the eastern
Italian Alps. They revealed that the event-cumulated rainfall field (from radar and rain
gauge network) systematically exhibited a peak corresponding or close to the debris flow
initiation points, with an average 33 mm triggering rainfall mean in one hour (see Figure 5
of [49]). Bernet et al. [33] analyzed SWF damage in Switzerland using geolocated insurance
claims on a national scale. Time series of precipitation were linked to the location and date
of deteriorations over a large and complex region in terms of topography, pedology and
geology. With a gridded precipitation product based on both rain gauges and radar data,
they showed that a thresholding method based on local quantiles of maximum intensity
(90th) and the total sum of event precipitation (98th) allowed for an excellent identification
of events leading to significant SWF occurrence. Naturally, a single absolute threshold
could not be set for a countrywide prevention strategy.

Considering the return periods associated with the SWF-triggering rainfall intensities
(5 to 10 years), the 30-year return period currently used to compute IRIP soil indicators (Ks
and θsat) could be lowered. Such thresholds derived from radar-based data yet have to be
taken with caution. Indeed, if the spatial distributions obtained from radar are generally
more satisfactory than from rain gauge interpolation during heavy storms [48], many
studies suggest that radars tend to underestimate absolute rainfall peaks compared with
rain gauges up to more than 50% [55–59]. Moreover, it is known that peak intensity biases
from radar products can also be important when considering low aggregation timescales
(one hour or smaller) in heavy rain ([60] see their Figure 9). Eventually, finer spatial
distribution of rainfall could be obtained using downscaling techniques (for example deep
learning) or kriging methods with rain gauge data. This would allow better grasping the
extent to which the total amount, the timing, or the maximum intensity of precipitation
influence SWF occurrence.

4.3. Improvement Suggestions to IRIP Accumulation Map Computation

Logistic regression is a very common and practical tool that has already been used
in related geosciences studies. It has been achieved in particular for landslide hazard
assessment from aerial photographs and field surveys, in order to design classification
models [61]. In that work for instance [61], landslide locations were found to be explained
by, in descending order of the most influential factors: (i) land use (from Landsat images);
(ii) slope; (iii) topographic aspect; (iv) lithology; (v) Normalized Difference Vegetation
Index (NDVI, obtained by the authors from SPOT images) and (vi) topographic curvature.
Such results can then be used to tune weights for optimal combinations of landscape
determinants in models.

It is very important to acknowledge that precipitation intensity location will always
remain a high driver of SWF occurrence [10,33] (OR around 1.25 in logistic regression,
Figure 10). IRIP is not designed to take it into account (except in terms of climatological
likeliness). Therefore, IRIP’s goal is not to give a perfect representation of where SWF
damages have materialized or are going to in the future. However, no physics-based
distributed hydrological model can pretend doing so exactly either, once again because
the distribution of rainfall in space and time can never be known at the fine required scale.
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Instead, IRIP can serve as a broad benchmark for prevention strategies on a region to coun-
try scale. Modifications ought to be tested to match as closely as possible proxy locations
available on different large scale events. Consequently, results from general evaluation and
sensitivity analysis of IRIP and most of all from logistic regression in Section 3 inspired
the following suggestions to the accumulation map. Considering the values of odds ratios,
the Beven topographic index could account for around half of the overall score. More
importantly, it should be partitioned into more groups to better segregate risk levels. The
same goes for the modal value of IRIP uphill production score, which should account for
only slightly less than the topographic index. This way, better analysis of the quality of
LU/ST information used as input to IRIP could also be made. Therefore, a new suggestion
for the IRIP accumulation map would be to lay it on a 0 to 10 score basis, with the Beven
index ranging from 0 to 5, the IRIP production mode from 0 to 3 and the slope and break of
slope indicators from 0 to 1, unchanged (Figure 13). High susceptibility levels could then
be set around a 6 or 7 score for instance, depending on regions and rainfall events.
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Eventually, more precise inputs could be used for IRIP. In particular, DEM with finer
spatial resolutions could be implemented (like the RGE ALTI® 5 m or LiDAR products≤ 1 m),
or even be replaced by Digital Surface Models (DSM) computed through VHR satellite
stereo acquisitions (Pléiades or else CO3D in the coming years).

5. Conclusions

SWFs caused by extreme overland flow account for almost half of all flood damage
claims every year in France, and most likely in many other regions worldwide. Intense
runoff predictive mapping models are yet still very limited, mainly because of the lack
of observational data to evaluate them. In this context, a satellite-based classification
algorithm called SPCD provides reasonably exhaustive proxy data of SWFs on a very
large scale. In this work, the IRIP geomatics approach, a simple score-based susceptibility
method, was faced with rainfall radar measurements and damage maps derived from the
SPCD method during two flash-flood events. A total of 6 watersheds in the Aude and
Alpes-Maritimes departments in the South of France were thus investigated using a highly
significant proxy database composed of almost 200,000 plots and over more than 2000 km2

of rural areas. Given IRIP’s objective of identifying areas at risk of SWFs, this work shows
that the susceptibility levels are very relevant on these two distinct study sites. Indeed,
the proportions of damaged plots increase accordingly with higher IRIP scores, and even
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more so when focusing on where precipitations are the heaviest. Results also corroborate
that where rainfall is comparatively lower, SWFs occur on average over riskier areas as
defined by IRIP. Using a multivariate logistic regression, precipitation intensity distribution
is confirmed as an important driver of SWF occurrence. However, the main predictors of
SWF damages location turn out to be the Beven topographic index and the IRIP uphill
production mode, which calls for improvements in IRIP’s core framework.

Suggested modifications will have to be implemented and tested on various test sites
in futures studies. Essentially, we are confident that damage proxy maps derived from
satellite imagery, including using the SPCD method, can partly solve the great lack in
extensive observational data to evaluate and improve any kind of SWF modeling workflow.
This work is a first step in the comprehensive evaluation of the quality and limits of the
IRIP model. Although IRIP maps will always be conditional to where intense precipitations
hit, they may be used as an operational tool to broadly identify areas that require further
refined hydraulic expertise and simulation.

Eventually, as most footprints related to runoff transfer processes such as erosion and
gullies are less likely to be identified at the 10 m spatial resolution of Sentinel imagery,
IRIP transfer maps were not included in this evaluation framework. This should be
addressed in future works by developing a semantic segmentation approach. Using a U-net
convolutional neural network architecture based on the fusion of Sentinel-2 bi-temporal
and VHR post event data (Pléiades), more acute detection capacity could be expected.
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