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Abstract: The impact of hydroxyl excess as defined by the Fe(II)/hydroxide ratio during the synthesis
of Fe3O4 nanoparticles by oxidative precipitation of FeSO4 was examined as a critical parameter
determining the potential for Cr(VI) uptake from polluted water. Various samples were prepared
by varying the OH− excess in the range of −0.10 up to +0.03 M and characterized according to
their composition, morphology, and surface configuration. Their efficiency for Cr(VI) removal
was evaluated by batch adsorption tests, carried out under similar conditions with drinking water
purification in the concentration range below 10 mg/L. Results indicate that near the zero-excess
point for hydroxyl balance, the uptake capacity for residual Cr(VI) concentration equal to 25 µg/L
remains at very low levels (<0.5 mg/g). However, a small increase above +0.02 M features synthesized
nanoparticles with an uptake capacity of 2.5 mg/g owed to the decrease in particles size (28 nm)
and enhancement of the reducing potential (Fe2+/Fe3+ = 0.42). In addition, utilizing negative excess
values below −0.05 M triggers a similar efficiency rise, although the morphology of the obtained
aggregates is rather different. Such finding is attributed to a possible exchange mechanism between
adsorbed sulfates and chromate anions that assist approach of Cr(VI) to the material’s surface. Overall,
proper tuning of hydroxyl excess offers multiple options for the implementation of monodisperse
magnetically responsive nanoparticles or larger aggregates with optimized purification efficiency in
water technology.

Keywords: magnetite; nanoparticles; hexavalent chromium; drinking water; reduction; synthesis;
green rust

1. Introduction

With the expansion of the application of nanomaterials into more traditional technol-
ogy fields with direct impact on daily life and nutrition practices, significant research efforts
have been directed towards the development of nanoparticles for water purification during
the last twenty years [1–3]. Considering the high specific surface area of nanoparticles in
comparison to their bulk counterparts, surface adsorption of toxic pollutants present in
drinking water or wastewater is commonly proposed as an efficient way to develop their
use in water treatment [4]. Various adsorption mechanisms are achieved either by direct
interaction of the aqueous pollutant forms with the nanoparticle components or by their
uptake on functional groups which are attached on the surface of nanoparticles. Therefore,
apart from the tiny dimensions of nanoparticles, parameters such as the surface charge, the
chemical activity, and the solubility of participating crystal phases determine the potential
applicability and efficiency toward the removal of specific pollutants.

In addition, some other characteristics may affect the implementation of nanoparticles
in water treatment approaches. For instance, to preserve the high specific surface area
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of nanoparticles, aggregation should be kept at minimal levels during their dispersion in
water [1]. Unfortunately, common ways to secure particles’ isolation depend on the use of
surfactants with limited compatibility with water. One solution is to introduce aqueous-
compatible surfactants; however, such molecules must be able to provide good capture
affinity with the targeted pollutant at the same time to overcome the fact that direct access
to the nanoparticle surface will be blocked [4,5]. Proper tuning of the surface charge during
synthesis by applying acidity conditions or electrostatic attachment of ions is another way
to improve the monodispersity of nanoparticles. Keeping the effective adsorption surface
of nanoparticles at high levels is not favorable in typical packed-bed filters, which use
micron-sized granules [6,7]. Therefore, nanoparticles should preferably be dispersed into
the polluted water, thus requiring a further sufficient separation process after the treatment
stage. Such limitation promotes the application of magnetically-responsive nanoparticles
since they can easily be captured by applying an external magnetic field [8,9]. For this
reason, single-phase magnetite (Fe3O4) or magnetite-based composites are widely tested in
various research endeavors aiming to tackle the presence of water pollutants [10,11]. At
the same time, the use of iron oxide nanoparticles is in line with the economic viability of
relevant large-scale units due to their low production cost compared to other materials
proposed as nano-adsorbents [12,13].

The potential of nanomaterials to operate as efficient adsorbents for the removal
of hexavalent chromium, a very toxic and mobile aqueous chromium contaminant in
water has been widely demonstrated in recent years. The amount of relevant research
works has been expanding according to reports on critical health risks caused by the
long-term consumption of drinking water polluted with Cr(VI) [14–17]. That hazard was
previously underestimated by authorities. Only recently, an effort to set new directives
has emerged and a separate concentration limit for the hexavalent form of chromium has
been established. Particularly, a maximum concentration limit of 10 µg/L is discussed
in California State [18], whereas member countries of the European Union agreed to
apply a 25 µg/L limit with a 15-year tolerance [19]. Adsorption in nanostructured phases
provides significant simplicity in application when compared to the well-known for its
efficiency chemical reduction of Cr(VI) by ferrous salts followed by precipitation [12,13].
The ideal adsorbents to capture Cr(VI) are those that can deliver maximum electron donor
potential in order to initiate reduction to an insoluble Cr(III) state. In the case of magnetite
nanoparticles, the affinity of magnetite to Cr(VI) is attributed to the incompletely oxidized
Fe2+ ions in its structure which favor electron transfer and reduction of Cr(VI) to insoluble
hydroxides [20–22]. Such iron oxide nanoparticles also appear as a potential alternative to
zero-valent Fe. The latter iron form theoretically serves as a better Cr(VI) reducing agent,
however it displays inherent susceptibility and instability, being prone to air oxidation [23].

Among several available synthesis methods, production of magnetite nanoparticles
must be realized under mild redox potential and well-controlled growth conditions to
achieve long-term chemical stability and minimum aggregation tendency avoiding the need
to use surfactants when possible [24,25]. In this manner, the maximum possible reducing
capacity on the surface area of the nanoparticles can be obtained. To this end, the oxidative
precipitation of bivalent iron salts by mild oxidizing agents activated at high temperatures
appears as a particularly appealing method to combine tuning of the Fe2+ oxidation extent,
good crystallinity, and monodispersity of the produced nanoparticles. Furthermore, the
aforementioned approach provides nanoparticles sized in the single-domain range where
enhanced magnetic properties are obtained [26]. In spite of these advantages, only a few
studies have employed oxidative precipitation for the production of nanosized adsorbent
for Cr(VI) removal from water [27–29], nevertheless none of them is oriented for drinking
purposes, although the low cost of magnetite and its non-toxic nature indicate a promising
sustainability potential for industrial scale-up.

This study evaluates the uptake efficiency of Fe3O4 nanoparticles prepared via the
oxidative precipitation of FeSO4 by nitrates in a water/ethanol solution, focusing on
the role of pH of the synthesis medium in the surface configuration and the adsorption



Water 2022, 14, 1335 3 of 14

mechanism. More specifically, tuning of pH is realized by modifying the hydroxyl anions
excess as defined by the added quantities of H2SO4 and NaOH in the reaction mixture. The
morphological, structural, and surface properties of the tested nanoparticles are examined
to understand the optimum parameters responsible for high Cr(VI) removal rates. To our
knowledge, this is the first report which investigates the role of the Fe(II)/hydroxide ratio
in the determination of the reducing potential and surface configuration of iron oxide
nanoparticles produced by the partial oxidation of FeSO4. Results provide evidence on
the significance of such parameter toward Cr(VI) uptake at low concentrations indicating
an optimization roadmap with respect to the potential of full-scale application in water
treatment systems.

2. Materials and Methods
2.1. Reagents

Reagent grade iron sulfate heptahydrate (FeSO4·7H2O), sulfuric acid 98% (H2SO4),
hydrochloric acid 37% (HCl), sodium hydroxide (NaOH), sodium nitrate (NaNO3), abso-
lute ethanol 99%, potassium dichromate (K2Cr2O7), potassium permanganate (KMnO4),
sodium bicarbonate (NaHCO3), sodium nitrate (NaNO3

), sodium phosphate monohydrate
(NaH2PO4·H2O), sodium fluoride (NaF), sodium silicate pentahydrate (NaSiO3·5H2O),
calcium chloride dihydrate (CaCl2·2H2O), magnesium sulfate heptahydrate (MgSO4·7H2O)
and 1,5-Diphenylcarbazide were purchased from Sigma-Aldrich. All chemicals were used
without further purification.

2.2. Synthesis

The synthesis of studied Fe3O4 nanoparticles was carried out through the precipitation
of FeSO4 in an alkaline environment which was accompanied by the partial oxidation of
the Fe2+ initiated by nitrate ions when the temperature is increased. In a typical experiment,
5.56 g (20 mmol) FeSO4·7H2O were dissolved into 70 mL of degassed 0.01 M H2SO4
solution while 1.84 g (46 mmol) NaOH and 1.70 g (20 mmol) NaNO3 were dissolved
separately in a mixture of 50 mL water and 40 mL ethanol (sample S8). The two solutions
were immediately mixed to result in a viscous green oxyhydroxide (green rust) which was
then placed on a preheated a water bath at 90 ◦C and kept for 12 h. The final dispersion
was cooled down to room temperature, washed several times with distilled water, and
eventually it was dried in air to obtain a sample in powder form. The OH− excess, defined
by the equilibrium of acidic and alkaline compounds, was used as the varying parameter
to synthesize a series of samples. Particularly, the amount of NaOH was varied between
0.84–1.84 g (21–46 mmol) to succeed different OH− excess values. This parameter was
calculated by the following equation:

OH−
excess = [NaOH]− 2·[FeSO4]− 2·

[H2SO4]·VH2SO4

Vtot
(1)

with [NaOH], [FeSO4], and [H2SO4] representing the concentrations of NaOH, FeSO4, and
H2SO4 concentrations in M, respectively, VH2SO4 is the volume of added H2SO4 solution
and Vtot refers to the total volume of the reacting mixture. Around 1.2 g of nanoparticles on
dry basis were received for positive OH− excess values whereas the amount was reduced to
around 0.8 g for OH− excess values below −0.07 M. Table 1 summarizes the main synthesis
and chemical parameters of the samples studied in this work.

2.3. Characterization

The obtained nanoparticles were first analyzed to investigate their morphology and
size using transmission electron microscopy (TEM) (JEM 1010, JEOL, Tokyo, Japan) operat-
ing at 100 kV. A drop of nanoparticle suspension in water was deposited onto a carbon-
coated copper grid and allowed to dry at room temperature. X-ray diffractometry (XRD)
was applied for powder samples using a water-cooled diffractometer (Ultima+, Rigaku,
Tokyo, Japan) with Cu-Ka radiation, a step size of 0.05◦ and a delay step-time of 3 s, operat-
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ing at 40 kV and 30 mA. Crystalline phases in the measured diffractograms were identified
compared to the powder diffraction files (PDF) database [30]. The crystallite grain size D
was determined using Scherrer’s equation with input from the geometrical characteristics
of the main peaks: D = K·λ/β·cosθ, with K a dimensionless shape factor close to 0.9, λ
the XRD wavelength, β the full width half maximum of relevant diffraction, and θ the
diffraction angle.

Table 1. Summary of the properties of the studied samples corresponding to the various hydroxyl
excess values applied during synthesis.

Sample OH−excess
(M) Fe2+/Fe3+ Adsorbed

SO4
2– (%wt.) Na/Fe Magnetization

(Am2/kg)
Mean Crystal

Size (nm)

S1 −0.10 0.25 0.7 0.006 69 42
S2 −0.07 0.28 0.4 0.012 72 47
S3 −0.04 0.26 0.1 0.007 73 39
S4 −0.02 0.29 0.1 0.011 75 41
S5 −0.01 0.32 - 0.019 79 48
S6 +0.01 0.33 - 0.022 80 36
S7 +0.02 0.36 - 0.041 84 22
S8 +0.03 0.42 - 0.054 88 29

Since the structural characterization employed here cannot distinguish whether Fe3O4
or its oxidation product γ-Fe2O3 is the main constituent in nanoparticles, the percentage of
Fe2+ in the solid, which is proportional to Fe3O4 presence, was determined. The procedure
involves the acid digestion of 0.1 g of nanoparticles in 50 mL of 7 M H2SO4 under heating
and titration using 0.05 M KMnO4 solution. Total iron content was measured after sample
dissolution in HCl, by graphite furnace atomic absorption spectrophotometry (AAnalyst
800, Perkin Elmer, Waltham, MA, USA).

The occupation of nanoparticle surface by adsorbed sulfate ions is related to the po-
tential Cr(VI) uptake efficiency considering the similarity of SO4

2− with the CrO4
2− ionic

forms which occur in the pH range of interest (around 7). Sulfates were quantitatively
analyzed after proper dissolution in an Alltech 600 ion chromatography system with a
Hichrom AllSep 7 µm Anion IC column using a solution of 0.85 mM NaHCO3/0.9 mM
Na2CO3 as eluent. Physically-sorbed sulfates were released after gently stirring 20 mg
sample with 100 mL distilled water for 15 min and filtration through a 0.45 mm pore-size
membrane filter. Chemically-sorbed sulfates were extracted using 10 mL of 0.005 M NaOH
for 15 min and then diluted to 100 mL with distilled water before filtration. The presence
of sulfates was also evidenced by the mid-infrared region of Fourier-transformed infrared
(FT-IR) spectra of the samples, which was recorded using a FT-IR spectrophotometer (Spec-
trum 100, Perkin-Elmer, Waltham, MA, USA). For measurement, nanoparticle powder was
homogeneously mixed with KBr and pelletized. The spectra were obtained from 10 scans,
with a resolution of 4 cm−1. The quasi-static magnetic properties of the samples have been
measured using a vibrating sample magnetometer (1.2H/CF/HT, Oxford Instruments,
Abingdon, UK) operating at room temperature. Hysteresis loops were recorded for a
weighted quantity of nanoparticle powder immobilized in the holder of the instrument. A
magnetic field of ±1 T was applied.

2.4. Cr(VI) Uptake Evaluation

The efficiency of Fe3O4 nanoparticles synthesized with various hydroxyl excess values
as Cr(VI) adsorbents was determined through batch adsorption experiments where a
quantity of nanoparticles was equilibrated with a Cr(VI) test solution. To acquire more
relevant results from the viewpoint of real-world full-scale application in natural water
polluted with low concentrations of Cr(VI), experiments involved the use of a water
matrix with the presence of all common ions appearing in typical groundwater. The
pH was fixed around the value of 7 and initial Cr(VI) concentrations were set below
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1 mg/L representing a range close to drinking water regulation limits. The natural-like
challenge water was prepared according to the National Sanitation Foundation (NSF)
standard [31], as follows. For 10 L, 2.52 g (30 mmol) NaHCO3, 0.1214 g (1.4 mmol) NaNO3,
0.0018 g (0.0013 mmol) NaH2PO4·H2O, 0.0221 g (0.53 mmol) NaF, 0.706 mg (3.7 mmol)
NaSiO3·5H2O, 1.47 g (10 mmol) CaCl2·2H2O, and 1.283 g (5.2 mmol) MgSO4·7H2O were
diluted in distilled water.

In a typical experiment, a quantity of 20 mg of sample powder was dispersed into
200 mL of aqueous Cr(VI) solution in 300 mL conical flasks. The pH was controlled at 7 by
the addition of drops of 0.01 M HCl if required. The dispersion was shaken for 24 h, and
then, the solid was separated by filtration using 0.45 µm pore-size membranes. Residual
Cr(VI) concentrations were determined by the diphenylcarbazide colorimetric method
using a UV-visible spectrophotometer (U-5100, Hitachi, Kagoshima, Japan) adjusted at a
wavelength of 540 nm. Adsorption isotherms were fitted by the Freundlich-type function,
which better describes the observed trend in the low concentration range:

Qe = KFCe
1/n, (2)

where Qe is the amount of Cr(VI) captured per mass of adsorbent, Ce is the equilibrium
concentration, while KF and n constants are related to adsorption capacity and affinity,
respectively. For the comparison of Cr(VI) uptake efficiency between tested samples, the
capacity at a residual Cr(VI) concentration equal to the suggested drinking water regulation
limit of 25 µg/L (Q25-index) was applied. For comparison, fitting with a Langmuir function,
which is characterized by a plateau formation when adsorption sites are saturated, was
also performed:

Qe = Qmax·KL·Ce/(1 + KL·Ce), (3)

where Qmax is the maximum adsorption capacity and KL is the Langmuir constant. Results
are shown in the Supplementary Materials (Figures S1 and S2, Table S1).

X-ray photoelectron spectroscopy (XPS) (Axis Ultra DLD, KRATOS, Manchester, UK)
was applied to identify the iron oxidation states and the sulfur configuration in the surface of
the nanoparticles for representative samples prepared with positive and negative hydroxyl
excess. Spectra were acquired using a monochromated Al–Kα1 X-ray beam as the excitation
source. Pass energy was 160 eV for survey scans and 40 eV for high-resolution spectra.
Calibration was performed in terms of charging induced shifts by assuming the C 1s peak
(originating from carbon surface contamination) to be located at 284.6 ± 0.2 eV.

3. Results and Discussion

Figure 1 presents the XRD diagrams of the Fe3O4 samples prepared under increasing
OH− excess values. Identification indicates magnetite as the primary crystal phase in all
samples, whereas under negative values (OHexcess = −0.1 M, S1), the formation of iron
oxyhydroxides such as γ-FeOOH is also observed, suggesting that the hydroxyl balance
deficiency in the intermediate products to some extent favors the degradation of initially
formed green rust to more amorphous structures susceptible to spontaneous oxidation.
The determined mean crystal size of Fe3O4, shown in Table 1, follows a decreasing trend
with the hydroxyl excess overcoming the 40 nm at negative and near-neutral values but
falls below 30 nm for values above +0.02 M. Such difference can be attributed to the fact
that the ageing of green rust takes place near the isoelectric point of magnetite. Data from
FTIR spectra for various samples (Figure 2) confirm the presence of Fe3O4 as the prevalent
phase, considering the characteristic broad band at 570 cm−1 [32], although the shoulders
at higher wavenumbers denote a slight degree of oxidation.
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excess. Vertical lines indicate band ranges related to different sulfate configurations.

Further information on the exact morphology and arrangement of the produced
nanoparticles was received from the TEM images of the samples (Figure 3). For hydroxyl
excess conditions, well-defined and separate nanoparticles with almost spherical shape
are obtained (sample S8). The mean particle diameter is estimated at around 28 nm with a
low polydispersity rate and absence of significant agglomeration effects. However, in the
presence of more acidic conditions during synthesis, the formation of large agglomerates
assembled by the coalescence of smaller particles becomes dominant. The mean dimensions
of such agglomerates are around 220 nm, appearing denser close to the zero-excess value
(samples S3 and S6) but they seem to be more amorphous for hydroxyl concentration excess
around −0.10 M (sample S1). In the last case, constituting nanoparticles are not distinct,
suggesting that the nucleation step is very short compared to the growth stage of large
granules. On the other hand, though being highly polydisperse, separate nanoparticles are
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organized to form agglomerates, such as those observed in samples S3 and S6. Another
finding from these images is the presence of rod-like formations attributed to the existence
of the iron oxyhydroxides when hydroxyl excess values gradually decrease. Although
the proportion of such oxy-hydroxides becomes significant only for the extreme negative
hydroxyl excess as observed in XRD diagrams, their appearance starts to occur even for
samples synthesized with positive hydroxyl excess (sample S6). It should be pointed out
that the effect of hydroxyl excess which is translated in a different Fe2+/OH ratio in the
intermediate green rust structure modifies the dissociation rate to iron oxide formation
and thus, is the key to establish magnetic nanoparticles with different diameter or different
agglomeration rates. This point is discussed with details in previous works [33].
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The compositional characteristics of the samples are reflected in the magnetic proper-
ties, which were derived by recording the corresponding hysteresis loops (Figure 4). The
saturation magnetization value of sample S8 is the highest among all studied samples,
approaching 88 Am2/kg, which is very close to the magnetization of bulk magnetite. De-
creasing the hydroxyl excess results in the gradual decline of magnetization, measured to
be 69 Am2/kg for sample S1. This trend is clearly related to the partial oxidation of Fe3O4 to
γ-Fe2O3 as the hydroxyl excess decreases, causing a reduction in magnetization by around
10% with respect to magnetite (bulk value is reported around 74 Am2/kg). Additionally,
the precipitation of Fe3+ oxyhydroxides also contributes to the decrease of magnetization
values. Similar conclusions are extracted by the determination of Fe2+ in the samples,
which is a representative indication of Fe3O4 stabilization. Results of titration analysis are
summarized in Table 1 in the form of the Fe2+/Fe3+ mass ratio, with the ideal value for
Fe3O4 of 0.5. Particularly, a Fe2+/Fe3+ ratio below 0.30 is identified for the samples with
hydroxyl deficiency, suggesting that Fe3O4 represents less than 60% of the iron oxide forms.
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On the contrary, higher hydroxyl excess favors the stabilization of Fe3O4 with Fe2+/Fe3+

ratio overcoming 0.40 for sample S8, i.e., consisting of more than 80% of Fe3O4.
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The aim of this work was to optimize the synthesis of Fe3O4 nanoparticles and achieve
maximum uptake capacity for Cr(VI) under drinking water treatment conditions. Evalu-
ation was performed by collecting data and plotting the corresponding isotherms in the
residual concentration range below 1000 µg/L. Figure 5 presents the uptake isotherms
for the samples prepared using negative values of hydroxyl excess. Samples S1 and S2,
synthesized under the most acidic conditions, are the best performing systems, show-
ing a significant Cr(VI) adsorption efficiency. Importantly, considering only a very small
modification in the hydroxyl balance, the uptake capacity drops to very low levels for
samples S3 and S4. A similar trend is observed for samples synthesized with near-zero and
positive hydroxyl excess values (Figure 6). Samples S5 and S6, which were prepared by
precipitation under conditions of OH−/H+ balance, show low efficiency for the capture of
Cr(VI). However, a small boost in hydroxyl excess above +0.02 M provides a considerable
increase in the ability of nanoparticles to remove Cr(VI) from test water. This is obvious in
the uptake isotherms of samples S7 and S8.

The described findings were further analyzed by fitting experimental data using
Freundlich-type curves and estimating the Q25 value to obtain a direct index concerning
uptake efficiency of each sample with respect to drinking water treatment demands. Corre-
sponding fitting results when applying the Langmuir model for the monolayer coverage of
adsorption sites is given in the supporting information, however, the correlation factors
were worse than those calculated for the Freundlich isotherm fittings. Thus, the Freundlich
model was deemed a better fit for this sorption process. Table 2 summarizes the parameters
of Freundlich fitting for the studied samples. The KF values follow a proportional trend to
that of the uptake capacity values, whereas parameter n demonstrates its highest values for
samples synthesized with positive hydroxyl excess indicating a higher affinity for Cr(VI),
captured on the surface of such nanoparticles.
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Table 2. Freundlich fitting parameters of the uptake isotherms data for studied samples.

Sample KF
(µg/mg)/(µg/L)1/n 1/n R2

S1 0.627 0.329 0.994
S2 0.408 0.371 0.996
S3 0.087 0.341 0.995
S4 0.073 0.407 0.978
S5 0.084 0.420 0.996
S6 0.073 0.333 0.994
S7 0.981 0.172 0.989
S8 1.151 0.232 0.986

Using the Freundlich equation for each sample, the Q25 index was estimated and
plotted as a function of the hydroxyl excess, as depicted in Figure 7. The variation of
Q25 suggests a direct correlation of Cr(VI) uptake efficiency with the synthesis conditions
defined by the hydroxyl excess during the oxidative precipitation of iron sulfate. The worst
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performance is observed for hydroxyl excess values around zero, with a capacity dropping
to 0.2–0.3 mg/g. Such conditions induce the precipitation of nanoparticles organized in
aggregates with limited access to surface sites and moderate surface charge. However,
modifying the hydroxyls equilibrium toward excess or deficiency results in significant
improvement of removal efficiency. More specifically, when hydroxyl excess overcomes
+0.02 M, the Cr(VI) uptake for residual concentration 25 µg/L increases to 1.8 mg/g and
approaches 2.5 mg/g for sample S8. The obtained Fe3O4 nanoparticles in this case are
characterized by small unit size and a high degree of monodispersity, which implies high
specific surface areas available for interaction with the pollutant oxyions. In addition,
synthesis with high hydroxyl excess favors an Fe2+/Fe3+ ratio close to stoichiometric for
Fe3O4 (Table 1), denoting an improved potential for the reduction of Cr(VI). The reduction
mechanism appears to overcome the effect of negative surface charge, which in principle
perturbs the approach of CrO4

2− to the nanoparticles. It should be noted that the enhanced
concentration of Na+ in samples prepared with hydroxyl excess partially balances the
effective surface charge.
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XPS analysis of surface iron and oxygen is indicative of the high Fe2+ content in S8,
which illustrates that this sample indeed has a considerable reducing ability toward Cr(VI)
transformation. Particularly, compared to the Fe 2p spectra of sample S1 (Figure 8a), S8
shows a noticeable shift of the Fe 2p3/2 below 710 eV and a more prominent contribution of
the satellite peak related to Fe2+ below 718 eV, which are characteristic for freshly prepared
Fe3O4 [34,35]. The relative ratio of the Fe2+ contribution in the Fe 2p3/2 peak increases
from 22.9% to 32.9% with the rest corresponding to peaks attributed to the octahedral
and tetrahedral configuration of Fe3+. The enhancement of Fe3+ peaks in sample S1 is in
accordance with the presence of iron oxyhydroxides and the partial oxidation of Fe3O4.
Similar conclusions are derived by the O 1s spectra of these representative samples. In
sample S1 (Figure 8b), the three contributions correspond to the Fe-O bonds (529.5 eV),
the O-H bonds (531.5 eV), and the C-O bonds (533 eV). The contribution from iron oxides
appears stronger in sample S8 because of the Fe3O4 stabilization on the nanoparticle surface
(Figure 8d) whereas the split into two peaks located at 529.5 and 530.3 is evidenced. It
can be assumed that such observation can be related to the presence of oxygen atoms in
tetrahedral and octahedral sites of Fe3O4 or from another point of view to the coexisting
FeO and Fe2O3 substructures in magnetite with high purity. However, in sample S1 the
equilibrium shifts to the side of O-H, in agreement with the presence of iron oxyhydroxides,
and that is the reason for a significant overlay of the Fe-O peak splitting.
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Surprisingly, the efficiency of samples synthesized with hydroxyl deficiency is compa-
rable to that of those prepared with excess. When hydroxyl excess obtains values below
−0.05 M, the Q25 increases and gradually approaches 2 mg/g. In this case, a possible
explanation stands on the occurrence of an exchange mechanism between the structurally
similar adsorbed ions of SO4

2− and the CrO4
2− ones [36]. Surface adsorption of sulfates

was observed in these samples (Table 1) as a consequence of the higher density of positive
charges, whereas the amorphous crystal structure also contributes to this tendency [37].
The attachment of sulfates on the surface of sample S1 is evidenced by the appearance of
the v1 and the v4 stretching bands in the FTIR spectrum located around 900 and 620 cm−1,
respectively (Figure 2). For samples prepared with hydroxyl excess (sample S8), the broad
peak above 1000 cm−1 corresponds to the degenerate asymmetric v3 sulfate band, which
originates from the physisorbed ions in the diffuse layer [38]. High-resolution XPS analysis
on the S2p photoelectron’s binding energy range may provide a further investigation of
chemical environment and developing bonds of sulfur. Figure 9 presents the corresponding
spectrum of sample S1 for which a sufficient signal was still detectable after carrying out
repeatedly intense washing with distilled water to release physically-sorbed sulfates. The
experimental spectrum was deconvoluted using one unresolved doublet corresponding
to the S2p1/2 and S2p3/2 photoelectron lines, which have a 1.2 eV spectral separation [39].
The peak at around 169 eV is attributed to the presence of a metal-sulfate configuration
such as Fe-SO4 complexes on the surface of the nanostructures [40]. This finding supports
the mechanism of Cr(VI) capture through an ion exchange assisted reduction path where
iron sulfate complexes provide favorable sites to host chromate anions as a first step of the
whole process taking place.
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4. Conclusions

Water treatment research has justified the potential of Fe3O4 nanoparticles to function
as a promising Cr(VI) removal adsorbent. This study explored the possibility to optimize
Cr(VI) uptake capacity for residual concentrations below 25 µg/L by tuning iron oxide
nanoparticle synthesis parameters of the oxidative precipitation methodology. Results
showed that hydroxyl excess, as defined by the balance of acidic and alkaline compounds
in the reaction mixture, may determine the observed efficiency according to the impact
in the reducing activity and the surface charge. More specifically, adjusting the hydroxyl
excess above +0.02 M multiplied the Cr(VI) uptake by a factor of 9 reaching a value
of 2.5 mg/g. Such increase is attributed to the high specific surface area of the isolated
nanoparticles and the improved stabilization of Fe2+ species in the crystal structure of Fe3O4.
However, a similar increase of efficiency (approximately 2 mg/g) was found when hydroxyl
deficiency (<−0.05 M) was applied during synthesis. In this case, despite the high degree
of aggregation and lower Fe2+ presence, the activation of an exchange mechanism between
adsorbed sulfates and chromate oxyanions seems to assist the capture process. The high
magnetic response of the tested samples appears as another significant advantage of this
material thanks to its facile removal toward the implementation of magnetic nanoparticles
in drinking water purification.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w14091335/s1, Figure S1: Langmuir fitting of Cr(VI) uptake
isotherms for samples S1, S2, S3, and S4 in the residual concentration range 0–1000 µg/L at equi-
librium pH 7, Figure S2: Langmuir fitting of Cr(VI) uptake isotherms for samples S5, S6, S7, and
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parameters of the uptake isotherms data for studied samples.
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