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Abstract: The availability of freshwater resources in mountain areas has been affected by climate
change impacts on groundwater storage mechanisms. As a web of complex interactions characterizes
climate systems, understanding how water storage conditions have changed in response to climate-
driven factors in different Italian contexts is becoming increasingly crucial. In order to comprehend
the relationship between changes in weather conditions and water availability in the Aosta Valley
region and how their trends have changed over the last decade, a 7-year discharge series of different
Aosta Valley springs (Promise, Alpe Perrot, Promiod, Cheserod) and precipitation data are analysed.
Precipitation and flow rate trends using the Mann–Kendall and Sen’s slope trend detection tests were
also performed. Not all of the Aosta Valley mountain springs detected seem to respond to the climate
variation with a decrease in their stored water resources. Unlike Promiod, Alpe Perrot, Cheserod,
and Promise springs have experienced an increase in water discharged amount during the detected
7-year period. This behavior occurs despite the available precipitation data for the associated Sant
Vincent, Aymaville-Viayes, La Thuile-Villaret, Champdepraz meteorological stations revealing an
overall decreasing trend in annual rainfall (mm), with a slight increase in intensity (mm/day) as a
result of the reduction in rainfall events (number of rainy days).

Keywords: hydrogeology; climate change; groundwater monitoring; mountain spring; Italy

1. Introduction

Groundwater, the water reserve beneath the Earth’s surface, is an essential resource
for humans and ecosystems. Globally, water use has increased by a factor of six over the
past 100 years and continues to grow steadily at about 1% per year due to the increasing
population, economic development, and consumption patterns. Additionally, because of
the higher population density of cities and urbanization levels, limited water supplies are
becoming increasingly vulnerable in such areas [1].

Over recent decades, the availability and sustainability of freshwater resources have
been affected by the impacts of climate change on groundwater storage mechanisms [2].
As reported by [3], the most vulnerable societies are often characterized by insufficient
observation systems and monitoring equipment, and they also lack impact-based models.
This is particularly the case of the Mediterranean region. Here, average annual temperatures
are now approximately 1.5 ◦C higher than from 1880 to 1899, which is well above current
global warming trends. Moreover, available climate models suggest scenarios with a
reduction in recharge in the coming decades [4,5].

A web of complex interactions characterizes climate systems, and several potential
effects of climate change remain largely unknown. Therefore, examining how groundwater
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storage mechanisms are changing in response to climate-driven agents is becoming increas-
ingly crucial [6,7]. In terms of known effects on the hydrological cycle, climate change
can affect the amount of soil infiltration, deeper percolation, and groundwater recharge.
In addition, rising temperature increases the evaporative demand over land, limiting the
available surface water for groundwater replenishment [8].

A wide array of scientific research has been conducted to explore how water resources
might respond to global change in recent decades. However, existing studies about climate
change’s impacts on groundwater recharge are generally global in scale [9,10]. Moreover,
research has been focused dominantly on surface-water systems, due to their visibility, ac-
cessibility, and more obvious recognition of surface waters being affected by global change.
Only recently have water resource policies recognized the critical role of groundwater
resources in meeting the demands for drinking water, agricultural and industrial activities,
and sustaining ecosystems [7].

The available global researches describe an intensification of the hydrological cycle:
higher temperatures are expected to drive increases in evaporation and evapotranspiration
(ET), while many places are projected to experience drought in terms of precipitation
amount and intensity [11–15]. Reference [11] investigated the event-to-event hydroclimatic
intensity under future warming scenarios. According to a set of targeted multi-model
large ensemble experiments, the authors described how event-wise intensification will
significantly increase globally for an additional 0.5 ◦C warming beyond 1.5 ◦C. For the
Mediterranean region, the enhancement of dry spells seems to be dominating compared to
the decrease in wet spell strength, and this will lead to an overall event-wise intensification.
With a focus on Central Europe, reference [13] analysed the long-term impact of snow
cover and precipitation changes along with their interaction with reservoir constructions.
In their results, the authors showed that runoff seasonality of snow-dominated rivers
decreases. Runoff increases in winter and spring, while discharge decreases in summer
and at the beginning of autumn. Reference [15] aimed to understand whether or not the
shortage of water supply in the Alto Sabor watershed, northeast Portugal, can be effectively
addressed by constructing a new reservoir (two-reservoir system) by considering future
climate projections. A general increase in temperature is described for the future, while
the change in precipitation is more uncertain as per the differences among climatic models.
In general, annual precipitation would slightly decrease while seasonal changes would be
more significant, with more precipitation in winter and much less in spring and summer.
According to reference [16], climate change brings multiple changes in different regions,
including changes to wetness and dryness, winds, snow and ice, coastal areas, and oceans.
Precipitation is projected to increase in high latitudes, while decreasing over large parts
of the subtropics. Further warming will amplify permafrost thawing, the loss of seasonal
snow cover, and the melting of glaciers and ice sheets. For cities in temperate zones, some
aspects of climate change may be amplified, including heat (since urban areas are usually
warmer than their surroundings), flooding from heavy precipitation events, and sea-level
rise in coastal cities.

Until recently, there have been fewer studies on the relationship between climate
change and groundwater recharge mechanisms at an Italian regional and local scale [17–20].
In their work, reference [17] analysed data from 126 rain gauges, 41 temperature gauges,
8 river discharge gauges, and 239 wells located in Southern Italy to characterize the effects
of recent climate change on water resource availability, observing a widespread decreasing
trend in annual rainfall over 97% of the area. In addition, reference [19] evaluated projected
changes in extreme rainfall events across the region of Sicily (Italy). Their results showed a
predicted future increase in the growth curves, clearly indicating an increase in the inten-
sity of extreme precipitation events, especially for the shortest durations. Reference [20]
proposed an ensemble approach to estimate possible impacts of climate changes on the
extreme precipitation regime, using the Napoli Servizio Idrografico (Naples, Italy) rain
gauge as a test case.
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As reported by [21], the trends of the leading climate variables (i.e., rainfall, snow, and
temperature) have direct control over groundwater storage conditions as well as spring
discharge amounts. Therefore, long-term spring discharge time series, combined with
available climate variables trend analyses, can facilitate the investigation of the possible
effects of climate change on groundwater recharge mechanisms in different regions. Given
the variety of climatic conditions recorded in Italian territory, providing a complete picture
of groundwater response to the country’s changing climate is even more challenging. In
particular, the impacts of climate change are continuously modified by human and indirect
agents such as land-use change and over-exploitation of groundwater.

Given the above considerations, this paper aims to investigate the existing relation-
ships between precipitation regimes and groundwater sources’ recharge amounts on a
local scale. In detail, the proposed study focuses on the analysis of variations in ground-
water discharge and recharge (i.e., precipitation) in the Aosta Valley (Northwestern Italy),
defining how their trends have changed over the past years. A 7-year discharge series of
different Aosta Valley springs (Promise, Alpe Perrot, Promiod, Cheserod), rainfall data,
and measured snow heights from selected meteorological stations were analysed. Firstly,
spring discharge measurements and available hydro-meteorological data of the four men-
tioned case studies were investigated, identifying the extent of the correlations between
the two variables described above. Subsequently, a comparison between the rainfall and
spring discharge time series of the Promiod and Alpe Perrot springs was carried out to
properly examine the evolution of meteorological conditions during the entire considered
period of 7 years. Then, flow rate and precipitation trends were defined and validated for
all case studies using the Mann–Kendall and Sen’s slope trend detection tests applied to
the entire series of data.

The Aosta Valley was selected because of the importance of groundwater resources
for the local inhabitants: its territory includes aquifer systems with different described
recharge mechanisms, thus providing valuable examples of recharge responses to climate
change in various geological settings.

2. Materials and Methods
2.1. Case Studies

The Aosta Valley region is geographically located in the northwestern sector of the
Italian peninsula (Figure 1). It is characterized by a typical alpine climate, associated with
cold winter and cool summer seasons. Monthly rainfall reaches its annual peaks in the
spring and autumn seasons, while the minimum values are recorded in the summer and
winter seasons. The highest mean precipitation value by month is roughly 140 mm of
rainfall, and the minimum mean value is 30 mm [22]. However, according to studies by
several researchers [16,23], the climatic conditions have undergone significant variations
over recent decades.

From a geological point of view, the quaternary deposits of the Aosta Valley region
span the entire Quaternary period and mainly relate to the last Upper Pleistocene glacial
episode and the post-glacial period (Holocene to present). Usually, Quaternary deposits
overlie the mountain slopes that constitute the aquifers in the area; these aquifers supply
hundreds of tiny springs that are widespread over the entire region, with 1800 water
springs [24].

Four of the most representative water springs were analysed in this paper: the Promise
spring, Alpe Perrot spring, Promiod spring, and Cheserod spring. The selected springs,
characterized by different aquifer types, are located in four minor tributary valleys. These
springs have been studied since 2010 through the activities carried out in the frameworks
of several EU Cooperation and national projects.



Water 2022, 14, 1004 4 of 17
Water 2022, 14, x FOR PEER REVIEW 4 of 19 
 

 

 

Figure 1. Aosta Valley region sketch map. Yellow triangles indicate the weather stations, blue points 

the mountain springs locations. 

2.1.1. Promise Spring 

The Promise spring is located at an elevation of 1580 m.a.s.l. in the La Thuile 

municipality (812 inhabitants [25]). This area corresponds to outcrops of the Houillère 

Zone sequence (Upper Paleozoic), a unit of the Outer Brianzonese Domain, forming part 

of the Middle Pennidic System of San Bernardo (Figure 2). The Outer Brianzonese Zone 

comprises the polymetamorphic geology of the Ruitor area, consisting of orthogneiss, 

Permo-Carboniferous sequences of the Houillère Zone and Permo-Triassic cover, rich in 

evaporites [26]. The Quaternary and recent formations comprise glacial deposits, deposits 

of gravitational origin, and eluvial–colluvial deposits. A series of gravitational structures 

and deposits are recognizable on the slope where the spring is located. 

The spring is hosted in an old argentiferous lead mine that reached its peak of 

production in the early 1900s. At present, the entire mine serves as the drainage of the 

spring, which has an intake spoil near the mine exit. 

Figure 1. Aosta Valley region sketch map. Yellow triangles indicate the weather stations, blue points
the mountain springs locations.

2.1.1. Promise Spring

The Promise spring is located at an elevation of 1580 m.a.s.l. in the La Thuile mu-
nicipality (812 inhabitants [25]). This area corresponds to outcrops of the Houillère Zone
sequence (Upper Paleozoic), a unit of the Outer Brianzonese Domain, forming part of
the Middle Pennidic System of San Bernardo (Figure 2). The Outer Brianzonese Zone
comprises the polymetamorphic geology of the Ruitor area, consisting of orthogneiss,
Permo-Carboniferous sequences of the Houillère Zone and Permo-Triassic cover, rich in
evaporites [26]. The Quaternary and recent formations comprise glacial deposits, deposits
of gravitational origin, and eluvial–colluvial deposits. A series of gravitational structures
and deposits are recognizable on the slope where the spring is located.
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The spring is hosted in an old argentiferous lead mine that reached its peak of pro-
duction in the early 1900s. At present, the entire mine serves as the drainage of the spring,
which has an intake spoil near the mine exit.

2.1.2. Alpe Perrot Spring

The Alpe Perrot spring is located at an elevation of 1280 m (Champdepraz municipality,
714 inhabitants [25]), corresponding to the Serpentinite massif of Mont Avic, one of the
largest in the Western Alps, extending from Val Clavalitè to the Champorcher Valley
(Figure 3).
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The massif is composed of serpentinized peridotites with intercalations of magnetite
chlorite schists, strands and lenses of rhodingites, and a few metagabbro bodies.

In the study area, the outcropping lithology is dominated by the Zermatt-Saas Unit,
which is a Jurassic–Cretaceous age ophiolite.

The Quaternary cover that characterizes the slope where the spring is located com-
prises Pleistocene glacial deposits (undifferentiated till, ablation or bottom deposits, land-
slide deposits with glacial transport, and scattered moraine skeletons) and glaciogenic
deposits (glacial contact, glacial-lacustrine, and fluvioglacial). In addition, two other de-
posits are also present, namely, a glacial deposit consisting of poorly sorted pebbles and
angular boulders mixed with eluvial–colluvial cover, present along the entire route leading
to the spring, and a gravitational accumulation of large blocks that characterizes the entire
area upstream of the spring at an altitude of approximately 1750 m.a.s.l.
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2.1.3. Promiod Spring

The Promiod spring is located at an elevation of 1650 m (Chatill
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n municipality,
4524 inhabitants [25]), corresponding to the Jurassic–Cretaceous Combin Zone, which
mainly comprises ophiolitic units, characterized by a robust blueschist/greenschist facies
footprint (Figure 4). Both metasediments and metamorphosed ophiolites outcrop in the
spring area. The metasediments are mainly composed of undifferentiated calcareous
schists, including carbonate, pelitic, and siliciclastic metasediments, derived primarily from
turbiditic deposits of probable Cretaceous age, which constitute the most recent part of
the cover overlying the ophiolites. In contrast, the metamorphosed ophiolites comprise
Prasinites that form flattened tabular or lenticular bodies, intercalated within the calcareous
schists. Similar to the Alpe Perrot spring, the Promiod spring is also a permeability limit
spring. The defined permeability limit is likely due to the juxtaposition of more fractured
and less fractured calcareous schists, resulting from the presence of the fault that runs
parallel to the valley in a NE–SW direction (Figure 4). Faults are of considerable importance
for the geology of the area as they are very numerous, relating to two brittle deformation
phases during the Oligocene and Miocene, defined as D1 and D2. In particular, phase D1 is
associated with important hydrothermal and magmatic events of the Oligocene age ([27]
and references therein); during this phase, normal fault systems with NE–SW and E–W
directions, which characterize the study area, were activated. Therefore, the spring has a
source basin located in fractured schists, overlain by a glacial deposit consisting of angular,
poorly sorted pebbles and boulders mixed with eluvial–colluvial cover.
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2.1.4. Cheserod Spring

The Cheserod/Chézerod spring is located in the village of Cheserod (1095 m.a.s.l.),
within the Gressan municipality (3393 inhabitants [25]), and overlies geology similar to
that of the Combin area (Figure 5). Even though they have not been reported in the official
geological cartography, a specific survey allowed numerous outcrops of soluble Triassic
rocks in the area to be identified, such as carbonate breccias, gypsum, and anhydrite. The
carbonate clasts are centimetric to sub-centimetric in size, saccharine in appearance, and
white in color. These are immersed in a fine, pale-yellow matrix that becomes yellow ochre
upon contact with the clasts. The surface deposits are largely composed of undifferentiated
glacial deposits, strongly reworked by the eluvial–colluvial action of external agents.
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The described spring is located in an impluvium from which derives part of its water
resource. However, the overall catchment was discovered to be larger as the water amount
is not affected by seasonal variations in the flow rate of the stream.

2.2. Data

Since 2010, the analysed springs (Promise, Alpe Perrot, Promiod, Cheserod springs)
have been constantly monitored through multiparametric water probes, which record the
discharge (l/s) that flows out of the spring and temperature values with a time step hourly.
Additionally, the different case studies turn out to be associated with close weather stations
(Table 1). A good network of meteorological monitoring instruments has been developed
over time in the territory of the Valle d’Aosta under the responsibility of the Functional
Centre, which collects data from 92 meteorological stations. Available sensors installed at
the different meteorological stations, particularly rainfall gauges and thermometers, allow
a continuous recording of cumulated rainfall (mm) and air temperature values.
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Table 1. Selected meteorological stations.

Weather Stations: Aymavilles—Vieyes Saint Vincent—Terme La Thuile—Villaret Champdepraz—Chevrère

Place: Vieyes Terme Villaret Chevrère

Municipality: Aymavilles Saint Vincent La Thuile Champdepraz

Basin: s. Grand’Eyvia Dora Baltea s. Ruitor s. Chalamy

Spring: Cheserod spring Promiod spring Promise spring Alpe Perrot spring

Elevation (m a.s.l.): 1139 626 1488 1260

Latitude (WGS84) 45.6497◦ 45.7495◦ 45.7095◦ 45.6835◦

Longitude (WGS84) 7.2508◦ 7.6526◦ 6.95609◦ 7.61357◦

Weather Station–
Spring distance 6650 m 5147 m 1342 m 612 m
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In this study, continuous datasets of hourly spring discharge values, air temperature,
rainfall data, and measured snow heights from springs and meteorological stations, respec-
tively, were used. Helpful information about climate change impacts in the Aosta Valley
region were also found in a cross-border study called Espace Mont Blanc of 2019 (Haute
Savoie, Savoie, Canton Valais, Autonomous Region Valle d’Aosta) [28].

2.3. Hydro-Meteorological Data Analysis

Analyzing mountain spring discharge hydrographs still represents the most useful
way to detect aquifer characteristics, such as the type and quantity of stored groundwater
reserves [29]. A spring hydrograph is the final result of various processes that control the
transformation of precipitation and other water inputs into a single output at the spring.
The hydrograph shape strictly depends on precipitation characteristics and is constructed
based on discharge values (Q) measured during a hydrogeological year, the period between
two hydrograph minima.

In this study, hourly spring discharge measurements and hydro-meteorological data
(i.e., precipitation values) of the aforementioned case studies (Promise, Alpe Perrot, Promiod,
Cheserod springs) and meteorological stations, respectively, were investigated, with the
aim of defining the extent of the correlation between the two different analysed variables.
Firstly, seven hydrogeological years were individuated along the seven years’ time series
of data available (from 2012 to 2019). Each hydrogeological year was then subdivided into
two main seasons, based on the recharge and depletion phases of the associated springs’
aquifers (Table 2).

Subsequently, by comparing the springs’ hydrograph and the precipitation graph,
the aquifers’ primary recharge sources were identified, explicitly distinguishing between
liquid, solid–liquid or solid sources.

Cumulative discharge and rainfall values, recorded at the end of each defined season,
are compared to determine the correlation between the spring and the meteorological
regimes. In detail, the correlation index was evaluated by estimating the coefficient of
determination R2, defined by Equations (1)–(3)

R2 =
ESS
TSS

(1)
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ESS =
n

∑
i=1

(ŷi − y)2 (2)

TSS =
n

∑
i=1

(yi − y)2 (3)

where ESS is the Explained Sum of Squares, TSS represents the Total Sum of Squares, yi are
the observed data points, y is their average, and ŷi are the corresponding estimated data
obtained from regression.

Table 2. Hydrogeological years (seasons) analyzed for each spring.

Promise Alpe Perrot Promiod Cheserod

1◦ h.y. 09/03/2012–12/04/2013 12/03/2012–25/03/2013 29/02/2012–19/04/2013 17/12/2011–26/03/2013
(recharge season;
discharge season)

(09/03/2012–08/05/2012;
09/05/2012–12/04/2013)

(12/03/2012–05/06/2012;
06/06/2012–25/03/2013)

(29/02/2012–21/05/2012;
22/05/2012–19/04/2013)

(17/12/2011–06/07/2012;
07/07/2012–26/03/2013)

2◦ h.y. 13/04/2013–09/03/2014 26/03/2013–14/03/2014 20/04/2013–08/02/2014 27/03/2013–23/05/2014
(recharge season;
discharge season)

(13/04/2013–06/05/2013;
07/05/2013–09/03/2014)

(26/03/2013–24/05/2013;
25/05/2013–14/03/2014

(20/04/2013–18/05/2013;
19/05/2013–08/02/2014)

(27/03/2013–25/08/2013;
26/08/2013–23/05/2014)

3◦ h.y. 10/03/2014–15/03/2015 15/03/2014–13/03/2015 09/02/2014–13/03/2015 24/05/2014–02/05/2015
(recharge season;
discharge season)

(10/03/2014–21/04/2014;
22/04/2014–15/03/2015)

(15/03/2014–30/05/2014;
31/05/2014–13/03/2015)

(09/02/2014–23/05/2014;
24/05/2014–13/03/2015)

(24/05/2014–05/06/2014;
06/06/2014–02/05/2015)

4◦ h.y. 16/03/2015–26/02/2016 14/03/2015–20/03/2016 14/03/2015–17/02/2016 03/05/2015–09/04/2016
(recharge season;
discharge season)

(16/03/2015–08/05/2015;
09/05/2015–26/02/2016)

(14/03/2015 -17/06/2015;
18/06/2015–20/03/2016)

(14/03/2015–21/05/2015;
22/05/2015–17/02/2016)

(03/05/2015–11/07/2015;
12/07/2015–09/04/2016)

5◦ h.y. 27/02/2016–10/03/2017 21/03/2016–09/03/2017 18/02/2016–11/02/2017 10/04/2016–13/05/2017
(recharge season;
discharge season)

(27/02/2016–27/04/2016;
28/04/2016–10/03/2017)

(21/03/2016–06/06/2016;
07/06/2016–09/03/2017)

(18/02/2016 -10/06/2016;
11/06/2016–11/02/2017)

(10/04/2016–07/09/2016;
08/09/2016–13/05/2017)

6◦ h.y. 11/03/2017–05/04/2018 10/03/2017–24/03/2018 12/02/2017–17/02/2018 14/05/2017–12/04/2018
(recharge season;
discharge season)

(11/03/2017–20/04/2017;
21/04/2017–05/04/2018)

(10/03/2017–01/06/2017;
02/06/2017–24/03/2018)

(12/02/2017–12/06/2017;
13/06/2017–17/02/2018)

(14/05/2017–07/06/2017;
08/06/2017–12/04/2018)

7◦ h.y. 06/04/2018–02/04/2019 25/03/2018–31/03/2019 18/02/2018–31/03/2019 13/04/2018–06/06/2019
(recharge season;
discharge season)

(06/04/2018–02/05/2018;
03/05/2018–02/04/2019)

(25/03/2018–04/06/2018;
05/06/2018–31/03/2019)

(18/02/2018–11/05/2018;
12/05/2018–31/03/2019)

(13/04/2018–23/07/2018;
24/07/2018–06/06/2019)

The R2 factor describes the proportion of the variation in the dependent variable that
can be predicted from the independent variable(s). R2 varies between 0 and 1; when its
value is 0, the model used does not explain the data at all, whereas, when the value is 1, the
model explains the data perfectly [30].

2.4. Rainfall Time Series Analysis

As noted above, the effects of climate change on groundwater, together with the
increasing variability in global water demand during the 21st century, has made time series
analysis of rainfall—a primary replenishing source of water—more imperative than ever
before [31]. Generally, for a proper characterization of the pluviometric regime, time series
of rainfall data at the ground level in millimeters have to be considered. The choice of
time step for representing temporal series of rainfall depends on the length of the dataset
period and the temporal accuracy required for the specific case study. Several authors have
considered time series in terms of annual time steps. In contrast, others have proposed
dividing the annual interval into four sub-intervals of equal length, thus increasing the
accuracy of the analysis [32].

For the second analysis step of this study, after defining an equal series interval for
both the flow rate data and the rainfall, the pluviometric characteristics were analyzed with
the aim to identify the possible presence of variations in meteorological conditions during
the entire period of analysis (7 years). Specifically, pluviometric properties over the selected
period of 7 years were defined by observing whether the amount of rainfall increased or
decreased in each month over the years analysed: a linear regression of the time series of
data was performed for this purpose, thus defining the slope of the trend line.
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A rainfall property characterization was also performed by estimating the frequency of
rainfall calculated by counting rainy days for each month and rainfall intensity defined as
the ratio between the amount of rain that falls in a month interval of time and the number
of rainy days within the same interval.

2.5. Trend Analysis of Flow Rate Long-Term Series

Trends are a gradual change in a data series over time: investigating trends by detecting
if there is a significant positive or negative correlation between data and time is one of the
most commonly performed analyses in hydro-meteorological research [33].

In the third analysis step of this study, trend analyses on spring discharge measure-
ments at the four analysed springs (Promise, Alpe Perrot, Promiod, Cheserod springs)
were conducted to understand (1) how the volumes drained by the different case studies
have changed during each period of recharge and depletion and (2) if the annual flow rate
amounts have increased over time. In detail, flow rate trends were defined and validated
using the Mann–Kendall [34,35] and Sen’s slope trend detection [36] tests, applied to the
entire data series. These tests were executed to detect statistically significant trends in
7-year series of annual mean spring discharge, seasonal and hourly datasets.

The Mann–Kendall test is a rank-based non-parametric method, whose purpose is to
assess the sign and the significance of monotonic trends in time series. It does not need
to satisfy the assumption of normality of the data; its statistic is based on the signs of
the variables. The mathematical equations for calculating Mann–Kendall statistics, i.e., S,
Var(S), and standardized test statistics ZMK are

S =
n−1

∑
i=1

n

∑
j=i+1

sgn
(
Yj −Yi

)
(4)

sgn
(
Yj −Yi

)
=


+1 i f sgn

(
Yj −Yi

)
> 0

0 i f sgn
(
Yj −Yi

)
= 0

−1 i f sgn
(
Yj −Yi

)
< 0

(5)

Var (S) =
1

18
dn(n− 1)(2n + 5)−

q

∑
p=1

tp
(
tp − 1

)(
2tp + 5

)
e (6)

Zmk =


S−1√
Var(S)

i f S > 0
S+1√
Var(S)

i f S < 0
(7)

where Yj and Yi are data at time points j and i (j < i) respectively, n is the length of the time
series, tp is the number of ties for the pth value, and q is the number of tied values. The sign
of the trend is represented by the sign of standardized test statistic (ZMK).

The true slope of the trend detected by the Mann–Kendall test was then computed
by using Sen’s slope test. Sen’s test assumes that trend is linear; the slope, bSen, and the
intercept, aSen, of the trend line, are given by

bsen = median

((
Yj −Yi

)
(j− i)

)
(8)

asen = median(Yi − bsenti) (9)

where Yi is the data point at time ti.
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3. Results
3.1. Hydro-Meteorological Data Analysis Results

During the first analysis step, the extent of the correlation between the hourly spring
discharge measurements and the precipitation amounts is investigated. In detail, the
cumulative values of discharge and rainfall, recorded at the end of each season (2012–2019),
are used to define the correlation coefficient between the analysed variables.

Figure 6 shows the linear regression trendlines and corresponding R2 coefficient
values. Higher values of R2 (>0.75; classified as substantial correlation) obtained for the
Promiod and Alpe Perrot springs indicate the springs’ tendency to show a clear response
to precipitation inputs (Figure 6b,c). In contrast, the Cheserod and Promise springs show
R2 values of 0.67 and 0.52, respectively (i.e., moderate correlation) (Figure 6a,d).
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Figure 6. Graphs representing the correlation between seasonal values of cumulative discharge
(x-axis) and cumulative precipitation (y-axis) for each hydrogeological season from 2012 to 2019. The
coefficient of determination (R2) for the linear regression of the two datasets in each graph is shown.
(a) Promise spring; (b) Alpe Perrot spring; (c) Promiod spring (d); Cheserod spring.

Considering their springs’ hydrographs, the Alpe Perrot and Promiod springs appear
to be largely supplied by liquid precipitation throughout each hydrological year. Un-
like Alpe Perrot and Promiod, the Promise and Cheserod springs are supplied by solid
sources (snow) in winter and liquid (rain) in summer. Consequently, both springs needed
to consider the available snow data, eventually modifying the starting date of the next
considered hydrogeological year. Furthermore, Promise spring turns out to be the most
affected by extreme events due to its geological and hydrogeological features. Considering
the fractured nature of its aquifer, part of the infiltrated water appears not to be collected
by the drainage network. This phenomenon was confirmed by the correlation coefficient
value obtained for the Promise spring equal to 0.52. However, by considering the snow
data available and avoiding the contributions of the recorded extreme events, a correlation
value of 0.87 was obtained (Figure 6a).
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3.2. Rainfall Time Series Analysis Results

During the second analysis step of this study, a comparison between the rainfall and
spring discharge time series of the two best-correlated case studies, i.e., Promiod and Alpe
Perrot springs was carried out. The main aim was properly examining the evolution of
meteorological conditions during the entire considered period of 7 years.

Figure 7 shows the rainfall regime of the analysed weather stations over the selected
period (2012–2019) in terms of cumulative precipitation, intensity, and frequency: rainfalls
lose their seasonality more evidently for Champdepraz weather station (Figure 7a).
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Figure 7. Time series plots of rainfall amount (a,b), intensity (c,d) and rainy days (e,f) over the
analyzed period taking into account the two best-correlated weather station—springs study cases:
Alpe Perrot—Champdepdraz (a,c,e) and Promiod—Saint Vincent (b,d,f). The linear interpolation
trend is represented by a red line and the regression equation is shown in each plot.
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Weather stations’ recorded values (i.e., Champdepraz meteorological station for Alpe
Perrot spring and Saint Vincent meteorological station for Promiod spring) revealed an
overall decrease in precipitation water amount (mm) (Figure 7a,b), with a slight increase in
intensity (mm/day) (Figure 7c,d) relating to a reduction in rainfall events (i.e., the number
of rainy days) (Figure 7e,f).

Comparing the months characterized by high rainfall values and present at the begin-
ning of the historical series, rainfall amounts decrease in favor of less rainy months. This
behavior can interrupt the annual pattern of the hydrogram into multiple charging and
discharging phases, as shown in Figure 8a,b.
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Figure 8. Time series of discharge (a,b) of the two sets of best-correlated weather station—springs
study cases: Alpe Perrot—Champdepdraz (a) and Promiod—Saint Vincent (b). The linear interpola-
tion trend is represented by a red line and the regression equation is shown on each plot.

Analyzing hydrographs of the Alpe Perrot spring (Figure 8a), it is possible to notice
an increasing trend of the minima points, meaning that the aquifer has released less
water during each recession period. Unlike Alpe Perrot, Promiod springs turn out to be
characterized by a decreasing trend in values of minimums: the discharge amounts better
reflect a reduction in the total precipitation contribution over time, i.e., a decreasing trend
(Figure 8b).

3.3. Trend Analysis Results

During the third analysis step, the variation in the annual quantities of water outflow
was assessed by applying the Mann–Kendal/Sen’s slope statistical tests. Furthermore, in
order to evaluate the quality of the observations, the approaches mentioned above were
compared with the Least Square Linear Regression slope coefficient obtained considering
both average daily discharge and monthly cumulative time series.

Table 2 synthesizes the analysis results performed to the entire historical series avail-
able from 2800 to 3000 days, depending on the start of measurement of the installed probe.
The considered time window with hourly time interval means 67,200–72,000 total values,
available for the Mann–Kendal/Sen’s Slope tests. Both Mann–Kendal and Sen’s slope tests
revealed statistically significant increasing trends in spring discharge series for the Promise,
Alpe Perrot, and Cheserod springs (ZMK > 0, bsen > 0). In contrast, the Promiod spring
showed a reduction in discharge over time (ZMK < 0, bsen < 0).

As reported in Table 3, the Promiod spring results in negative slope values for the
Sen’s Slope test (bsen < 0) and for both Least Square Linear Regression tests (bLSLR < 0),
expressing the decreasing trend in the discharge amount over the selected time interval.
The positive trends described by the statistical tests performed for the Cheserod, Promise,
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and Perrot springs validate the increasing amount of water discharged during the detected
period. Moreover, for all case studies data recorded, the low p-values (<0.05) provide the
statistical significance of monotonic trend for the springs’ datasets.

Table 3. Results of different methods used to assess the trend in spring discharge. * MK = Mann–Kendal;
bLSLR = Least Square Linear Regression slope; bsen = Sen’s slope.

MK * Standardized
Test Statistic (ZMK);
Hour Interval Time

Series (l/s)

Sen’s Slope Test (bsen*);
Hour Interval Time

Series (l/s)
p-Value

Linear Regression (bLSLR*);
Average Daily Discharge Time

Series ((∑ m3/day)/year)

Linear Regression (bLSLR*);
Monthly Cumulate Time

Series (m3/month)

Promise 87.02 3.66 × 10−5 0.00 25.643 130.2
Alpe

Perrot 33.13 6.39 × 10−5 0.00 87.107 176.91

Promiod −23.04 −5.08 × 10−6 0.00 −0.214 −6.23
Cheserod 69.81 9.68 × 10−5 0.00 219.32 378.44

Unlike the Mann–Kendal statistical approach, Sen’s slope meaning is quantitative,
confirming which spring describes the highest increasing rate in discharge. Cheserod
spring shows the highest increasing trend, validated by the two linear regression slopes
values (bLSLR), followed by Alpe Perrot and Promise springs.

The three different levels of statistical analysis were performed by considering the
hour time interval for the Mann–Kendal/Sen’s slope tests, annual daily average, and
monthly discharge for linear regression tests, respectively. This choice aimed to compare
and cross-validate each approach applied for trend analysis.

4. Discussion

The Aosta Valley territory includes several aquifer systems with different recharge
rates and mechanisms: analyzing the impact of climatic variations on the water resources
in these contexts is becoming increasingly important to develop appropriate management
strategies for drinkable water resources.

The analysed springs’ recharge mechanisms are closely correlated with the geological
and hydrogeological nature of the aquifers. Their intrinsic features and solid precipitation
amounts strongly influence the extent of the correlation between a spring’s discharge and
rainfall variables. Due to their hydrogeological characteristics and the storage capacity
of the drainage network system, porous aquifers, such as those of the Alpe Perrot and
Cheserod springs, respond favorably to intense precipitation events. Differently, Promiod
and Promise springs’ fractured aquifers suffer intense rainfall conditions, leading to a faster
saturation of the recharge system. Moreover, for fractured aquifers, the rapid saturation
of the system causes a loss of water through the surface runoff phenomenon. The high
correlation factor values between the hourly spring discharge measurements and hydro-
meteorological data estimated for the Alpe Perrot and Promiod springs lead to identifying
these sites as suitable case studies for further analysis about the short-term effects of climate
change on groundwater resources.

Similar to findings of previous studies in other regions of Southern Italy (e.g., [17,20]),
the Aymaville-Viayes, La Thuile-Villaret, Champdepraz, and Sant Vincent meteorological
stations revealed an overall decreasing trend in annual rainfall (mm), with a slight increase
in intensity (mm/day) as a result of the reduction in rainfall events (number of rainy days).
Nonetheless, based on the analysis of flow rate data relating to the associated springs, Alpe
Perrot, Cheserod, and Promise show an overall increasing trend of discharge over time.
Although the Cheserod and Promise springs were not found to be highly correlated with
rainfall, their aquifers appear to positively respond to the modified climate conditions,
increasing the amount of groundwater stored. The moderate correlation values of these
two springs can be a consequence of several factors such as: aquifer features, distance
from weather station, and solid precipitation amounts that supply water in the following
hydrogeological year. However, since their pluviometric conditions are consistent with
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regional rainfall evolution, it can be assumed that the increasing discharge is principally
due to the drainage network.

Unlike Promiod, the positive trends detected and the positive values estimated for
all other statistical tests obtained for Cheserod, Promise, and Perrot springs confirm an
increase in the amount of water discharged during the seven-year detected period.

5. Conclusions

A preliminary analysis of the discharge rate variations in mountain springs located within
the Aosta Valley territory (Northwestern Italy) and trend analyses of hydro-meteorological time
series was presented in this work. The main aim of the study was to evaluate the short-term
effects of climate change on springs’ recharge mechanisms in this specific geographical
context. To accomplish this, 7-year continuous hydro-meteorological data series from
Promise, Alpe Perrot, Promiod, and Cheserod springs and related meteorological stations
were examined.

Not all of the Aosta Valley mountain springs detected seem to respond to climate
variation with a decrease in their stored water resources. Unlike Promiod, Cheserod,
Promise, and Alpe Perrot springs have experienced an increase in water discharged amount
during the detected 7 year period. This behavior occurs despite the available precipitation
data for the associated Sant Vincent, Aymaville-Viayes, La Thuile-Villaret, Champdepraz
meteorological stations revealing an overall decreasing trend in annual rainfall (mm), with a
slight increase in intensity (mm/day) as a result of the reduction in rainfall events (number
of rainy days). Furthermore, the high correlation case study of Alpe Perrod—Champdepraz
meteorological station, improves the significance of the identified phenomenon.

As weather conditions are continually changing, it becomes more and more likely that
the amount of water supplies from mountain hydrological systems will also change. Thus,
being able to continuously monitor the effects induced by changed climatic conditions
on water reserves through simplified analysis approaches such as those presented in this
paper is increasingly necessary. Moreover, implementing future studies through in-depth
analyses of soil infiltration, deeper percolation, and groundwater recharge and storage
mechanisms are required.

The simplified approach proposed in this paper, if applied for analyzing other case
studies in different Italian geographical contexts, could help to immediately detect how
the groundwater springs, located in Italy, are responding to changes in weather conditions,
thus providing correlations between the key indices of springs and precipitation trends.
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