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Abstract: Understanding the spatiotemporal patterns of water quality is crucial because it provides
essential information for water pollution control. The spatiotemporal variations in water quality for
the Nanxi River in the Taihu watershed of China were evaluated by a water quality index (WQI)
and multivariate statistical techniques; additionally, the potential sources of contamination were
identified. The data set included 22 water quality parameters collected during the monitoring period
from 2015 to 2020 for 14 monitoring stations. WQI assessment revealed that approximately 85% of
monitoring stations were classified as “medium-low” water quality, and most showed continuous
improvement in water quality. Cluster analysis divided the 14 monitoring stations into three clusters
(low contamination, medium contamination and high contamination). Discriminant analysis identi-
fied pH, petroleum, volatile phenol, chemical oxygen demand, total phosphorus, F, S, fecal coliform,
SO4, Cl, NO3-N, total hardness, NO2-N and NH3 as important parameters affecting spatial variations.
Factor analysis identified four potential contamination source types: nutrient, organics, feces and oil.
This study demonstrated the usefulness of multivariate statistical techniques in assessing large data
sets, identifying contamination source types, and better understanding spatiotemporal variations in
water quality to restore and protect water resources.

Keywords: Nanxi River; multivariate statistical techniques; water quality index; water quality
assessment

1. Introduction

Deterioration of the water environment is a prominent problem in worldwide wa-
tershed management and seriously threatens the security of the water ecological envi-
ronment [1]. Natural factors (such as climate, topography, geology and soil) and human
activities (such as urbanization, industrial production and agricultural practice) affect the
surface water quality of an area [2–5]. The seasonal changes in precipitation, hydrological
conditions and stream runoff have marked effects on stream flow and the consequent
pollutant concentrations in surface water [1,6–8]. Dynamic spatiotemporal assessment of
water quality can be used to analyze water contamination problems, identify potential
contamination source types, and provide information support and reference to effectively
manage water resources [3].

To effectively prevent and control surface water contamination, reliable water quality
data for in-depth research is necessary. Considering the spatiotemporal variation in the
physicochemical and biological characteristics of surface water, a long-term monitoring
plan to accurately assess water quality should be developed [9]. Environmental protection
departments in China have established sound water quality monitoring networks and
continuous water quality monitoring procedures that monitor the physical properties
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(e.g., temperature, pH and electrical conductivity, etc.), total organic components, nutrients
and inorganic components, as well as the biological and microbial conditions. In water
quality assessments, multiple water quality parameters are typically collected at multiple
monitoring stations in different monitoring periods, and this process generates a complex
data matrix [10]. Due to the potential multivariable correlations among monitoring stations,
monitoring periods and water quality parameters, this complex data set is often challenging
to analyze and explain [11–13]. In a comprehensive assessment of water quality, the
challenge is to determine whether the changes in water quality should be attributed to
the contamination of rivers by human activities or biogeochemical changes in natural
processes [14]. Furthermore, the water quality parameters that can best describe the
spatiotemporal changes and identify contamination source types should be determined.

The water quality index (WQI) is a useful method for evaluating the change and trend
of water environment quality by synthesizing multiple original parameters to a single
index [10]. As a water quality assessment model, WQI determines the relative weight of
each parameter based on its importance in water environment protection and integrates
multiple variables into a dimensionless variable to represent the comprehensive water
quality status and grade [15–18]. WQI has played an increasingly crucial role in the water
quality assessment of rivers, lakes and groundwater [19–24].

With the increased number and dimension of measurement parameters in samples,
the problem of allocating unknown samples and mining valuable information becomes
increasingly complex. Therefore, using multivariate statistical techniques and data reduc-
tion simultaneously to obtain satisfactory results is necessary [10]. Multivariate statistical
techniques, such as cluster analysis (CA), discriminant analysis (DA), principal component
analysis (PCA) and factor analysis (FA) have been widely applied to evaluate water quality,
can simplify data dimensions from complex water quality data matrices and remove re-
dundant information without losing valuable information [8,25–29]. Multivariate statistical
techniques can identify spatiotemporal patterns of water quality and analyze the possi-
ble factors causing spatiotemporal variations in water quality and affecting the health of
water ecosystems [1,30].

The Nanxi River in the Taihu watershed, as a rapidly urbanized area in China, is
experiencing high disturbance from human activities and serious water contamination
problems [31]. The spatiotemporal variations in surface water quality and the identifi-
cation of contamination source types are critical for sustainable watershed water quality
management. However, studies focusing on the identification of contamination source
types in the Nanxi River are limited. The primary aims of this study are as follows: (1) to
evaluate the contamination levels of different monitoring stations and periods to examine
the spatiotemporal distributions of water quality using WQI; (2) to extract the clustering in-
formation of monitoring stations, and determine the most important classification variables
for the spatial variations in water quality; and (3) to analyze the potential impact factors
of water quality in three regions with different contamination levels and explore possible
contamination source types (natural processes or human activities).

2. Materials and Methods
2.1. Study Area

The Nanxi River (119◦08′–119◦36′ E, 31◦1′–31◦41′ N) is the main river in the western
part of the Taihu watershed in China (Figure 1). The total extension of the study area is
1535.87 km2 and includes 39% farmland, 23% water area, 22% forestland and 16% built-
up land. It belongs to the subtropical monsoon climate zone, with an average annual
temperature of 16 ◦C and an average annual precipitation of 1147 mm, 70% of which occurs
in the rainy season from May to October. The area comprises low mountains, hills, plain
polders and other landform types, with elevations of 1–702 m. The main types of soil
are paddy soils, yellow-brown soils, and yellow cinnamon soils [32]. The regional zonal
vegetation is an evergreen and deciduous broad-leaved mixed forest. The main crops are
rice, rape, tea and sericulture, etc. [31].
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This area is relatively developed in the Taihu watershed, with a population of ap-
proximately 763,000. The area has many chemicals, synthetic materials, and mechanical,
electronic and cement factories. The basin has fertile paddy soil, which is very suitable
for various agricultural activities. The main contamination source types in this area in-
clude municipal and industrial wastewater, livestock and poultry breeding, planting and
aquaculture. In 2019, the total amount of industrial and domestic sewage discharge was
2248.8 × 104 and 3244.9 × 104 tons, respectively, including 3043.5 tons of chemical oxygen
demand (COD), 538.5 tons of ammonia nitrogen (NH3-N), and 14.8% of the industrial
sewage treatment rate; the COD, total nitrogen (TN) and total phosphorus (TP) of agricul-
tural contamination sources were 3567.3, 338.2 and 202 tons, respectively. Thirteen sewage
treatment plants (STPs) exist to treat domestic and industrial wastewater in the area. The
maximum daily treatment capacity of these STPs is 15 × 104 m3 [33].

2.2. Monitoring Stations and Water Quality Data

Water samples were collected from 14 monitoring stations (Figure 1) in the Nanxi
River every month from January 2015 to November 2020. All the water samples were
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collected, stored, transported, and analyzed according to the Technical Specifications
Requirements for Monitoring of Surface Water and Waste Water (HJ/T 91-2002) [34] and
the Environmental Quality Standards for Surface Water (GB3838-2002) [35] to ensure the
quality of the data. The final data were from the Liyang Environmental Protection Bureau.

These water quality data belonged to monthly routine sampling, which reflected the
daily water quality status of each monitoring station, but cannot capture the dynamics of
pollutants generated by episodic events (e.g., storms and pollution leakage accidents, etc.).
Therefore, if possible, additional sampling of water quality before and after episodic events
will be required in the future.

We selected 22 water quality parameters for this study. The abbreviations, units and
descriptive statistics of them are summarized in Table 1.

Table 1. Water quality parameters, abbreviations, units and descriptive statistics.

Parameter Abbreviation Unit Minimum Maximum Mean S.D. C.V.

Water temperature Temp ◦C 3.4 34.0 18.1 8.4 0.463
pH pH 5.74 8.91 7.50 0.38 0.050

Electrical conductivity EC ms/m 9.4 181.0 38.0 16.6 0.437
Dissolved oxygen DO mg/L 1.8 13.0 6.5 1.9 0.291

Permanganate index CODMn mg/L 1.9 15.7 5.5 1.4 0.261
Biochemical oxygen demand BOD5 mg/L 1.8 9.0 3.6 1.0 0.287

Ammonia nitrogen NH3-N mg/L 0.046 31.600 0.916 1.355 1.479
Petroleum Petrol mg/L 0.00 0.27 0.06 0.04 0.721

Volatile phenol VP mg/L 0.000 0.010 0.002 0.001 0.581
Chemical oxygen demand COD mg/L 5.0 87.9 19.1 6.8 0.354

Total nitrogen TN mg/L 0.24 37.40 2.87 2.01 0.699
Total phosphorus TP mg/L 0.010 0.444 0.131 0.071 0.546

Fluoride F mg/L 0.07 0.83 0.34 0.12 0.345
Sulfide S mg/L 0.000 0.173 0.046 0.033 0.715

Fecal coliform F. Coli CFU/L 360 9130 4226 2429 0.575
Sulphate SO4 mg/L 15.9 53.1 32.1 7.4 0.231
Chloride Cl mg/L 0 195 54 30 0.557

Nitrate nitrogen NO3-N mg/L 0.020 1.200 0.294 0.127 0.434
Total suspended solids TSS mg/L 7 239 33 19 0.574

Total hardness T-Hard mg/L 41 255 147 37 0.251
Nitrite nitrogen NO2-N mg/L 0.005 0.294 0.063 0.041 0.660

Nonionic ammonia NH3 mg/L 0.001 0.172 0.014 0.019 1.364

Mean represents the mean value; S.D. represents the standard deviation; C.V. represents the coefficient
of variation.

2.3. Water Quality Index

WQI is an effective method for water quality assessments [36]. According to the
impact of each water quality parameter on human water health and its relative importance
in aquatic organisms [15], different weights were assigned in Table 2 [23]. Temp, pH, EC,
DO, CODMn, COD, BOD5, NH3-N, TP, TN, Petrol, F. Coli, SO4, CI, NO2-N, NO3-N, TSS
and T-Hard were used, and the measured values were normalized.

The formula used to calculate WQI is as follows:

WQI =
∑n

i=1 CiPi

∑n
i=1 Pi

(1)

where n is the total number of parameters involved in the calculation, Ci is the normalization
factor of parameter i, and Pi is the relative weight of parameter i. The minimum value of
Pi is 1, and the maximum weight specified is 4. These values were determined based on
previous studies [23,37–39].

The calculated WQI is a dimensionless value from 0 to 100. Based on the WQI scores,
surface water quality was divided into five categories [23]: excellent (90–100), good (70–89),
moderate (60–69), low (40–59), and bad (0–39).
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Table 2. Weights and normalization factors of the parameters used to calculate the water
quality index.

Parameters Units
Relative
Weight

(Pi)

Normalization Factor (Ci)

100 90 80 70 60 50 40 30 20 10 0

Temp ◦C 1 21/16 22/15 24/14 26/12 28/10 30/5 32/0 36/−2 40/−4 45/−6 >45/<−6
pH 1 7 7–8 7–8.5 7–9 6.5–7 6–9.5 5–10 4–11 3–12 2–13 1–14
EC ms/m 1 <75 <100 <125 <150 <200 <250 <300 <500 <800 ≤1200 >1200
DO mg/L 4 ≥7.5 >7 >6.5 >6 >5 >4 >3.5 >3 >2 ≥1 <1

CODMn mg/L 3 <1 <2 <3 <4 <6 <8 <10 <12 <14 ≤15 >15
COD mg/L 3 <10 <15 <16 <18 <20 <25 <30 <34 <37 ≤40 >40
BOD5 mg/L 3 <2 <3 <3.4 <3.7 <4 <5 <6 <7 <9 ≤10 >10

NH3-N mg/L 3 <0.1 <0.15 <0.3 <0.5 <1 <1.3 <1.5 <1.7 <1.9 ≤2 >2
TP mg/L 1 <0.01 <0.02 <0.05 <0.1 <0.15 <0.2 <0.25 <0.3 <0.35 ≤0.4 >0.4
TN mg/L 2 <0.1 <0.2 <0.35 <0.5 <0.75 <1 <1.25 <1.5 <1.75 ≤2 >2

Petrol mg/L 2 <0.01 <0.02 <0.03 <0.04 <0.05 <0.3 <0.5 <0.7 <0.9 ≤1 >1
F. Coli CFU/L 3 <100 <200 <1000 <2000 <10,000 <15,000 <20,000 <30,000 <35,000 ≤40,000 >40,000

SO4 mg/L 2 <25 <50 <75 <100 <150 <250 <400 <600 <1000 ≤1500 >1500
CI mg/L 1 <25 <50 <100 <150 <200 <300 <500 <700 <1000 ≤1500 >1500

NO2-N mg/L 2 <0.005 <0.01 <0.03 <0.05 <0.1 <0.15 <0.2 <0.25 <0.5 ≤1 >1
NO3-N mg/L 2 <0.5 <2 <4 <6 <8 <10 <15 <20 <50 ≤100 >100

TSS mg/L 4 <20 <40 <60 <80 <100 <120 <160 <240 <320 ≤400 >400
T-Hard mg/L 1 <25 <100 <200 <300 <400 <500 <600 <800 <1000 ≤1500 >1500

Normalization factors are according to GB3838-2002 and weight, as proposed by Wu et al. (2018) [23].

2.4. Statistical Analysis

The water quality data sets over six years (2015–2020) were checked to eliminate
possible missing and abnormal values [40]. The parameter F. Coli had missing values,
which were replaced by sequence mean values. Data conforming to normal distribution
are needed for most multivariate statistical techniques. Therefore, kurtosis and skewness
statistics were analyzed to test whether each water quality parameter conformed to a
normal distribution [5,13]. The original data showed that the kurtosis value was between
−1.888 and 357.738, and the skewness value was between−1.215 and 16.671, indicating that
the raw data were far from the normal distribution. Because most kurtosis and skewness
values were greater than 0, the raw data were logarithmically converted (x = log10(x)) [41].
After logarithmic transformation, kurtosis and skewness were in the ranges of −0.640 to
4.577 and −2.279 to 0.096 respectively. To minimize the influence of different units and
variances on the parameters, Z-scale standardization (mean value is 0, variance is 1) was
performed on the data.

Cluster analysis (CA) was performed on the standardized data to explore the spatial
similarity and clustering information on water quality. Principal component analysis/factor
analysis (PCA/FA) was performed on the standardized data to explore possible contami-
nation source types [9,28]. Discriminant analysis (DA) was performed on the raw data to
extract the important variables reflecting the variations between groups [5]. STATISTICA
10 was used for statistical analysis.

Please refer to Supplementary Materials for the detail about the above multivariate
statistical methods.

3. Results and Discussion

The descriptive statistics of 22 water quality parameters are summarized in Table 1.
The pH values ranged from 5.74 to 8.91, which were basically within the standard limit
of 6–9 allowed by GB3838-2002. The mean values of F, S, F. Coli, and VP in most water
samples were far lower than the class III standard (GB3838-2002), while that of Petrol
(0.058 mg/L) was slightly higher than the class III standard (0.05 mg/L). Among nutrients,
the mean value of TN was 2.87 and far higher than the class III standard (1.0 mg/L); the
mean values of NO3-N and NO2-N were 0.294 and 0.063 respectively, which were far lower
than the class III standard (10 mg/L); the one of NH3-N was 0.916 and lower than the class
III standard (1.0 mg/L). TN is the sum of NO3-N, NO2-N, NH3-N and organic nitrogen,
which is the main indicator of water eutrophication. Thus, the main nutrient in the study
area was organic nitrogen. The concentration levels of CODMn, BOD5 and COD deserve
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attention because these parameters represent the levels of biological, chemical and organic
contamination in surface water, respectively. The maximum values of these parameters
were 15.7, 9.0 and 87.9 mg/L, respectively, all exceeding the class III standard (6, 4 and
20 mg/L, respectively). Therefore, the study area had a relatively high contamination level.
The coefficients of variation for NH3-N, NH3, Petrol, S, TN and NO2-N were relatively
high, indicating significant temporal and spatial differences in the distributions of these
water quality parameters.

3.1. Water Quality Assessment Using WQI

The water quality of most monitoring stations was classified as “medium-low”, ac-
counting for approximately 84.52% (of which “medium” accounted for 64.29% and “low”
accounted for 20.24%). Additionally, 13.10% of the water quality was “good”, and only
2.38% was “excellent” (Figure 2). The water quality of S1 and S2 was always above “good”,
especially the water quality of S2, which was “excellent” in 2015 and 2018. Because these
two monitoring stations are in the Daxi Reservoir and Shahe Reservoir within the urban
centralized drinking water protection area, their water quality has been maintained in good
condition due to the good natural ecological environment and strict contamination control
measures. Other monitoring stations are in urbanized or agricultural areas.

From the interannual change trend of WQI (Figure 3), about half of the monitoring
stations showed an increasing trend, most of which were generally stable. The water
quality of monitoring stations S1 and S2 decreased slightly. Due to rapid urbanization
and population growth, water environment security is facing increased pressure, and the
protection of water sources should be further strengthened. The water quality of other
monitoring stations showed continuous improvement, especially from 2016 to 2019. Since
2017, Changzhou city has adopted special actions: “two reductions” (reducing total coal
consumption and backward chemical production), “six governance” (governing the Taihu
Lake water environment, domestic garbage, black and smelly water bodies, livestock and
poultry breeding contamination, volatile organic compound contamination, and hidden
environmental dangers), and “three improvements” (improving the level of ecological
protection, environmental-economic policy regulation, and environmental law enforcement
and supervision) [42]. The environmental quality has been significantly improved, the total
discharge of major pollutants has been markedly reduced, and the environmental risks
have been effectively controlled.

3.2. Spatial Similarities and Clustering

Spatial CA generated a dendrogram, dividing the 14 monitoring stations into 3 clusters
at (Dlink/Dmax) × 100 < 40 (Figure 4). According to the physical, chemical and microbio-
logical characteristics of water quality, each cluster was classified into its own contamination
category. Cluster A included stations S1 and S2 and corresponded to low contamination.
Cluster B contained six monitoring stations (S5, S6, S8, S9, S11 and S13) and was classified
as medium contamination. Cluster C comprised six monitoring stations (S3, S4, S7, S10,
S12 and S14) and was classified as high contamination.

In cluster A, S1 and S2 are in the Daxi Reservoir and Shahe Reservoir. The contam-
ination of the six monitoring stations in cluster B mainly derives from nonpoint source
contamination, such as agricultural runoff, livestock and poultry breeding, and fishpond
drainage. The monitoring stations of cluster C are mainly located in urban areas and
downstream reaches, and the possibility of water contamination is higher because of the
comprehensive impacts of domestic sewage, industrial wastewater and upstream inflow
water [5,7,10].

The above spatial CA results coincided with the average WQI of the monitoring
stations. The WQI values of S1 and S2 were the highest; those of S3, S4, S7, S10, S12
and S14 were relatively low; those of S5, S6, S8, S9, S11 and S13 were at a medium level
(Figure 5). Thus, CA can be used to provide reliable water quality classification throughout
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monitoring stations; however, designing optimal spatial sampling strategies is warranted
in the future [10,28,41,43].
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3.3. Spatial Variations in Water Quality

Based on the CA data, discriminant analysis was used to detect the significance of
the discriminant function and to identify the important variables reflecting the variation
between clusters. The Wilks’ lambda and chi-square values in all discriminant functions
were in the range of 0.036–0.509 and 504.269–2479.317, respectively, and the p values were
all less than 0.01 (Table 3), indicating that the spatial DA was valid [13].

Table 3. Spatial discriminant analysis results for spatial variations in water quality.

Modes Discriminant Function R Wilks’ Lambda Chi-Square p Value

Standard
1 0.963697 0.035502 2478.586 0.00
2 0.708513 0.498009 517.624 0.00

Forward
1 0.963686 0.035547 2479.317 0.00
2 0.708173 0.498491 517.255 0.00

Backward
1 0.960275 0.039628 2409.856 0.00
2 0.700788 0.508897 504.269 0.00

Tables 4 and 5 show the discriminant function and classification matrix generated from
the standard, forward stepwise and backward stepwise modes of DA. The standard and
forward stepwise models of the discriminant function used 22 and 21 discriminant variables,
respectively, and obtained the corresponding classification matrix, which correctly assigned
approximately 88% of cases. However, in the backward stepwise mode, DA generated
nearly 87% of the correct allocation to the classification matrix using only 14 discrimination
parameters. Spatial DA showed that pH, Petrol, VP, COD, TP, F, S, F. Coli, SO4, Cl, NO3-N,
T-Hard, NO2-N, and NH3 were the critical variables to distinguish the water quality of the
three spatial clusters and explained most of the spatial variations in expected water quality.
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Table 4. Discriminant function coefficients of discriminant analysis for spatial variations in
water quality.

Parameters
Standard Mode Forward Stepwise Mode Backward Stepwise Mode

Cluster A Cluster B Cluster C Cluster A Cluster B Cluster C Cluster A Cluster B Cluster C

Temp 2.19 2.15 2.16
pH 115.00 107.97 107.52 102.81 95.983 95.470 95.99 89.346 88.763
EC −0.09 −0.10 −0.08 −0.02 −0.035 −0.016
DO 5.19 4.17 4.10 1.01 0.066 −0.021

CODMn −1.36 1.34 1.28 −2.35 0.373 0.314
BOD5 12.67 11.16 11.64 12.40 10.899 11.372

NH3-N 9.04 4.81 5.01 8.72 4.494 4.688
Petrol −87.09 −63.79 3.49 −107.72 −84.054 −16.893 −29.04 −15.614 53.431

VP −5928.45 −1499.07 41.86 −3233.54 1148.149 2704.845 −3985.81 552.192 2072.728
COD 1.09 0.60 0.75 0.56 0.081 0.232 1.09 0.769 0.921
TN −2.78 −0.32 −0.53 −3.21 −0.752 −0.964
TP 38.74 93.48 99.55 21.98 77.019 82.983 73.23 130.491 137.176
F 7.53 40.57 37.79 8.13 41.154 38.375 8.79 42.410 39.641
S −50.45 90.85 97.30 −101.99 40.229 46.377 −89.33 50.326 53.812

F. Coli 0.00 0.00 0.00 0.00 0.002 0.002 0.00 0.001 0.001
SO4 −0.27 0.47 0.46 0.35 1.070 1.065 0.38 1.196 1.188
Cl 0.10 0.17 0.16 −0.07 0.006 −0.005 −0.08 0.005 −0.002

NO3-N −3.63 19.19 22.51 −17.28 5.789 9.028 −9.40 13.946 17.819
TSS 0.22 0.26 0.25 0.23 0.268 0.259

T-Hard 0.44 0.76 0.76 0.30 0.624 0.627 0.33 0.627 0.630
NO2-N −46.64 50.99 33.76 −11.68 85.329 68.309 22.86 110.897 95.396

NH3 −1329.83 −1190.28 −1191.98 −936.82 −804.223 −803.626 −838.04 −706.073 −697.089
Constant −522.73 −554.90 −562.82 −433.50 −468.801 −475.693 −397.88 −434.420 −440.556

Table 5. Classification matrix of discriminant analysis for spatial variations in water quality.

Monitoring
Stations Percent Correct

Stations Assigned by Discriminant Analysis

Cluster A Cluster B Cluster C

Standard mode
Cluster A 100.0000 108 0 0
Cluster B 95.6790 0 310 14
Cluster C 77.4691 0 73 251

Total 88.4921 108 383 265
Forward stepwise mode

Cluster A 100.0000 108 0 0
Cluster B 95.3704 0 309 15
Cluster C 76.8518 0 75 249

Total 88.0952 108 384 264
Backward stepwise mode

Cluster A 100.0000 108 0 0
Cluster B 94.7531 0 307 17
Cluster C 75.3086 0 80 244

Total 87.1693 108 387 261

Based on the discriminant parameters analyzed by DA, box and whisker plots of three
clusters (cluster A, cluster B, cluster C) were constructed to evaluate the spatial variations
in water quality (Figure 6). Most of the parameters showed significant differences between
clusters. Overall, the average concentration of cluster A was much lower than that of
clusters B and C, and the average concentration of cluster C was slightly higher than that of
cluster B. Higher Petrol, COD and TP values were found in cluster C, indicating that organic
contamination and eutrophication were the most serious water environment problems in
cluster C. Additionally, lower pH values were found at the monitoring stations of cluster C,
likely because of the hydrolysis of acidic substances (ammonia and organic acids) [5]. In
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conclusion, the water contamination of cluster C was more serious than that of the other
two clusters. Thus, the prevention and control of contamination sources and treatment
capacity of point source contamination must be strengthened, such as strengthening the
construction and treatment capacity of STPs.
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3.4. Principal Component Determination and Contamination Source Identification

Because the contamination levels of the three spatial clusters (clusters A, B, and C)
were significantly different, PCA/FA was used to identify the water contamination source
types for the normalized data sets of the three spatial clusters.

PCA/FA of the three data matrices obtained six, eight and seven variance factors
(VFs) with eigenvalues ≥1, explaining 71.5%, 66.8% and 67.9% of the total variance in the
corresponding data sets, respectively (Tables 6–8). Additionally, the loadings of parameters
on VFs were categorized as “high”, “medium” and “low” based on absolute loading values
of > 0.75, 0.75–0.50 and 0.50–0.30 [44].

Table 6. Loadings of 22 water quality parameters on VFs for cluster A in the Nanxi River.

Parameters VF1 VF2 VF3 VF4 VF5 VF6

Temp 0.145 −0.110 0.168 0.351 0.665 0.214
pH 0.043 0.182 0.026 0.075 0.764 0.386
EC 0.073 0.190 0.168 0.113 0.744 −0.335
DO −0.368 0.047 −0.319 −0.286 −0.223 0.287

CODMn −0.198 −0.084 −0.024 0.808 0.243 −0.017
BOD5 −0.068 0.103 0.130 0.852 0.101 −0.015

NH3-N 0.091 −0.313 −0.489 0.093 −0.049 −0.568
Petrol 0.829 −0.066 0.060 −0.128 0.134 0.011

VP 0.891 0.022 0.119 −0.160 0.130 0.060
COD −0.180 −0.376 0.546 −0.032 −0.189 −0.091
TN 0.724 0.014 0.199 −0.144 0.038 −0.273
TP 0.074 −0.107 −0.618 0.347 0.141 −0.024
F 0.767 −0.141 0.006 0.092 −0.081 0.014
S 0.003 0.091 0.735 0.248 −0.138 −0.153

F. Coli 0.566 0.529 0.321 0.048 −0.004 −0.306
SO4 −0.011 −0.750 −0.115 0.239 0.144 −0.084
Cl 0.238 0.046 0.889 0.061 0.041 0.084

NO3-N 0.133 0.092 0.910 0.007 0.074 0.022
TSS 0.589 −0.061 −0.162 0.403 −0.188 0.395

T-Hard 0.205 −0.826 0.096 −0.128 −0.243 0.022
NO2-N 0.038 0.748 0.255 0.045 0.273 0.126

NH3 0.019 0.097 −0.220 0.062 0.884 −0.113
Eigenvalue 4.554 3.373 3.067 2.266 1.380 1.089

% Total variance 20.699 15.332 13.939 10.302 6.271 4.952
Cumulative % variance 20.699 36.031 49.969 60.271 66.542 71.494

VFs represent the variance factors after varimax raw rotation for principal components; bold values represent
medium-high loadings.

Among the six VFs of cluster A, VF1 explained 20.7% of the total variance and had high
positive loadings on Petrol, VP, TN and F. This factor indicated toxic organic contamination
from farmland drainage, oily sewage discharge from ship operation, domestic sewage,
industrial wastewater, atmospheric deposition and precipitation leaching. VF2 (15.3% of the
total variance) had high negative loadings on SO4 and TSS, and high positive loadings on
NO2-N. The presence of nitrite in water indicated that the decomposition process of organic
matter continued, and the risk of organic matter contamination persisted. VF3 (13.9%) had
high positive loadings on NO3-N, Cl and S, indicating nutrients from agricultural runoff
and atmospheric deposition and the natural source of soil erosion and salt ions (CI, S) in the
watershed [45]. VF4 (10.3%) had high positive loadings on BOD5 and CODMn, representing
organic contamination in sewage [6]. VF5 (6.3%) had high positive loadings on NH3, pH
and EC. Generally, EC indicates natural contamination, which may be due to soil erosion
or an increase in the number of salt ions in water [44]. Additionally, VF6 (only 5.0%) had a
medium negative loading on NH3-N.
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Table 7. Loadings of 22 water quality parameters on VFs for cluster B in the Nanxi River.

Parameters VF1 VF2 VF3 VF4 VF5 VF6 VF7 VF8

Temp −0.063 0.109 −0.865 0.041 −0.052 −0.100 0.099 0.153
pH 0.042 0.021 0.220 −0.234 −0.117 0.125 0.077 0.787
EC −0.214 0.036 −0.180 −0.032 −0.062 0.823 −0.024 0.046
DO 0.024 0.073 0.750 0.086 −0.126 −0.378 0.066 0.055

CODMn 0.191 −0.847 0.041 −0.076 0.028 −0.006 −0.074 0.015
BOD5 −0.032 −0.863 0.013 0.174 0.108 −0.020 0.041 −0.075

NH3-N 0.211 −0.222 −0.088 −0.038 0.703 0.085 −0.019 −0.038
Petrol −0.216 −0.357 0.073 0.067 0.629 −0.159 0.131 0.083

VP 0.074 0.141 −0.134 −0.647 −0.073 −0.134 0.358 0.181
COD −0.161 0.132 0.157 0.225 0.520 0.004 0.082 0.104
TN −0.021 0.009 0.193 0.014 0.142 0.090 0.719 0.061
TP 0.049 −0.135 −0.160 0.621 0.164 0.046 −0.064 −0.073
F −0.810 0.169 −0.006 −0.117 −0.011 0.086 0.061 −0.010
S 0.706 0.171 0.121 −0.335 0.093 −0.062 −0.090 0.199

F. Coli 0.707 −0.178 0.010 0.400 −0.226 −0.052 0.095 0.061
SO4 −0.006 0.028 −0.166 −0.111 −0.103 0.007 0.786 0.066
Cl 0.392 0.026 0.354 0.086 0.161 0.568 0.291 0.061

NO3-N −0.185 0.013 0.064 −0.664 0.038 0.314 −0.173 −0.140
TSS −0.141 0.218 −0.169 −0.047 0.544 0.052 −0.206 −0.103

T-Hard −0.093 −0.130 0.050 −0.158 0.035 0.202 0.131 −0.663
NO2-N 0.165 0.085 0.189 0.572 −0.046 0.089 −0.490 0.143

NH3 0.081 −0.024 −0.355 0.119 0.135 0.045 0.092 0.812
Eigenvalue 2.837 2.440 2.038 1.980 1.548 1.419 1.297 1.146

% Total variance 12.897 11.089 9.262 8.998 7.038 6.452 5.897 5.209
Cumulative % variance 12.897 23.986 33.248 42.246 49.284 55.735 61.632 66.841

VFs represent the variance factors after varimax raw rotation for principal components; bold values represent
medium-high loadings.

Regarding the data set of cluster B, among the eight VFs, VF1, which accounted for
12.9% of the total variance, represented a high negative loading on F but medium positive
loadings on F. Coli and S, indicating microbial contamination from municipal sewage,
livestock and poultry breeding. VF2 (11.1% of the total variance) represented high negative
loadings on BOD5 and CODMn, indicating organic contamination in urban sewage and
industrial wastewater. VF3 (9.3%) represented a high positive loading on DO but a high
negative loading on Temp. VF4 (9.0%) represented only a moderate positive loading on TP,
revealing nutrient contamination (e.g., P), especially from sewage containing detergents,
industrial wastewater and fertilizer. Point source contamination (such as wastewater from
the phosphorus chemical industry) and nonpoint source contamination (such as animal
breeding and agricultural fertilizer) from P, constitute common eutrophication-causing
contamination in this area [46]. VF5 (7.0%) applied only a moderate positive loading on
NH3-N, representing the contamination of animal feces and agricultural fertilizers. VF6
(only 6.5%) presented a high positive loading only on EC, likely because of the mineral
composition in river water [6]. VF7 (only 5.9%) presented a high positive loading on SO4
and a medium positive loading on TN, representing industrial wastewater using sulfate or
sulfuric acid. Finally, VF8 (only 5.2%) had a high positive loading on NH3 and pH, likely
because of industrial wastewater containing alkaline substances, such as NH3.

Regarding the seven VFs of cluster C, VF1 (20.5% of the total variance) showed high
positive loadings on NH3-N and TN, representing nutrient contamination from agricultural
runoff, municipal sewage and fertilizer plant wastewater (e.g., N). VF2 (12.2%) showed a
high positive loading on F, representing industrial wastewater containing fluoride. VF3
(10.2%) showed a high positive loading on pH. VF4 (7.5%) showed a high positive loading
on Temp and a moderate negative loading on DO, contrasting the results for VF3 of
cluster B. VF5 (6.7%) showed a high positive loading on Petrol, representing contamination
from oily sewage discharge from ship operations and wastewater from the petrochemical
industry. VF6 (5.7) showed moderate positive loadings on TSS and EC. Agricultural runoff,
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wastewater discharge, solid waste disposal and irrigation return increased the suspended
solids loading in streams [45]. VF7 (5.0%) showed a high positive loading on SO4, similar
to VF7 of cluster B.

Table 8. Loadings of 22 water quality parameters on VFs for cluster C in the Nanxi River.

Parameters VF1 VF2 VF3 VF4 VF5 VF6 VF7

Temp −0.189 0.073 0.090 0.862 −0.116 −0.034 0.125
pH −0.158 0.007 0.781 −0.105 −0.132 −0.052 0.135
EC 0.250 0.211 −0.077 0.206 −0.068 0.704 −0.077
DO −0.216 0.030 −0.051 −0.743 −0.118 −0.155 0.090

CODMn 0.593 −0.065 0.051 0.032 0.414 −0.285 0.186
BOD5 0.534 −0.030 0.056 0.142 0.655 −0.255 0.098

NH3-N 0.829 −0.001 −0.085 0.025 0.175 0.135 −0.189
Petrol 0.114 −0.105 0.086 −0.108 0.819 0.055 0.064

VP 0.001 −0.100 0.155 0.004 −0.632 −0.283 0.139
COD 0.546 −0.013 0.294 −0.245 0.472 0.075 0.071
TN 0.827 0.127 −0.065 −0.055 0.075 0.099 −0.001
TP 0.302 0.110 −0.201 0.061 0.648 0.167 −0.116
F 0.115 0.759 0.076 −0.063 0.044 0.214 0.200
S −0.082 −0.673 0.355 −0.245 −0.133 0.154 −0.048

F. Coli 0.045 −0.721 −0.077 0.028 0.255 −0.249 0.071
SO4 0.053 0.197 0.074 0.080 −0.178 0.022 0.818
Cl 0.182 −0.435 0.133 −0.133 0.157 0.489 0.315

NO3-N 0.262 0.268 −0.213 −0.041 −0.291 −0.013 −0.632
TSS −0.106 0.174 −0.067 −0.033 0.153 0.706 0.091

T-Hard 0.148 0.105 −0.659 −0.187 −0.140 0.086 0.031
NO2-N 0.191 −0.147 0.046 0.013 0.631 −0.043 −0.438

NH3 0.312 −0.001 0.689 0.404 0.104 0.007 0.135
Eigenvalue 4.513 2.685 2.250 1.661 1.469 1.252 1.098

% Total variance 20.515 12.202 10.227 7.549 6.678 5.693 4.989
Cumulative % variance 20.515 32.717 42.944 50.493 57.171 62.863 67.852

VFs represent the variance factors after varimax raw rotation for principal components; bold values represent
medium-high loadings.

We have identified four contamination source types—nutrient, organics, feces and
oil. Specifically, nutrient represented point source contamination, such as urban domestic
wastewater and industrial wastewater from chemical fertilizer plants, and nonpoint source
contamination, such as that related to agricultural activities and aquaculture. Second,
organics were mainly derived from oxygen consumption and toxic organic matter from
municipal sewage and industrial sewage. Third, feces were mainly derived from animal
fecal drainage in the fishery and livestock breeding industries. Finally, oil represented the
contamination characters from the petroleum chemical industry and oily sewage discharge
from ship operation.

4. Conclusions

In the Nanxi River of the Taihu watershed in China, WQI and multivariate statistical
techniques were used to assess the spatiotemporal variations in water quality and to
identify contamination source types.

(1) The WQI findings indicated that the water quality of most monitoring stations was
classified as “medium-low” and presented a continuous improvement trend. The water
quality of S1 and S2 was always above “good”, especially the water quality of S2, which
was “excellent” in 2015 and 2018.

(2) Cluster analysis divided the 14 monitoring stations into 3 clusters of low contami-
nation, medium contamination and high contamination.

(3) Discriminant analysis used 14 parameters (pH, Petrol, VP, COD, TP, F, S, F. coli,
SO4, Cl, NO3-N, T-Hard, NO2-N, and NH3) for important data reduction and provided an
87% correct allocation in the spatial variation analysis for the 3 clusters.
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(4) PCA/FA was used to analyze the data sets of three spatial clusters and obtained six,
eight and seven potential factors. The study showed that the sources of water contamination
were mainly related to nutrients (livestock and poultry breeding, agricultural activities),
salt ions (natural) and toxic organic contamination (urban sewage, industrial wastewater
and ship operation) in cluster A; fecal coliform (livestock and poultry breeding), organic
contamination (industrial and domestic sewage), temperature (natural), nutrients (point
source: industrial wastewater and domestic sewage; nonpoint sources: livestock and
poultry breeding, agricultural fertilizer) in cluster B; and fluoride (industrial wastewater),
pH and temperature (natural), and petroleum (ship operation and industrial wastewater)
in cluster C.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w14050778/s1, Supplementary Material.docx (the explanation
about the statistical methods) and Supplementary Material.xlsx (the raw water quality data).
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45. Varol, M.; Gökot, B.; Bekleyen, A.; Şen, B. Water quality assessment and apportionment of pollution sources of Tigris River
(Turkey) using multivariate statistical techniques—A case study. River Res. Appl. 2012, 28, 1428–1438. [CrossRef]

46. Wang, Y.; Wang, P.; Bai, Y.; Tian, Z.; Li, J.; Shao, X.; Mustavich, L.; Li, B. Assessment of surface water quality via multivariate
statistical techniques: A case study of the Songhua River Harbin region, China. J. Hydro-Environ. Res. 2013, 7, 30–40. [CrossRef]

http://doi.org/10.1007/s10661-010-1366-y
http://www.changzhou.gov.cn/ns_class/cz263zt
http://doi.org/10.1016/j.jhydrol.2008.07.048
http://doi.org/10.1007/s10661-015-4354-4
http://doi.org/10.1002/rra.1533
http://doi.org/10.1016/j.jher.2012.10.003

	Introduction 
	Materials and Methods 
	Study Area 
	Monitoring Stations and Water Quality Data 
	Water Quality Index 
	Statistical Analysis 

	Results and Discussion 
	Water Quality Assessment Using WQI 
	Spatial Similarities and Clustering 
	Spatial Variations in Water Quality 
	Principal Component Determination and Contamination Source Identification 

	Conclusions 
	References

