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Abstract: A novel two-hybrid optimization model of particle swarm optimization (FAPSO) and firefly
algorithm with genetic algorithm (FAGA) are introduced to improve the performance of the conven-
tional firefly algorithm for the least cost design of water distribution networks. The performance of
the models is tested through application to three of the well-known benchmark networks available in
the literature and also to the real case study of the El-Mostakbal City network, Ismailia, Egypt. The
performance of the different algorithms was determined by evaluating the minimum, maximum,
mean and standard deviation of costs, the function evaluation number, the consumed computational
time for 1000 evaluations and the success rate calculated using the fuzzy logic concept for different
optimal solutions slightly greater than the known optimal solution (by about 1.0% and 2.0%) were
utilized for testing the convergence and search capabilities of the models. It was found that the FAGA
model is superior to the standard firefly and FAPSO models in exploring the search space, exploiting
the promising areas and convergence to the optimal solution and can be considered as a reasonable
optimization technique for the management of water distribution networks.

Keywords: water distribution networks; hybrid optimization; firefly algorithm; genetic algorithm;
particle swarm optimization; performance evaluation

1. Introduction

Water distribution networks are one of the most important necessary infrastructures for
the development of countries worldwide. Huge investment is required for the construction
of such networks, and a relatively small decrease in this cost leads to a considerable total
saving which can be achieved by selecting the pipe diameters from a set of available market
sizes to minimize the total construction cost. This process is referred to as the optimal
design of water distribution networks. Numerous optimization techniques were and are
still being developed for such purpose of searching in a very large non-differentiable, and
nonconvex design space. It is a discrete type of problem and very computational demand.
However, still, there is no agreement on what optimization method is best for a particular
design problem, and considerable research challenges remain essential [1].

Standard optimization techniques early developed include linear programming (LP)
applied only to linear objective functions, equations and constraints, nonlinear program-
ming (NLP) to deal with nonlinear problems and dynamic programming (DP) to solve
stochastic and nonlinear problems. These techniques get stuck in local optimum solutions
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and do not guarantee global optimum performance. Besides, limitations when applied to
problems with high dimensionality, uncertainty and requires high computational time [2].

In the last few decades, heuristic and metaheuristic techniques have been developed
to overcome such limitations. Among these techniques are genetic algorithm, particle
swarm optimization and firefly algorithm. The genetic algorithm (GA), first introduced
by Holland [3], is the most popular evolutionary population-based algorithm which has
been adopted in many complex optimization problems in water resources applications.
Many researchers have attempted to improve the computational efficiency of the algorithm.
Reca et al. 2017 [4] introduced the bounded genetic algorithm (B-GA) model to reduce the
search space by decreasing the number of available pipe sizes that can be used for each of
the network pipes. Recently, Sangroula et al. [5] introduced the smart optimization program
for water distribution networks (SOP-WDN) which is based on a genetic algorithm linked
with the EPANET hydraulic simulation solver. Particle swarm optimization PSO first
introduced by Eberhart and Kennedy [6], is inspired by the behavior of a flock of birds and
has been widely used in various optimization problems in different fields because of its
simplicity and the few parameters that have to be adjusted.

Most of the optimization techniques were introduced in their standard form, then
followed by different modifications that were found necessary to improve their reliability,
robustness and convergence so that they become more and more effective for the optimiza-
tion of water distribution networks. Among these modifications is the hybridization of
different optimization algorithms, which recently have been widely considered by many
researchers for performance improvement. (bacterial foraging, genetic algorithm and ant
colony, [7]) (particle swarm and Hooke–Jeeves, [8]), (particle swarm and tabu search, [9]),
(particle swarm optimization and cuckoo search, [10]), (grasshopper optimization algorithm
and genetic algorithm, [11]). The firefly optimization algorithm has received considerable
attention through being hybridized with other algorithms for different applications, as
shown in Table 1, which summarizes the different hybrid firefly models.

Table 1. Different hybrid firefly optimization algorithms.

Author’s Hybrid Firefly Model Case Study

Zervoudakis et al. (2020) [12] Firefly and Genetic
Algorithm Product Line Design Problem

Abdullah et al. (2012) [13] Firefly-Differential Evolution (HEFA) Complex and Nonlinear Problems

Tahershamsi et al. (2014) [14] Firefly-Harmoni Search Optimization of Water
Distribution Systems

Gu et al. (2013) [15] Firefly and Harmony Search Global Numerical
Optimization

Kora and Krishna (2016) [16] Firefly and Particle Swarm Optimization Detection of Bundle Branch Block
Elkhechafi et al. (2017) [17] Firefly- Genetic Algorithm Global Optimization

Aydilek (2018) [18] Firefly-Particle Swarm
Optimization

Computationally Expensive Numerical
Problems

Nhu et al. (2020) [19] Firefly-Particle Swarm
Optimization Rainfall induced Flash Floods

Khan et al. (2020) [20] Firefly-Particle Swarm Optimization Standard IEEE 30-Bus Test System

Yadav et al. (2021) [21] Firefly and Biogeography-Base
Optimization Software Production Line

Wahid and Ghazali (2021) [22] Firefly and Genetic
Algorithm

Minimization and
Maximization Functions

Bilal and Millie Pant (2020)
[23]

Firefly and Particle Swarm
Optimization

Optimization of Water Distribution
Systems

2. Materials and Methods
2.1. Formulation of Pipe Networks Optimization

The problem of pipe network optimization is to find the best combination of pipe di-
ameters among a set of commercially available diameters as discrete decision variables that
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provides the least construction cost for the network satisfying prescribed constraints. The
problem can be formulated as reported in Ezzeldin and Djebedjian [24] by the minimization
of the objective function f satisfying both design constraint and hydraulic constraints,
continuity and energy, as follow;

2.1.1. Total Pipe Cost

The total pipe cost of the network can be expressed by:

CT = ∑
Npipes
i=1 ci(Di) ∗ Li (1)

where CT is the total construction cost of the network, Npipes is the number of pipes, ci (Di)
is the cost of pipe i of discrete diameter Di per unit length, and Li is the length of pipe i.

2.1.2. Objective Function

The objective function of cost minimization is:

Minimize f =

{
CT i f Hj,min − Hj ≤ 0

CT + Cp else

}
, (2)

where Cp is the penalty cost = PC ∑ Nnodes
j=1

(
Hj,min − Hj

)
, PC is the penalty cost coefficient

taken equal to 10,000, Hj,min is the minimum allowable head at node j, Hj is the head at
node j and Nnodes is the number of nodes in the pipe network.

2.1.3. Hydraulic Constraints

Continuity constraint;

∑ Nnodes
j=1 Qj = 0, (3)

Qj is the discharge at node j.
Energy constraint;

∑ h f = Ep, (4)

hf is head loss due to friction in pipe calculated using Hazen–Williams formula given

by h f =
10,674∗Li∗Q1.852

i
C1.852

i ∗D4.87
i

; Ci is the Hazen–Williams Coefficient, Qi is the discharge in pipe i

and Ep is the energy supplied by a pump.
Design constraint;

Dmin ≤ Di ≤ Dmax i = 1 . . . . . . Npipes, (5)

Dmin, Dmax are the minimum and maximum commercially available pipe diameters,
respectively.

Nodal head constraint;

Hj ≥ Hj,min j = 1 . . . . . . Nnodes, (6)

A MATLAB code is developed to execute the hydraulic simulation model given by
Equations (3) through (6) and an optimization code written in MATLAB is used to solve
the optimization model. Both simulation and optimization models are linked to solving the
simulation–optimization model.

2.2. Benchmark Networks

Three benchmark networks are considered in this study, namely, two-loop (Alperovits
and Shamir [25]) with an optimal solution of 419,000 cost units, Hanoi (Fujiwara and
Khang [26]) with an optimal solution of 6081 × 106$, and New York water supply system
(Schaake and Lai [27]) with optimal solution of 38,637,600$. The first network is the
hypothetical two-loop network shown in Figure 1, which consists of 8 pipes of 1000 m
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constant length and 7 nodes all fed by gravity from a single reservoir 210 m fixed elevation.
Each pipe in the network is selected among 14 available discrete pipe diameters of 1, 2, 3,
4, 6, 8, 10, 12, 14, 16, 18, 20, 22, and 24 inches with arbitrary unit costs of 2, 5, 8, 11, 16, 23,
32, 50, 60, 90, 130, 170, 300 and 550, respectively. The minimum allowable nodal head is
30 m, and the Hazen–Williams Coefficient is 130 for all pipes—the optimization algorithm
searches for the optimal solution in 148 possible solutions for the network design.

Figure 1. Two-loop network.

The second network is the Hanoi City network, Vietnam, shown in Figure 2, which is
a three-loop network consisting of 34 links joined at 32 nodes and fed by gravity from a
constant head reservoir of 100 m in elevation. The design of the network is restricted to
selecting 6 discrete commercially available pipe sizes of 12, 16, 20, 24, 30, and 40 inches
of, which cost 45.73, 70.4, 98.38, 129.3, 180.8 and 278.3 $/m, respectively. The minimum
head at each node is required to be greater or equal to 30 m. above ground level, with the
Hazen–Williams coefficient being 130 for all pipes. The optimal design of the network is
searched among 634 possible network designs.

The third network is the New York City water supply system, for which the layout
is shown in Figure 3. The network is fed from the single source Hillview Reservoir at a
constant level of 300 ft and comprises 21 pipes and 20 nodes arranged in two loops. As a
result of the growing demands at certain nodes 16, 17, 18, 19, and 20 in the existing network,
it was required that the network be rehabilitated in order to increase the prespecified
nodal pressures to meet the new conditions. A parallel expansion has been proposed by
constructing new gravity tunnels parallel to the existing ones to increase the heads at nodes
16, 17, and 18 to 260, 272.8, and 272.8 and 255 ft., respectively, while maintaining a head of
255 ft. at other nodes. The solution space has 1621 possible designs with a Hazen–Williams
roughness coefficient of 100. The available pipe diameters are in inches and cost $/ft.
are 0(0), 36(93.5), 48(134), 60(176), 72(221), 84(267), 96(316), 108(365), 120(417), 132(469),
144(522), 156(577), 168(632), 180(689), 192(746), and 204(804).
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Figure 2. Hanoi city network, Vietnam.

Figure 3. New York City water supply system.

For the selected benchmark networks of known optimal solutions obtained by many
researchers, the optimization models are tested for reaching the known optimal solutions
with better performance and search capabilities in the solution space.

2.3. Real Case Study of El-Mostakbal City Network

The models are also applied to the real case study of the El-Mostakbal city network
shown in Figure 4, which has been constructed as an extension to the Ismailia city network
in Egypt (Rayan et al. [28]). The network is of the unknown optimal solution for which the
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models are applied and tested to be able to reach a new optimal solution better than that of
4,926,560.7 LE using the modified Jaya algorithm (Abdel-Gawad [29]). As a real large-scale
network that has a huge solution space of 1044 possible solutions, the El-Mostakbal city
network is recommended to be used for testing the search capability and performance of
the different optimization algorithms (Abdel-Gawad [29]). The network has 44 pipes and
33 nodes. The available pipe sizes are 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.8, 1.0 and 1.2 m.
at the cost of 188, 255, 333, 419, 570, 735, 1110, 1485, 2505 and 3220 LE/m., respectively.
The network is designed to satisfy a minimum required head of 22 m at all nodes with
Hazen–Williams coefficient of 22 m for all pipes. The network has previously been analyzed
by many researchers using different optimization techniques, including Rayan et al. [28],
El-Ghandour and Elbeltagi [30], Ezzeldin and Djebedjian [24] and Abdel-Gawad [29].

Figure 4. El-Mostakbal city network, Ismailia, Egypt [28].

3. Firefly Optimization Algorithm

The firefly optimization algorithm first introduced by Yang [31] is a swarm intelligence
population-based metaheuristic optimization technique inspired by the natural behavior of
fireflies and can be used to solve both continuous and discrete optimization problems [12].
The algorithm proved to be an efficient search method for non-linear optimization prob-
lems and, when compared to PSO and GA for finding the global optima of various test
functions, showed superiority in terms of efficiency and success rate [31]. However, the
algorithm could fall into a locally optimal solution or suffer from low accuracy when
solving high-dimensional optimization problems [32]. The algorithm has been applied to
many problems related to water resources engineering [33–36]. Up to the knowledge of
the authors, the firefly algorithm has not yet been applied for the least cost design of water
distribution systems.

3.1. Formulation of Firefly Algorithm (FA)

Firefly algorithm, FA is based on the following three rules, (1) all fireflies are unisex,
(2) attractiveness is proportional to their brightness, and (3) the brightness of a firefly is
determined by the landscape of the objective function.

A detailed formulation of the firefly algorithm, as found in Yarpiz [37], can be summa-
rized as follow:

1. Initialize the input parameters for FA.
2. Generate an initial population of npop fireflies for the dimension of Npipes.

3. The total construction cost of the network, CT and the corresponding constraint for
each firefly is evaluated using the simulation model.
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4. The fitness of each firefly, fi, i = 1, 2, 3, . . . , npop (the summation of total construction
cost and penalty due to the constraints violation [Equation (2)]) is computed.

5. Compare the finesses fi and fj for each of the two fireflies i and j, respectively, (i and
j = 1: npop and i 6= j).

6. If fi > fj, firefly i moves towards firefly j. Update the position of firefly i, Xi(t) according
to Equation (7) and calculate its fitness f′i at the new position, Xi(t + 1).

Xi(t + 1) = Xi(t) + β.rn
(
Xi(t)− Xj(t)

)
+ α1(t)∆Rn (7)

where β = β0e−γr2
ij is the attractiveness, β0 = coefficient base value at r = 0, γ = light

absorption coefficient and ri,j calculated as:

rij = dij/dmax (8)

where dij is the distance between any two fireflies i and j which can be determined by the
cartesian distance in the form:

dij =

√
∑

Npipes
k=1

(
Xi,k − Xj,k

)2

and

dmax=

√
∑

Npipes
k=1

(
Dmaxk − Dmink

)2

Xi,k is the kth component of the spatial coordinate Xi of ith firefly, Dmin and Dmax are
vectors of the minimum and maximum allowable diameters, rn is a vector with uniformly
distributed random numbers, ∆ = 0.05 (Dmax − Dmin) is the uniform mutation range, Rn
is a vector with continuous uniform distribution with the lower endpoints-1 and upper
endpoint 1 and α1(t) = α0dt−1

r is the mutation coefficient at iteration t in which α0 = initial
mutation coefficient and dr is the mutation coefficient damping ratio

7. If f′i < fi replace the position of the firefly i, Xi(t) with the updated one, Xi(t + 1)
otherwise keep the old position of the firefly i.

8. Repeat Steps 5 to 7 until the maximum number of iterations, niter is reached.
9. Rank the fireflies and find the current best solution.

3.2. Hybrid Firefly-Particle Swarm Optimization (FAPSO) Model

Aydilec [18] Combined the search ability of firefly FA and particle swarm PSO opti-
mization algorithms through hybrid firefly and particle swarm optimization model which
used the ability of PSO to provide fast convergence in exploration (local optima) in the
global search while FA is generally used in local search due to its ability in fine-tuning in
exploitation (global optima). The model can be summarized in the following steps:

1. Initialize the input parameters of the FA and PSO algorithms.
2. Generate an initial population of npop particles with random positions and velocity on

Npipes dimensions in the solution space.
3. Calculate the fitness, fi for each particle, i in the population (i =1, 2. 3. . . . , npop)
4. Select the social global best, gbest and personal best, pbest particles.
5. Compare each particle’s fitness fi value in the population with gbest in the last iteration

(t − 2). If fi < or equal gbest(t − 2) (t > 2, t indicates the iteration number) start local
search using FA as given in Equations (9) and (10)

Xi(t + 1) = Xi(t) + β(Xi(t)− gbest(t− 2)) + α

(
rn −

1
2

)
(9)

Vi (t + 1) = Xi(t + 1)− Xi(t)
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the attractiveness β = βoe−γr2
ij in which rij = dbij/dmax (10)

where dbij is calculated as:

dbij =

√√√√Npipes

∑
k=1

(Xi,k(t)− gbestk(t− 2))2

Otherwise, the particle will be handled by PSO. The velocity, Vi and position, Xi of the
ith particles are given by Equations (11) and (12) as:

Vi,k(t + 1) = wVi,k(t) + c1r1(pbesti,k(t)− Xi,k(t)) + c2r2(gbestk(t)− Xi,k(t))

Vmax > Vi,k(t + 1) > Vmin (11)

Xi(t + 1) = Xi(t) + Vi(t + 1) (12)

where Vi(t + 1) is the particle velocity in iteration (t + 1), w = 0.90 − t( 0.40
niter

) is the inertia
weight. r1 and r2 are random numbers in range of [0,1]. c1 and c2 are the acceleration
coefficient, and Vmax is the maximum change of the particle velocity.

6. Compare fitness, fi for each particle, i in the population with those of gbest and pbest
particles. Update gbest for the population and pbest of every particle.

7. Repeat steps 5 to 6 until the maximum number of iterations, niter is reached.

3.3. Hybrid Firefly-Genetic Algorithm Model (FAGA)

Zervoudakis et al. [12] proposed a hybrid approach (FAGA) based on the firefly
algorithm, FA and the genetic algorithm, GA, to combine the advantages of both algorithms
for which the procedure is summarized as follows:

1. Generate a random initial population of npop fireflies.
2. Calculate the fitness, fi for each firefly, i in the population (i =1, 2. 3. . . . , npop)
3. Compare the fitness fi and fj for each of the two fireflies i, j, respectively, (i and j = 1:

npop and i 6= j).
4. Apply genetic crossover for the two fireflies i and j for the case fj < f i according to

Equations (13) and (14).

Xi(t + 1) = L ∗ Xi(t) + (1− L) ∗ Xj(t) (13)

Xj(t + 1) = L ∗ Xj(t) + (1− L) ∗ Xi(t) (14)

L is a vector with continuous uniform distribution with the lower endpoints 0 and
upper endpoint (1 + r) where r is a single uniformly distributed random number in the
interval (0,1).

L ∗ Xi(t) multiplies arrays L and Xi(t) by multiplying corresponding elements.
On the contrary, if fj > fi, apply the genetic mutation in both fireflies as given in

Equations (15) and (16).

Xi,k(t + 1) = Xi,k(t) + sigma(k) ∗ R (15)

Xj,k(t + 1) = Xj,k(t) + sigma(k) ∗ R (16)

where sigma = 0.10 (Dmax − Dmin), k is a vector with n values; n = (mu ∗ Npipes) and mu is
the mutation coefficient which are sampled uniformly at random without replacement,
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from the integers 1 to npipes, and R is a vector of random n values drawn from the standard
normal distribution.

5. Replace the old solutions for the fireflies i and j with the new ones if they have
better finesses.

6. Repeat steps 3 to 5 until reaching the maximum number of iterations, niter.

3.4. Models Parameters

Setting the values of the parameters for each algorithm is a crucial issue in the opti-
mization process to reach an optimal solution for each of the four tested networks. Several
trial runs were carried out for each algorithm to select the most appropriate values of its
related parameters. Table 2 shows the final values of the parameters for each algorithm.

Table 2. Values of the parameters for the models FA, FAPSO and FAGA.

Model Parameter
Pipe Network

Two-Loop Hanoi New York El-Mostakbal

FA

niter 1000 1000 1000 1000
npop 10 40 40 40

Γ 1 1 1 1
β0 2 2 2 2
α0 0.2 0.2 0.2 0.2

FAPSO

niter 130 150 200 150
npop 70 350 200 400
c1 1 1.49 1.49 1.49
c2 1.1 1.49 1.1 1.49
Γ 1 1 1 1
β0 2 2 2 2
A 0.2 0.2 0.2 0.2

FAGA
niter 1000 1000 1000 1000
npop 10 40 40 40
Mu 0.15 0.15 0.1 0.2

4. Application and Results

The optimal solutions for the El-Mostakbal city water distribution network obtained
using different optimization algorithms available in the literature are listed in Table 3,
showing that the hybrid model FAGA introduced in the present study succeeded in reaching
a new optimal solution of 4,923,731.5 L.E. compared to the last available optimal solution of
4,926,560.7 obtained by Abdel-Gawad [29] using the modified Jaya algorithm. The optimal
diameters of the network are shown in Table 4.

Table 3. Optimal cost for El-Mostakbal city network using different optimization algorithms.

Author’s Optimization Technique Optimal Cost

Rayan et al. (2003) [28] SUMT 6,770,787

El-Ghandour and El-Beltagi (2018) [30]

GA 5,268,431
PSO 4,968,881.5
ACO 5,484,596
MA 5,055,519

SFLA 5,181,846
Ezzeldin and Djebedjian (2020) [24] WOA 4,932,467.1

Abdel-Gawad (2021) [29] FSAJA 4,926,560.7

Present Study
FA 5,676,331.79

FAPSO 4,932,901
FAGA 4,923,731.5

Note(s): SUMT (Sequential Unconstrained Minimization Technique), GA (Genetic Algorithm), PSO (Particle
Swarm Optimization), ACO (Ant Colony Optimization), MA (Memetic Algorithm), WOA (Whale Optimization
Algorithm), FSAJA (Free Sensitivity Analysis Jaya Algorithm), FA (Firefly Algorithm), FAPSO (Hybrid Firefly-
Particle Swarm Optimization), FAGA (Hybrid Firefly-Genetic Algorithm).
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Table 4. Optimal pipe diameters of El-Mostakbal city network.

Pipe Number (Optimal Diameter, mm.)

1 (600) 2 (500) 3 (500) 4 (500) 5 (150) 6 (150)
7 (150) 8 (150) 9 (150) 10 (150) 11 (500) 12 (500)

13 (150) 14 (150) 15 (150) 16 (150) 17 (150) 18 (150)
19 (150) 20 (500) 21 (150) 22 (150) 23 (150) 24 (150)
25 (150) 26 (400) 27 (400) 28 (250) 29 (150) 30 (150)
31 (150) 32 (150) 33 (200) 34 (150) 35 (250) 36 (300)
37 (150) 38 (250) 39 (250) 40 (200) 41 (150) 42 (150)
43 (150) 44 (200)

Performance Evaluation

The performance of the three optimization models applied to the networks considered
in the study was assessed according to two stages. The first stage includes a set of different
measures, namely, (1) minimum cost, maximum cost, mean and standard deviation columns
1, 2, 3, and 4), respectively; (2) convergence criteria measured by the function evaluation
number and the computational time required for performing 1000 evaluations (columns 5
and 6), respectively. The results of the first stage of assessment are shown in Table 5, which
clearly illustrates that the FAGA hybrid model has the best values for the minimum and
maximum cost, the mean and standard deviation for all networks, which means better
search capability in the huge search space (148, 634, 1044 and 1621 for the two-loop, Hanoi,
El-Mostakbal and New York networks, respectively). Besides, the values of the number
of function evaluations and the computing time for 1000 evaluations are the lowest for
all networks compared to FA and FAPSO, which means faster convergence of the hybrid
FAGA model towards the optimal global solution. The case study of El-Mostakbal city
network optimized by firefly algorithm and the two hybrid models, FAPSO and FAGA
is shown in Figure 5 which clearly illustrates the faster convergence of the FAGA model
in reaching an optimal solution of 4,923,731.5 LE. at a number of function evaluations of
37,440 compared to 5,966,072.39 L.E. and 4,964,187.63 L.E. for FA and FAPSO, respectively
at the same number of function evaluations.

Table 5. Performance evaluation according to the first stage of assessment.

Network
Optimization

Algorithm

(1) (2) (3) (4) (5) (6)

Min. Cost Max. Cost Mean Standard.
Deviation F.E.N. Sec Per

1000 Eval

Two-Loop
FA 419,000 441,000 425,150 8317.86 6205 88.8

FAPSO 419,000 453,000 435,700 11,388.36 2596 85.3
FAGA 419,000 420,000 419,160 370.33 2380 82

Hanoi
FA 6,566,082.81 8,307,245.89 7,402,370.25 524,647.62 52,249 91.8

FAPSO 6,195,529.34 69,044,904.1 6,507,346.32 208,328.43 102,960 88.3
FAGA 6,087,729.57 6,375,686.7 6,252,830.16 79,998.3 37,410 82

New York
FA 38,637,600 62,390,579.7 44,093,383.99 5,396,845.17 22,335 91

FAPSO 38,637,600 61,551,400 40,393,718.25 5,139,391.02 13,916 89.2
FAGA 38,637,600 38,796,300 38,662,992 58,771.06 9120 88.1

El-Mostakbal
FA 5,676,331.79 6,263,583.1 5,913,233.06 170,902.64 55,216 94.3

FAPSO 4,932,901 5,214,838 5,046,771.6 92,426.21 58,842 90.5
FAGA 4,923,731.5 5,025,247.3 4,949,974.37 35,382.66 37,440 88
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Figure 5. Convolution of the cost with the number of functions evaluations for El-Mostakbal city network.

In the second stage of performance evaluation, the performance of the firefly algorithm
and the two hybrid models, FAPSO and FAGA, is assessed using the success rate, Sr,
estimated by the fuzzy logic concept. The success rate has been first introduced by Mora-
Melia et al. [38] as a measure of the quality and convergence of an optimization algorithm.
Quality refers to the ability of an algorithm to obtain the maximum number of good
solutions as a ratio to the total number of simulations performed. In the present study, the
success rate is utilized as a measure of an algorithm to obtain the maximum number of
good solutions (near-optimal solutions) for the prespecified total number of simulations.
An optimization error C is defined as the limit of exceedance of the good solution beyond
the optimal solution of the network. Values of C considered in this study were 0, 0.01
and 0.02. The success rate is then evaluated using the fuzzy logic concept first introduced
by Cullinane et al. [39] and later used by El-Ghandour et al. [40] to determine the nodal
hydraulic availability indices. The following steps describe the procedure of the fuzzy
logic method:

1. Determine the known optimal solution f(x*) for the pipe networks (two-loop, 419,000,
Hanoi, 6.081 × 106 and New York, 38,637,600). If the known optimal solution is
not available, f(x*) is replaced with the best-known optimal solution (EL-Mostakbal,
4,923,731.5 obtained from the present study).

2. The robustness of the optimization algorithm is measured by accepting optimal
solutions f (x)max slightly greater than the known optimal solution f(x*) such that
f (x)max = (1 + C) ∗ f (x∗) where C = 0, 0.01 and 0.02.

3. Run each of the three optimization algorithms considered in this study, FA, FAPSO
and FAGA, 20 times for each of the four networks and denote the objective function at
the termination point, f

(
xopt

)
i, i = 1, 2, 3, . . . , 20.

4. Estimate the Acceptance Index AIi as given in Equation (17) using the principles of
fuzzy logic [39]. Values of optimization error, C = 0, 0.01, and 0.02, are assumed
to be acceptable. Zero value of C means a tenuous relationship between AIi and
f
(

xopt
)

i. At the same time, the second and third values of C denote continuous
function (S-shape fuzzy membership function) to simulate the relationship between
the Acceptance index, AIi and f

(
xopt

)
i. As given in Equation (17), it is clear that
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AIi takes a value equal to 1 if f
(

xopt
)

i = f (x∗) and value between 1 and zero if
(1 + C) ∗ f (x∗) > f

(
xopt

)
i > f (x∗) while it takes value of zero if f

(
xopt

)
i more than

or equal (1 + C) ∗ f (x∗).

AIi =



0 i f f
(
xopt

)
i > f (xmax)

2
{

f (xopt)i−(1+C)× f (x∗)
C× f (x∗)

}2
i f
(

1 + C
2

)
× f (x∗) < f

(
xopt

)
i < (1 + C)× f (x∗)

1− 2
{

f (xopt)i− f (x∗)
C× f (x∗)

}2
i f f (x∗) < f

(
xopt

)
i <

(
1 + C

2

)
× f (x∗)

1 i f f
(
xopt

)
i = f (x∗)

(17)

Estimate the success rate Sr as:

Sr = 100 ∗∑ 20
i=1 AIi /20 (18)

The results of the success rate obtained using the proposed algorithms for the different
networks are shown in Table 6 which clearly illustrates the effectiveness and quality of
the FAGA hybrid model as the values of the success rate are remarkably higher than the
corresponding values for the traditional FA and hybrid FAPSO models for all networks
especially EL-Mostakbal network considering the prespecified limits of the optimization
error C.

Table 6. Success rates using the proposed optimization algorithms.

Network Optimization Algorithm
Success Rate (Sr %)

C = 0 C = 0.01 C = 0.02

Two-loop
FA 25 56.01 60.65

FAPSO 15 15 16.69
FAGA 84 98.18 99.54

Hanoi
FA 0 0 0

FAPSO 0 0 0.1314
FAGA 2 7.5 10.73

New York
FA 5 8.31 13.03

FAPSO 5 5 5
FAGA 84 94.6 98.65

El-Mostakbal
FA 0 0 0

FAPSO 0 11.39 29.31
FAGA 40 * 66.89 77.1

Estimation of the acceptance index AI (Equation (17)) is based mainly on obtaining
an optimal solution f

(
xopt

)
i greater than the known optimal solution of the network by a

value of optimization error C = 0, 0.01, and 0.02. For C = 0, only the runs providing optimal
solutions f (x∗) are accepted and take the value of AI = 1, while C = 0.01 and 0.02 only
runs giving optimal solutions equal or greater than the optimal solution by about C take
values of AI = (0,1). Figure 6 shows the continuous function (S-shape fuzzy logic) for the
relationship between acceptance index and cost ratio f

(
xopt

)
i/ f (x∗). Table 7 illustrates

the procedure of calculating the success rate Sr (Equation (18)) for the El-Mostakbal city
network by performing 20 runs and considering the different values of C. The values of the
acceptance index AI of FAGA for the El-Mostakbal city network (twenty runs—different
values of optimization error C) are given in Table 7. The values of Sr are also calculated
and given in the table.
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Figure 6. S-shape fuzzy logic relationship of acceptance index and cost ratio.

Table 7. Estimation of success rate (Sr%) of FAGA optimization model for El-Mostakbal City network.

Run No.
Acceptance Index (AI)

Run No.
Acceptance Index (AI)

C = 0.00 C = 0.01 C = 0.02 C = 0.00 C = 0.01 C = 0.02

1 1 1 1 11 0 0.687 0.922

2 1 1 1 12 0 0.687 0.922

3 1 1 1 13 0 0.687 0.922

4 1 1 1 14 0 0.687 0.922

5 1 1 1 15 0 0.687 0.922

6 1 1 1 16 0 0.247 0.790

7 1 1 1 17 0 0 0.091

8 1 1 1 18 0 0 0.004

9 0 0.879 0.970 19 0 0 0.002

10 0 0.819 0.955 20 0 0 0

* Sr = (13.38/20) × 100 = 40%.
∑ 8.00 13.38 15.42

Sr % 40.0 * 66.90 77.10

5. Conclusions

The present research introduced two hybrid models, firefly-particle swarm optimiza-
tion (FAPSO) and firefly-genetic algorithm (FAGA), to enhance the performance of the
standard firefly algorithm (FA). The proposed models were tested through application to
the three well-known benchmark networks of known optimal solutions, namely, two-loop,
Hanoi and New York, and also to the real large-scale case study of El-Mostakbal city net-
work, Egypt, of the unknown optimal solution obtained yet. The results revealed that the
proposed FAGA model was able to reach the known optimal solutions of 419,000 cost units,
6.081 × 106 $ and 38,637,600 $ for the benchmark networks, respectively. For the real case
study of the El-Mostakbal city network, the FAGA model succeeded in reaching a new
optimal solution of 4,923,731.5 L.E. compared to the last optimal cost of 4,926,560.7 L.E.
available in the literature. Additionally, performance evaluation of the proposed algo-
rithms in terms of function evaluation number, computational time, selected related cost
measures, namely, minimum, maximum, mean and standard deviation and finally, suc-
cess rate, revealed that FAGA, when compared to the standard FA and the hybrid model
FAPSO had a better search capability in huge solution spaces, faster convergence towards
an optimal solution, balancing between exploration and exploitation phases, the higher
capability of finding the optimal solution. Finally, it can be concluded that the FAGA
hybrid optimization algorithm is a very promising optimization tool and has an attractive
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ability to efficiently handle pipe network optimization problems. For future studies, it is
recommended that the model be applied to multi-objective pipe network optimization.
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