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Abstract: Urban floods are a common urban disaster that threaten the economy and development
of cities. Sponge cities can improve flood resistance ability and reduce floods by setting low-impact
development measures (LID). Evaluating flood reduction benefits is the basic link in the construction
of sponge cities. Therefore, it is of great significance to evaluate the benefits of sponge cities from
the perspective of different rain patterns. In this study, we investigated the urban runoff of various
rainfall patterns in Mianyang city using the Strom Water Management Model (SWMM). We employed
2–100-year return periods and three different temporal rainfall downscaling methods to evaluate rain
patterns and simulate urban runoff in Mianyang, with and without the implementation of sponge city
measures. After calibration, model performance was validated using multi-source data concerning
flood peaks and inter-annual variations in flood magnitude. Notably, the effects of peak rainfall
patterns on historical floods were generally greater than the effects of synthetic rainfalls generated
by temporal downscaling. Compared to the rainfall patterns of historical flood events, the flood
protection capacities of sponge cities can be easily overestimated when using the synthetic rainfall
patterns generated by temporal downscaling. Overall, an earlier flood peak was associated with
better flood sponge city protection capacity. In this context, the results obtained in this study provide
useful reference information about the impact of rainfall pattern on urban flood control by LID, and
can be used for sponge city design in other part of China.

Keywords: SWMM; low-impact development; satellite observations; temporal downscaling

1. Introduction

Urbanization has greatly increased in the past century. As of 2011, the global urban-
ization rate was 52.1%; it will reach 67.2% by 2050 [1]. The proportions of populations
affected by floods are also increasing [2]. China is one of the world’s most urbanized
countries; this urbanization is expected to become more pronounced [3]. Heavy rains
and floods compromise urban health. Often, drainage systems are old, while new urban
areas have changed the original runoff pattern; moreover, the population is concentrated,
rendering flooding and waterlogging problems increasingly serious. In recent years, wa-
terlogging has become more common [4]. In 2012, heavy rain on 21 July in Beijing caused
10,660 houses to collapse; 1.602 million people were affected and the direct economic loss
exceeded $ 1.84 billion [5]. In 2016, a rainstorm on 6 July in Wuhan affected 757,000 people
and caused direct economic losses of $36 million [6]. In 2020, heavy rain on 22 May in
Guangzhou caused the suspension of the subway and great economic losses [7]. In July
2021, Zhengzhou (Henan) was affected by a severe rainstorm that killed 51 people and
caused direct economic loss of $10.4 billion [8]. Urban flooding has become chronic in
Chinese cities, severely restricting development. It is important to strengthen research
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concerning urban rainstorms and flooding, while developing prevention and mitigation
measures [9].

Urban construction expands impervious surfaces and thus reduces the area available
for water retention; stormwater runoff exceeds the drainage capacity [10,11], so that the
rapid urbanization process has led to worsening urban flooding [12]. Flooding is sud-
den (caused by local heavy rain during strongly convective weather), socially impactful
(causing major loss of life and property, as well as social unrest), and chaining (damaging
the entire drainage system via flooding of key points or key surfaces). It is difficult to
study urban flooding in an experimental manner. Urban storm/flood simulations provide
the scientific basis for flood control. The models include the Storm Water Management
Model (SWMM) [13], MIKE SHE [14], Soil and Water Assessment Tool (SWAT) [15], and the
Institute of Hydrology Distributed Model (IHDM) [16]. For example, Merhawi et al. simu-
lated urban flood inundation and recession affected by manholes [17], while Wu et al. [18]
simulated urban flooding by coupling the SWMM and LISFLOOD-FP; Bai et al. [10] used
the SWMM to study low-impact development (LID). Xu et al. [19] developed a new and
general method for blockscale LID-BMPs planning, which incorporates site-scale LID-BMP
chain layout optimization and block-scale scenario analysis into the planning procedure
in SWMM to improve the computational efficiency and the solution quality. Yin et al. [20]
propose a modelling framework of integrated one-dimensional (1D) and two-dimensional
(2D) hydrodynamic modelling to evaluate the effectiveness of sponge city construction at
community scale. Although simulation is efficient, its reliability depends on accurate data
from local hydrological monitoring stations. There is only one verification method; this
lacks versatility. Remote sensing technology detects targets at great distances; it efficiently
yields accurate hydrological data. Recently, remote sensing has been used to monitor
floods in small river basins and to plan water resource allocation; however, it has seldom
been used to study urban flood management. The satellite data are verified by ground
hydrological stations, which maximize accuracy and reliability [21]. Therefore, methods
based on multi-source observations should be considered.

To effectively control and mitigate urban flooding, in December 2013, Chinese Presi-
dent Xi Jinping launched the concept of sponge cities to comprehensively address water
scarcity and pollution, as well as urban flooding [22–24]. Sponge cities take LID as the
starting point, connecting all parts of the city’s water system [25,26]. Runoff and pollution
caused by heavy rain are managed via decentralized, small-scale control mechanisms; the
destructive impacts of development on hydrological conditions are mitigated. Developers
have key roles in urban flood control in China because they are responsible for urban
rainwater flood management; this responsibility is a key Chinese policy [27]. Thirty pilot
sponge cities were approved in 2015; great progress has been made in terms of urban flood
control, but the specific construction measures are not yet fully defined. Sponging must be
quantified during planning and before construction.

How to quantify the benefits of sponge cities has always been a hot and difficult
issue in research. Shao et al. quantified the impact of urbanization on flooding [28].
Simth et al. studied the hydrological response spectrum during storms in urban water-
sheds [29]. Fu et al. studied the impact of permeable paving in an LID area on stormwater
runoff [30]. Zhang et al. studied the outcomes of green infrastructure [31]. Feng et al. stud-
ied the effects of LID measures on peak flood reductions according to return period [32].
Zhu et al. [33] conducts a life cycle, environmental, and economic quantification comparison
of urban runoff source control facilities through construction and operation stages in two
urban functional regions. Leng et al. [34] proposes an integrated assessment framework
of coupled green–grey–blue systems on compliance of water quantity and quality control
targets in Sponge City construction, where rainfall runoff and river system models are
coupled to provide quantitative simulation evaluations of a number of indicators based on
land and river quality. However, the rainfall data used in most studies is a single Chicago
rain pattern, and the relevant characteristics of actual rainfall include rain intensity, peak
occurrence time, number of peaks, etc., for a single rain pattern lacks reliability, the effect
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of different rain patterns (peak occurrence time, rain intensity, and duration) on peak flood
reduction in sponge cities needs to be further confirmed, and the different characteristics
of these rain patterns can trigger different degrees of urban flooding. The study of the
effects of different rain patterns on the flood control capacity of sponge cities will help to
have subsequent decisions on sponge city construction and is important for improving the
technology and layout of sponge city projects.

Furthermore, how to validate the urban-scale rainfall flood management models is
also challenging, because the surface hydrological data are often lacking. Li et al. used
the average runoff pollution level to explore water quality [35]. Zhao et al. converted
simulated runoffs to water depths and compared them with the depths of submersion [36].
Although both methods directly or indirectly measured urban water quantity, inter-annual
variation was not considered. The satellite imagery-based hydrological model established
by Mark et al. accurately measures observed flows [37]. Multi-source validation improves
the accuracy of the hydrological model; combinations of satellite observations with water
balance measures should be considered.

Mianyang is located in the middle reaches of the Fujiang River, one of the main
tributaries of the Yangtze River that is in the middle of the city near the confluence of the
Fujiang River and the Anchang River. Although Mianyang is not a pilot sponge city in
China, it has been selected as a “Science and Technology City” and is a local government
supported by the Sichuan government for sponge city construction. The city has a warm
and humid subtropical monsoon climate. The average annual temperature is 14.7–17.3 ◦C
with an average annual precipitation of 826–1417 mm. The number of rainfall days is
195, the rainy season is mainly concentrated in June to September, and it is prone to short
duration and high intensity rainstorm events. Urbanization has increased the likelihood of
heavy rainfall occurring in central urban areas, such as the 7.23 mega-storm in Mianyang in
2010 and the 8.22 mega-storm in Mianyang in 2018, with most of the storm centers located
in central urban areas of Mianyang.

In order to investigate the benefits of sponge city under different rain patterns to flood
control, this study takes Mianyang city of Sichuan province as an example, simulates flood
runoff under different rain patterns using SWMM, constructs a sponge city LID model
according to Mianyang city sponge city planning, and rates and verifies the model by
studying the sponge city flood control effect and rainfall process in different return periods
and using satellite technology and water balance equation. The objectives of this study
are: (1) to establish an urban flood simulation model applicable to Mianyang city; (2) to
compare the benefits of sponge cities under different rainfall types. The aim is to provide a
reference for urban scale rainfall and flood management models.

2. Materials and Methods

We collected hydrological, pipe network, and subsurface data regarding central Mi-
anyang. We then constructed an SWMM to simulate actual runoff conditions; we calibrated
and validated the model using two different methods. Rainfall data for different return
periods were processed using three different temporal downscaling methods to assess the
impacts of different patterns on the flood control capacities of sponge cities. The principal
steps were (Figure 1):

(1) Dataset preparation. The hydrological data include precipitation, evaporation, and
river flows. The pipe network data were collected from a drainage map provided by
the local government, while the subsurface data were land use and topography.

(2) Model validation. The SWMM outputs were converted into runoff depths and the
water balance method was used to quantify floods. Passive microwave remote sensing
was employed to measure surface inundation; the data were used to define the
dynamic trends of historical floods.

(3) Rainfall temporal downscaling. Three different downscaling methods were used to
obtain rainfall patterns at different rainfall intensities, along with flood coefficients
and numbers to evaluate their effects on the flood control capacity of sponge cities.
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(4) Sponge City Simulation. The impact of four LID combinations on the runoff control
in the central city of Mianyang was simulated in conjunction with the sponge city
planning of Mianyang.

(5) Assessment of Flood Reduction Effect. Flood peak and volume are used as output
variables to compare and analyze the abatement effect of sponge cities on urban
flooding under the action of different return periods and different rain patterns. The
flow chart is shown in Figure 1.

Figure 1. Flowchart of assessment of Sponge City Flood Control capacity based on multi-source
validation and depends on different rainfall patterns.

2.1. Study Area

This study is about the central city of Mianyang City, Sichuan Province (Figure 2),
which includes Fucheng District and Youxian District of Mianyang City, with an area of
209.2 km2 and a population of about 4.8 million, while the population of the central city is
about 1.8 million. The topography is high in the north and low in the south, high in the east
and west, and low in the middle (altitude 450–538 m), with Fujiang River (from northeast
to southwest), Anchang River (from west to east), and Furong Creek (from east to west).
The average slope in the region is 6.5%, the maximum slope is 10.3%, and there is a large
area of shallow hills and more obvious slope changes that are distributed in strips.
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Figure 2. Location map of study area: central part of Mianyang City.

2.2. Database

The hourly rainfall observations and river flows were collected from the Sichuan
hydrological business platform [Fujiangqiao Station (2015–2020)]; the daily rainfall records
were collected from the Global Surface Summary of the Day [GSOD (1973–2017)]; and
the monthly evaporation data were collected from the Mianyang Meteorological Bureau
(2015–2020). The geographical features (areas, widths, slopes, shapes, lengths, and offset
heights) of all sub-catchments were collected from the Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER-GDEM) 30-m resolution digital topography
GIS database. The land use map was based on a satellite image of Sentinel-2B (MSI Level-
1C; 10-m spatial resolution; acquired 11 July 2017) that was subjected to supervised image
classification. The land use types were water, reservoir, forest, building, road, cropland,
and grassland. According to GlobeLand 30 [38], the percentage of urban area was 34.4%
in 2010 and 65.3% in 2020. The percentage of urban area in 2017 was 54.4% according to
Sentinel-2B. The result ensures the accuracy of the land use classification to a certain extent;
the areal percentages of impervious regions in each sub-catchment were calculated based
on the map. The pipe network was simplified from the map for downtown Mianyang
(2017). The SSM/I data were provided by the National Ice and Snow Data Center in the
form of cylindrical EASE-Grid projections with a resolution of 25 km, resampled to 0.25◦.
The details are shown in Table 1.

2.3. Configuration of the Urban Runoff Model

The SWMM was used to simulate the impacts of climate change and urbanization on
flood control, assuming that LID practices were in effect. We used the SWMM for Mianyang
City of Li et al. [39]. The study area (209.2 km2) was divided into 52 sub-catchments
based on topography, the pipe network, community boundaries, land use, the underlying
surface, slope direction, and extent of green cover. Rainfall runoff was simulated at 15-min
intervals. Certain sensitive model parameters (depression storage in impervious areas and
infiltration parameters) were based on the flooding data for 2010. We confirmed that the
calibrated model reasonably simulated urban runoff. In the model, each sub-catchment is
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conceptualized as a rectangular surface with a uniform slope s and width W. The water
balance and surface runoff are calculated as follows [40]:

dV
dt

= A
dh
dt

= Ars – Q (1)

Q = W
1
n
(h − hp

)5/3s1/2 (2)

where V, A, and h are the storage volume, storage area, and water depth of the sub-
catchment, respectively; rs is the surface runoff rate (calculated from the precipitation,
evaporation, and infiltration); Q is the slope outflow rate; n is the Manning roughness
coefficient; and hp is the depression storage depth. Each sub-catchment featured imper-
meable areas (road or urban land-use types) and permeable areas (forest, cropland, bare
land, or water bodies); infiltration in permeable areas was calculated using the Horton
equation. The parameters n and hp are given for each land-use type; these parameters
were then weight-averaged over the impermeable and permeable areas (depending on
their proportions). Then, the ratio of n, and hp for impermeable and permeable areas were
assigned to each sub-catchment as model parameters.

Table 1. Data list for SWMM and validation.

Item Data Source etc. Function/Derived
Features/Parameters

Precipitation

GSOD (Daily 1973–2017)
https://www.ncei.noaa.gov/access/search/data-search/global-

summary-of-the-day (accessed on 18 January 2022)
Fujiangqiao Rain-gauge (Hourly 2015–2020)

Time Series, Validation

Evaporation Mianyang Weather station (Monthly 2015–2020) Monthly Evaporation

Discharge 4 Hydrological stations (Hourly 2000–2020) Validation

Topography
ASTER-GDEM (30 m resolution digital elv.)

https://asterweb.jpl.nasa.gov/GDEM.asp (accessed on 18
January 2022)

Flow direction, Slope (gradient)

Land use Sentinel-2B (10 m resolution)
https://scihub.copernicus.eu/ (accessed on 18 January 2022)

Manning Coeff., Permeability,
Underlying surface, Green cover

Pipe Network Printed map of pipe network Connection between each
sub-catchment

Satellite Data
SSM/I (25 km 1991–2020)

https://nsidc.org/data/NSIDC-0032/versions/2 (accessed on 18
January 2022)

Validation

2.4. Multi-Source Validation

Two different methods were used to validate and calibrate the parameters set by
SWWM. One method is to construct the water balance equation from the ground hydro-
logical station observation data and use the runoff depth as the standard to verify the
model simulated runoff results, whose main advantage is to quantitatively verify the runoff
volume simulated by SWMM. Another method is to detect surface flooding by passive
microwave remote sensing and use the normalized difference frequency index (NDFI) to
detect flooding; an NDFI is the detected presence of surface water sensitivity, which has
the advantage of responding to the inter-annual variation of the flood peak over time.

2.4.1. Water Balance for Calibration

Some sensitive model parameters were calibrated using data from a 2010 flood, as
reported by Li et al. [39]. Considering the lack of flood discharge data for central Mianyang,
the model parameters were calibrated based on the maximum discharge of the entire study

https://www.ncei.noaa.gov/access/search/data-search/global-summary-of-the-day
https://www.ncei.noaa.gov/access/search/data-search/global-summary-of-the-day
https://asterweb.jpl.nasa.gov/GDEM.asp
https://scihub.copernicus.eu/
https://nsidc.org/data/NSIDC-0032/versions/2
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area in 2010, as inferred from a water balance calculation that included the surrounding
tributaries and river branches. The basic concept of a water balance calculation is shown in
Figure 3 [32]. The calculation steps are as follows:

Rest = ∆Q
(

Ac

∆A

)
(3)

∆Q = Q3 − (Q1 + Q2 + Q4) (4)

∆A = A3 − (A1 + A2 + A4) (5)

where Rest is the runoff from the target area, to be estimated by water balance calculation;
Ac is area of the model domain, Q1, Q2, and Q3 are the peak flow at the Fujiangqiao,
Anchang, and Fenggu gauging stations, respectively. The peak flow from branch Q4 is
estimated by assuming similar specific discharge of this branch to that of the Furongxi
gauging station (Q1). Hence, Rest is estimated peak flow as 189.6 m3/s and, hereafter, this
value is referred to as the “estimated runoff” and used as a reference for calibrating the
model. The estimated runoff is also representing runoff generation from the study area,
which is the central part of Mianyang city.

Figure 3. Schematics of water balance analysis [39].

2.4.2. Satellite Observations for Validation

Passive microwave remote sensing effectively detects surface moisture and flooding.
The 19- and 22-GHz frequency with vertical polarization channels, respectively, of the
dedicated special sensor microwave imager (SSM/I) are sensitive to surface moisture and
flooding because they are minimally affected by cloud interference; we used these data
from 1991 to 2020 (provided by the National Snow and Ice Data Center) as equal-volume
cylindrical EASE-Grid projections with a resolution of 25 km, resampled to 0.25◦ (i.e., the
grid size of our analysis). The Normalized Difference Frequency Index (NDFI) is used to
detect surface moisture and flooding. NDFI is a sensitivity index for detecting the presence
of surface water [41,42] and is expressed as follows:

NDFI =
TB22V − TB19V

TB22V + TB19V
(6)
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where TB22V and TB19V are the brightness temperatures with vertical polarization at 22 and
19 GHz, respectively. The maximum NDFI (NDFIm) at each pixel during summer was
calculated for each year.

Flood magnitude was quantified based on the deviation (anomaly) of the NDFIm from
the long-term average for 2015–2020. Anomalies were calculated as follows:

aNDFImyear =
NDFImyear(x, y) − µNDFIm(x, y)

σNDFIm(x, y)
(7)

where the subscript denotes the target year, x and y give the pixel location (longitude and
latitude, respectively), NDFImyear (x, y) is the maximum NDFI over the June to September,
and µNDFIm (x, y) and σNDFIm (x, y) are the multi-year (1991–2020) average and standard
deviation of NFDIm (x, y), respectively. As aNDFIm become more positive for a given year,
NDFIm increase markedly in that year compared to other years. Higher-anomaly regions
experienced extraordinarily intense or high-volume surface flooding. We have extracted
the NDFI data from Li et al. [43].

2.5. Rainfall Observation Data and Design Rainfall Scenarios

Hourly rainfalls were obtained from the Fujiangqiao station of the Sichuan Water
Business Platform; these data were combined with GSOD data to calculate the annual
maximum daily rainfall intensities for different return periods, using the daily rainfall
records from 1973 to 2017. The probability density function was normally distributed, and
frequency analysis was thus performed using the Rainbow packing tool [44]. Next, three
different downscaling methods were used to generate hourly rainfall time series for runoff
analysis of different return periods.

2.5.1. Historical Patterns

The historical patterns are the maximum daily rainfalls for each month. The hourly
rainfall time series of the eight maximum flood events from June to September 2015–2020
were separately analyzed; four were single-peak cases and the other four were multi-peak
cases. Then, daily design rainfalls with different return period were temporally downscaled
into hourly hyetograph following the temporal pattern of hourly rainfall record of each
historical events.

2.5.2. Chi-Squared Probability Distribution Rainfall Patterns

The chi-squared probability distribution rainfall patterns were developed by Ye
et al. [45] and applied to flood simulation for Mianyang by Li et al. [40]; they consider all
rainfall fields in each month. The data were then input to the urban runoff simulation
model. The temporal downscaling process is outlined in Figure 4. The temporal pattern of
hourly rainfall is assumed to exhibit a chi-squared probability distribution (Equation (10)),
and the peak intensity and duration of hourly rainfall are modeled as follows:

T = α+ β ln(P ) (8)

P = a + b PA (9)

X2(x : n) =

{
x 0.5 n − 1 e− 0.5 x

2 0.5 n Γ(0.5 n)
, x > 0

0 , x ≤ 0
(10)

Γ(s) =
∫ +∞

0
t s − 1e − tdt , s > 0 (11)

where T is the duration of precipitation (h), P is the total daily precipitation (mm), PA is
the maximum precipitation intensity (mm/h), and α, β, and a, b are model parameters.
Because the degrees of freedom (n values) of the output varies with T, the shape of the
chi-square distribution also varies with T through changes in n, as shown in Figure 4
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and Table 2. Parameters α, β, and a, b were calculated for each month, based on the
hourly precipitation data recorded at the meteorological station in Fujiangqiao during the
period 2015–2020. With this downscaling method, PA and T are estimated based on P
using Equations (8) and (9). The temporal pattern of hourly precipitation over time T is
based on the chi-squared distribution, but the peak intensity PA is not. Finally, the hourly
precipitation time data (with the exception of PA) were adjusted to ensure that the total
precipitation over T was equal to P.

Figure 4. Chi-square distribution probability density function plot [33].

Table 2. The rainfall ephemeris corresponds to the degree of freedom [33].

T [h] (1, 8] * (8, 11] (11, 14] (14, 16] (16, 18] (18, 24]

n 3 4 5 6 7 8
* (1, 8]: 1 < T ≤ 8.

2.5.3. Chicago Design Storm

The Chicago design storm is widely used when modeling rainfall scenarios for Chinese
sponge cities [46]; the rainfall pattern is determined by Equations (8) and (12). Considering
the empirical storm equation provided by the local government of Mianyang, we employed
the Chicago design storm as follows:

i =
5.28 (1 + 0.721 log P)

( t + 4.724 )0.501 (12)

where: i is the peak intensity of rainfall in mm/min, t is the rainfall calendar time in min,
and P is the return period of daily rainfall in years.

First, the peak coefficients were defined as the ratios of the time of flood peaking to
the total rainfall duration. Four single-peak rain types with different peak times were used,
corresponding to rainfall peak coefficients of 0.2, 0.4, 0.6, and 0.8; six rainfall return periods
of P = 1, 2, 5, 10, 20, 50, and 100 years were adopted. The rainfall pattens are shown in
Figure 5 (as an example of 5 years return period). We used the same peak coefficient (0.5)
for two multi-peak rain patterns (i.e., with two and three peaks); we employed six rainfall
return periods. The process is shown in Figure 6 (as an example of 2 years return period).
A similar pattern was used for temporal downscaling from daily design rainfalls with
different return period into hourly hyetograph.
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Figure 5. Single peak Chicago design storm by different peak coefficient.

Figure 6. Multi-peak Chicago design storm by different peak coefficient.

2.6. Planning of LID Measures for Sponge City in Mianyang City

The Mianyang Sponge City Special Plan (2016) states that the following four LIDs will
be installed:

(1) Green roofs (GRs): vegetated soil above drainage mats that serve to convey stormwater [47].
(2) Permeable pavement (PP): pavement of high porosity and permeability that allows

some rainwater through [48].
(3) Rain gardens (RGs): water is retained in surface depressions filled with vegetated soil

on a gravel storage bed [49].
(4) Rain barrels (RBs): water tanks are used to capture runoff, typically via pipes from

rooftops [50].

The areas and percentages of each LID facility (for the entire study area) are shown
in Table 3. The RB unit is m3 but was converted to m2 by setting the rain barrel height
to 1.0 m. The parameters were derived from design sheets, SWMM manuals, and other
literature [51–53].
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Table 3. Type of LIDs and Coverage.

Type of LIDs Green Roofs
(GRs)

Permeable Pavement
(PP)

Rain Gardens
(RGs)

Rain Barrels
(RBs)

Description

Area (km2) 9.95 24.50 27.12 3.11

Ratio (%) 4.76 11.71 12.96 1.49

2.7. Experimental Design

Rainfall may exhibit one or more peaks. The single-peak falls are divided into two
groups that differ in terms of intensities and peak coefficients; the multi-peak falls are
divided into two groups that differ in terms of rainfall intensities and peak numbers. The
groupings are shown in Table 4; the design precipitation levels for 2, 5, 10, 20, 50, and
100-year return periods were considered first. Each experiment was repeated 24 times
based on the different return periods for the months of June to September inclusive.

Table 4. Experimental design.

Experiments Peak Types Number of Peaks Peak Coefficients Methods

E1 Single 1 0.3–0.7 His
E2 Single 1 0.2–0.3 Chi-2

E3 Single 1 0.2 Chicago
E4 Single 1 0.4 Chicago
E5 Single 1 0.6 Chicago
E6 Single 1 0.8 Chicago

E7 Multi 2–4 0.2–1 His
E8 Multi 2 0.5 Chicago
E9 Multi 3 0.3 Chicago

The specific description of the experimental group is as follows:

(1) Single-peak Extreme rainfall (E1–E2). The E1 single peak historical patterns served as
the June-to-September single-peak extreme rainfall scenario. In E2, the chi-squared
probability distribution of single-peak rainfall pattern was employed; this is the
June-to-September average rainfall.

(2) Single-peak Peak coefficients (E3–E6). In E3–E6, the Chicago design storm single-peak
rainfall patterns created by weather generator [39] were used; these are the flood
peaks with coefficients of 0.2, 0.4, 0.6, and 0.8 from June to September.

(3) Multi-peak (E7–E9). In E7, an historical multi-peaked rainfall rain pattern was used;
this is the June-to-September multi-peak extreme rainfall scenario. In E8, the Chicago
design storm multi-peak rainfall pattern created by the weather generator was used
to represent the June-to-September average double-peak rainfall pattern when the
average number of peaks was 2. In E9, the Chicago design storm multi-peak rainfall
rain pattern created by the weather generator was also used; the mean peak number
was 3 for June-to-September.

In all experiments, urban runoff simulations were performed when LID practices
were and were not implemented. The effects of LIDs on flood control were assessed by
calculating the “reduction rates” of flood peak and volume; each rate is the difference in
flood peak or volume between the presence and absence of the LID initiatives.
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3. Results and Discussion
3.1. Validation
3.1.1. Water Balance

Model reliability was quantitatively assessed using the runoff depth derived via water
balancing, although the simulated annual maximum discharge Rcal of the model using the
default parameters (156.7 m3/s) was underestimated by 17% compared to the estimated
runoff. However, the model reasonably yielded discharge outputs from rainfall inputs.
To improve model performance, a (sensitive) parameter (the depth of depression storage
in impervious areas) and the infiltration parameters were re-evaluated (i.e., calibrated) to
reduce the difference between Rcal and Rest. The sensitive parameters were identified via
a literature review [54] and used for a preliminary model simulation (parameter sensitivity
analysis). Rcal became 164.9 m3/s (a 13% underestimate) after parameter calibration.

3.1.2. Satellite Observations

Simulation reasonably represented both the flood peak for a specific flood event
(in 2010, validated by the water balance) and the differences in flood magnitudes. After
sensitive parameters had been determined using the water balance equation, remote sensing
data were introduced to further evaluate accuracy and reliability. The results are shown
in Figure 7. When comparing the annual maximum flood events (aNDFImyear) and the
simulated discharge of the no-LID SWMM CASE in 2015–2020, the inter-annual variation
correlation coefficient was 0.6. The reason for the difference in 2015 and 2018 was that the
spatial resolution of satellite data was larger than the study area. However, we can still
conclude that they were strongly correlated [55]; the SWMM simulations were consistent
with the satellite data.

Figure 7. Annual maximum flood events aNDFImyear and simulated discharge.

3.2. Effect of Single Peak
3.2.1. Extreme and Average Conditions
Rainfall Patterns Analysis

Both E1 and E2 have return periods of 2–100 years and consider the June-to-September
single-peak rainfalls; the rainfalls were equal except in July (where the rainfall duration
was less in E1 than in E2, indicating that the average rainfall intensity was greater in E1
than in E2). The principal reason for the difference between July and other months is that
the rainfall duration of the field representing the extremes in July is long and the rainfall
distribution is extremely uneven. However, the flood rainfall intensity is generally greater
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in E1 than in E2, which is consistent with the concept that E1 represents monthly extreme
rainfall and E2 represents monthly average rainfall. Notably, the flood rainfall intensity
is slightly greater in E2 than in E1 during the 2–20-year return periods because of the
generally long duration and low intensity of rainfall in September. The PEAK BIAS was
defined as the difference in rainfall peak intensities. The average BIAS was the experimental
difference in average rainfall intensities. The PEAK BIAS values of E2 compared to E1 in
June-to-September were minus 33–34%, minus 65–66%, minus 36–38%, and plus 5–9%,
respectively. The average BIAS values were minus 50–59%, plus 28–53%, minus 38–47%,
and minus 53–59% in June-to-September, respectively (Figure 8, Tables 5 and 6).

Figure 8. Extreme and average rainfall patterns analysis.

Table 5. PEAK BIAS and average BIAS for E1 and E2.

Months JUN JUL AUG SEP

PEAK-BIAS (%) [−34, −33] [−66, −65] [−38, −36] [5, 9]
Average-BIAS (%) [−59, −50] [28, 53] [−47, −38] [−59, −53]

Table 6. Extreme and average rainfall patterns analysis.

Experiments Month Return Period (y) Duration (h) Peak Intensity (mm/h) Average Intensity (mm/h)

E1

JUN 2–100 7 54.0–140.9 14.1–36.7
JUL 2–100 23 59.6–155.6 4.3–11.2

AUG 2–100 8 51.7–134.9 12.3–32.1
SEP 2–100 9 13.9–36.2 10.9–28.6

E2

JUN 2–100 14–17 35.9–92.6 7.0–15.1
JUL 2–100 15–18 20.6–48.2 6.6–14.3

AUG 2–100 13–15 33.2–83.6 7.6–17.1
SEP 2–100 19–22 15.2–38.0 5.2–11.7

Flood Control Analysis

The experimental peak reduction rate was the peak difference between the LID and
no-LID cases divided by the peak of the no-LID case; the volume reduction rate was the
total volume difference between the LID and no-LID case divided by the total volume of the
no-LID case. For E1, the peak and volume reduction rates exhibited decreasing trends in all
months as the return period increased. Thus, under the rain pattern of monthly extreme
rainfall, the LID facilities became saturated within the 2-year return period. As rainfall
increased, the LID facilities could not manage the excess. Importantly, September exhibits a
long rainfall duration but a low flood rain intensity; accordingly, the peak reduction rate
in September increased slowly during the 2–20-year return period and decreased sharply
thereafter, indicating that the LID facilities were saturated during only the 20–50-year
return period under September rain pattern conditions. Because the average September
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rain intensity is also low, the decreasing trend of the volume reduction rate is also smaller
than the decreasing trends in other months.

For E2, as the return period increased, the peak and volume reduction rates tended
to first increase and then decrease in each month. These findings indicate that, under the
chi-squared rain pattern, the return periods at which the LID facilities became saturated
varied according to the month. The critical point peak reduction rates of June, July, August,
and September were 10–20 years, 50–100 years, 10–20 years, and 50–100 years, respectively.
June and August are similar; the flood peaks and average rainfall intensities are much
higher in these months than in other months. July and September are similar; the flood
peaks and average rainfall intensities are much lower in these months than in other months.
Thus, regardless of similar total rainfall, greater peak and average rainfall intensities are
associated with an earlier return period at which the LID facilities become saturated.

The peak E1 reduction rate is 13.8–31.3% and the volume reduction rate is 22.6–30.7%;
the peak E2 reduction rate is 25.6–30.9% and the volume reduction rate is 28.7–31.2%. The
E1 figures are smaller than the E2 figures, indicating that urban runoff accumulation caused
by natural extreme rainfall is greater under average rainfall conditions, while the response
of LID facilities is weaker (Figure 9).

Figure 9. Extreme and average flood control analysis.

3.2.2. Different Peak Timing
Rainfall Patterns Analysis

E3–E6 are all single-peak rainfall types with equal total rainfall from June to September
of the 2–100-year return periods; the only differences are in peak timing (peak coefficients
of 0.2, 0.4, 0.6, and 0.8, respectively). Thus, the intensity of the Chicago rainfall pattern is
lower than the intensity of the natural extreme rainfall pattern. Compared to E1, the PEAK
BIAS values of E3–E6 were minus 56–62%, minus 60–65%, minus 52–60%, and plus 30–50%
in June-to-September, respectively. The average BIAS values were minus 50–59%, 28–53%,
minus 38–47%, and minus 53–59% (Figure 10, Tables 7 and 8).



Water 2022, 14, 769 15 of 20

Figure 10. Different peak timing rainfall patterns analysis.

Table 7. PEAK BIAS and Average BIAS for E1, E3, E4, E5, and E6.

Months JUN JUL AUG SEP

PEAK-BIAS (%) [−62, −56] [−65, −60] [−52, −60] [30, 50]
Average-BIAS (%) [−59, −50] [28, 53] [−47, −38] [−59, −53]

Table 8. Different peak timing rainfall patterns analysis.

Experiments Month Return Period (y) Duration (h) Peak Intensity (mm/h) Average Intensity (mm/h)

E3–E6

JUN 2–100 14–17 22.4–56.7 7.0–15.1
JUL 2–100 15–18 20.7–55.1 6.6–14.3

AUG 2–100 13–15 24.8–54.2 7.6–17.1
SEP 2–100 19–22 19.2–49.8 5.2–11.7

Flood Control Analysis

Considering the lags in peak time, the peak reduction rates of E3–E6 all exhibit
decreasing trends for return periods greater than 10 years, while the volume reduction rate
is not significant. Thus, at the longer times, the LIDs are saturated at a peak coefficient
of 0.2; with increasing lag in flood time, the ability of LID facilities to cope becomes
increasingly weaker. The peak reduction rates of E3–E6 are 24.4–30.7% and the volume
reduction rates are 28.0–31.3%. As the return period increases, the reduction rate of E1
becomes smaller than the reduction rate of E3–E6. Thus, a larger return period (relative to
the Chicago rainfall type conditions) is associated with a larger difference between urban
runoff accumulation caused by natural extreme rainfall and accumulation caused by the
Chicago rainfall type, as well as a weaker response of the LID facilities (Figure 11).

Figure 11. Different peak timing flood control analysis.
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3.3. Effect of Multi Peak
3.3.1. Rainfall Patterns Analysis

E7, E8, and E9 are 2–100-year return period June-to-September multi-peak rainfall
patterns with equal total rainfall. The rainfall frequency and average rain intensity are
similar for each month; E7–E9 differ in peak numbers and flood rain intensities. E8 is
the uniform double-peaked rainfall of the Chicago rain pattern, while E9 is the uniform
multi-peaked rainfall of the Chicago rain pattern. The peak intensity is E7 > E8 > E9. In
addition, the PEAK BIAS values of E8 over E7 were minus 45%, minus 51%, minus 47%,
and minus 7% in June to September, respectively. The PEAK BIAS values of E9 over E7
were minus 57%, minus 58%, minus 43%, and minus 27% in those months (Figure 12,
Tables 9 and 10).

Figure 12. Multi peak rainfall patterns analysis.

Table 9. PEAK BIAS for E7, E8, and E9.

PEAK-BIAS JUN JUL AUG SEP

E7 & E8 −45 −51 −47 −7
E7 & E9 −57 −58 −43 −27

Table 10. Multi peak rainfall patterns analysis.

Experiments Month Return Period (y) Duration (h) Peak Intensity (mm/h) Average Intensity (mm/h)

E7

JUN 2–100 19 27.0–70.4 5.2–13.5
JUL 2–100 21 29.0–75.7 4.7–12.2

AUG 2–100 16 23.7–62.0 6.2–16.1
SEP 2–100 23 14.6–38.1 4.3–11.2

E8

JUN 2–100 19 15.0–39.1 5.2–13.5
JUL 2–100 21 14.1–36.9 4.7–12.2

AUG 2–100 16 12.6–33.0 6.2–16.1
SEP 2–100 23 13.6–35.5 4.3–11.2

E9

JUN 2–100 19 11.7–30.5 5.2–13.5
JUL 2–100 21 12.1–31.5 4.7–12.2

AUG 2–100 16 13.6–35.6 6.2–16.1
SEP 2–100 23 10.7–28.0 4.3–11.2

3.3.2. Flood Control Analysis

For E7, the peak reduction rate increases with increasing return periods in June and
August; thus, when peaks are more than 10 h apart, they exhibit minimal interaction and
the LID facilities are not saturated. In July, the peak reduction rate begins to decrease at
return periods of 5–10 years because the July flood peaks are only 1 h apart and the peak
rain intensity is highest in that month. In September, the peak reduction rate also begins to
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decrease after return periods of 5–10 years; this reduction is less than in July because there
are more continuous flood peaks in September. For E8, the peak reduction and volume
reduction rates first increase, then decrease; the LID saturation thresholds in June and
September both occur at return periods of 10–20 years. The volume reduction rates differ
slightly; the July threshold has a return period of 10–20 years, while the other months have
return periods of 5–10 years. For E9, the saturation thresholds for the LID facilities at the
reduced peak rates all occurred in the 50–100-year return periods, while the saturation
thresholds for LID facilities of reduced capacity occurred at the 5–10-year return periods.

The peak E7 reduction rate is 14.5–30.4% and the volume reduction rate is 26.1–30.9%;
the peak E8 reduction rate is 21.6–31.0% and the volume reduction rate is 27.0–31.0%;
the peak E9 reduction rate is 19.9–29.8% and the volume reduction rate is 24.9–30.9%. A
comparison of E8 and E9 revealed that a higher number of wave peaks was associated
with lower flood rainfall intensity, as well as smaller peak and volume reduction rates.
The difference in urban runoff caused by natural extreme rainfall and Chicago rain type
uniform multi-peak rainfall under multi-peak conditions is not substantial, except under
particularly extreme conditions, such as when flood peaks are very close in July and the
flood rain intensity is maximal, with a return period of 100 years (Figure 13).

Figure 13. Effect of multi peak flood control analysis.

4. Conclusions

We studied the Mianyang Sponge City of Sichuan Province. We used different return
periods and rain types (historical, chi-squared, and Chicago rain types) to evaluate the
effects of LID measures on peak reduction from both single- and multi-peak perspectives;
we validated our model using water balance and remote sensing techniques. Our principal
conclusions were:

(1) The model underestimates hourly runoff over large areas by approximately 13%, as
verified by water balancing and remote sensing. The simulated runoff trend was
strongly correlated with the satellite observations.

(2) The flood peak and mean rainfall intensities were generally larger for single-peak
historical rainfalls than for the chi-squared rain pattern; the difference in bias was
substantial, except for the peak bias in September (long continuous rainfall). The peak
and average rainfall intensities were also generally lower for the single-peak Chicago
rainfall type than for the single-peak historical rainfall; the peak and average biases
were equally large. The multi-peak historical rainfall pattern was identical to the
multi-peak Chicago pattern; however, the flood rainfall intensity was generally larger
in the multi-peak historical pattern than in the multi-peak Chicago rainfall pattern.
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(3) Simulation revealed that the ability of LID facilities to control flood peaks and vol-
umes was weaker under the single-peak chi-squared rainfall pattern than under the
historical rainfall pattern. Control became weaker as the flood peaks became closer.
For multi-peak rainfall, the difference in urban runoff caused by natural extreme
rainfall and the uniform multi-peak rainfall of the Chicago rain type was not sub-
stantial, while the ability of LID facilities to control flood peaks and volumes became
progressively weaker as the average wave peak increased.

In contrast to the natural extreme rainfall rain patterns, artificial rain patterns overesti-
mate the ability of LID facilities to control flood peaks and flood volumes. During sponge
city design, LID facilities should be optimally placed with reference to local topography
and both spatial and temporal rainfall characteristics to ensure effective flood control.

A limitation of this study is that we could not deal with two-dimensional flood inun-
dation processes. Use of a two-dimensional hydrological model is necessary to simulate
the impact of LIDs on spatio-temporal distribution of inundation extent in urban areas.
In addition, parameter calibration of SWMM still needs to be improved and validation
(accuracy check) using new data will be one of the future tasks. The impact of LIDs on
urban runoff was evaluated in this study; however, PPs and RGs would also have effects
on groundwater through the change of infiltration and soil water storage. Quantifying the
impact of PPs and RGs on groundwater level will be discussed in future works.
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