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Abstract: The phytoplankton distribution in estuaries is influenced by multiple spatially variable
growth and loss processes. As phytoplankton are transported by tidal and net flows, they are exposed
to changing conditions of turbidity, depth, temperature, stratification, and grazing. Understanding
the factors influencing the observed phytoplankton distribution patterns will allow better-informed
restoration and water management efforts. We developed a Lagrangian approach driven by three-
dimensional hydrodynamic model results and a simple representation of the production and losses
of phytoplankton, allowing a highly efficient closed-form solution for phytoplankton biomass. Our
analysis used continuous observations of chlorophyll concentration at four stations and a near-
synoptic chlorophyll dataset collected underway from a boat in the channels of Suisun Marsh in the
San Francisco Estuary. We divided the study region into four compartments defined by the water
depth and location. For each observation location, hydrodynamic model simulations calculated
the time that water parcels spent in each of these compartments and the mean depth encountered
by water parcels in those compartments. Then, using that information and continuous monitoring
data, we inferred compartment-specific grazing rates and two additional ecological parameters. The
underway chlorophyll dataset was used for model validation. The model predicted patterns of
observed spatial and tidal variability in chlorophyll in Suisun Marsh. The modeling indicated that
the chlorophyll concentration at a point in space in time depends largely on the relative exposure to
shallow areas, with positive net productivity and deep areas having negative net productivity.

Keywords: San Francisco Estuary; phytoplankton; chlorophyll; grazing; water age; time scales

1. Introduction

Phytoplankton abundance in estuaries is influenced by spatially and temporally
variable physical and ecological processes that induce differences in growth and loss rates.
Conditions that influence these rates include sunlight, nutrient availability, turbidity, water
depth, temperature, stratification, and the density of benthic and pelagic grazers. Physical
processes can both advect phytoplankton in the direction of net flows and mix water
volumes with different properties. As water masses move with tidal and net flows, they
carry with them phytoplankton, zooplankton, and physical and ecological properties, all of
which can undergo transformations in their moving reference frame.

The problem of representing ecological processes occurring in moving water parcels
is often solved by a two- or three-dimensional hydrodynamic model coupled with an
ecological model on the same spatial grid. These coupled hydrodynamic–ecological models
are often used to represent spatial variability in ecological and transport processes [1].
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When applied to phytoplankton, ecological models typically compute variables such as
nutrient concentrations, phytoplankton biomass, and zooplankton biomass on an Eulerian
grid, simultaneously capturing local transformations and non-local transport processes
(i.e., advection and dispersion). Phytoplankton models vary greatly in the complexity of
processes and in spatial resolution (Ganju et al. 2015). The resolution of ecological parame-
ters is often much coarser than the computational grid. For example, grazing rates that vary
in time and space [2] are generally specified at far coarser scales than the hydrodynamic
model grid. When applied to estuaries, these models are computationally intensive because
they require the calculation of all these state variables at a short time interval (typically
minutes) at many depth-averaged (two-dimensional) or three-dimensional computational
elements. However, the rate constants for ecological processes in such models are typically
much slower than for hydrodynamic processes, implying a mismatch in time scales that
results in an inefficient method.

In contrast to ecological models that are tightly coupled with a hydrodynamic model
and share its spatial and temporal resolution, an alternative approach is to simulate eco-
logical processes and phytoplankton biomass at a coarser spatial or temporal resolution.
The spatial resolution may be coarsened to a region, for example, the low-salinity zone of
the San Francisco Estuary [3]. This mass-balance approach requires minimal computation
but typically does not predict the spatial distribution of phytoplankton within the region.
Large-scale spatial variability can also be represented using grid aggregation to compute
ecological properties on a coarser spatial and temporal scale than hydrodynamics [4]. Cor-
relative analyses can also provide insight into phytoplankton dynamics [5] but provide a
limited scope to predict ecological conditions beyond those for which correlations were
developed, or where covariate data are lacking.

Lagrangian approaches represent ecological processes in a water parcel as it moves
through space. Information is incorporated into the Lagrangian frame by calculating the
conditions (e.g., depth, clam abundance, and light intensity) encountered by a tracer that
represents water parcels from a particular source. This approach is conceptually similar to
the application of the widely used Streeter–Phelps equation to estimate dissolved oxygen
concentrations in rivers. In both cases, the concentration is estimated from the concentra-
tion at a known starting location, the travel time to a downstream location of interest, and
specified biogeochemical transformation rates. While even the simplest Eulerian modeling
approach requires substantial computation to advect and disperse phytoplankton, ecologi-
cal predictions in a Lagrangian frame become simple computations [6]. Such approaches
are of particular interest for ecological models, as the formulations and ecological rate
parameters are often uncertain.

One such Lagrangian mechanistic model [6] used water age with the net phytoplank-
ton growth rate to estimate the time course of chlorophyll concentration as a water parcel
is advected by tidal and net flows. By using a simple formulation, with no explicit state
variables for nutrients or zooplankton, this approach allowed for a closed-form solution
for chlorophyll concentration. Furthermore, Ref. [6] included a nonlinear parameter that
can roughly represent a feedback mechanism, such as a nonlinear increase in zooplankton
grazing with increased phytoplankton abundance.

We built upon the approach in [6] by including additional tracer-based calculations.
Tracer-based estimates included the mean water age [7], mean partial age [8], and mean
depth exposure [9]. Water age (hereafter “age”) is a transport time scale quantifying the
time elapsed since a water parcel entered a study area, which can be estimated using
a tracer-based modeling approach [10]. A specific application of this flexible approach
provides the algebraic mean age of all water parcels from a specific source as they are
transported away from the source. Partial age [8] quantifies the time that the tracer has
spent in a specific geographical region. This partial age, which we will refer to as “exposure
time,” can be calculated for distinct regions that could represent different compartments [8].
We use the term “compartment” instead of region because the compartments are not
spatially contiguous. Property exposure tracking [9] is a tracer-based approach to estimate
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a tracer’s mean exposure to different properties. For example, mean depth exposure at a
specific time and station is the mean depth encountered by water parcels in transit from a
source to the station.

Using these tracer-based approaches to estimate the mean exposure time and mean
depth encountered in different compartments, we developed a simplified and highly
computationally efficient phytoplankton model. The model includes terms for processes
known to be important for phytoplankton in the San Francisco Estuary, including light-
limited growth [11] and grazing by clams [12] and zooplankton [13]. Additional terms of
uncertain importance include phytoplankton mortality [14] and a nonlinear feedback term,
as in [6]. Notably, the model did not include nutrient information since nutrient limitation
is uncommon in the San Francisco Estuary [11]. In addition, the model does not explicitly
predict zooplankton biomass in estimating grazing losses to zooplankton.

This parsimonious approach was applied to predict chlorophyll concentrations in
Suisun Marsh, a large brackish-to-freshwater marsh in the northern San Francisco Estuary.
Numerical optimization was used to determine the clam grazing rate, phytoplankton
mortality rate, and a nonlinear feedback parameter. These parameters were fit to minimize
the root-mean-squared deviation between the predicted chlorophyll and the chlorophyll
observed at four in situ monitoring stations. Clam grazing rates were assumed to vary with
compartment, as clams are more abundant in the main channel of Suisun Marsh than in
shallower side channels [15] and absent from intertidal areas.

The model reproduced some patterns in the data and estimated clam grazing rates
that were credible. The major advantage of this modeling approach is that it can efficiently
estimate biogeochemical rate coefficients that produce predictions consistent with observa-
tions. Only one hydrodynamic and tracer simulation was required, and then chlorophyll
concentrations were predicted in an offline model, and clam grazing rates were selected
to minimize the error in chlorophyll predictions. This specific application is one example
of how age tracer approaches can be used to infer ecological rates, which can then be
corroborated by incorporation into a multi-dimensional biogeochemical model.

2. Materials and Methods
2.1. Study Area

Suisun Marsh (Figure 1) is the largest tidal marsh system in the San Francisco Estu-
ary [16]. It lies north of Suisun Bay, with hydraulic connections to Grizzly Bay (an arm
of Suisun Bay) and to the Sacramento River at the seaward boundary of the California
Delta. Suisun Bay is connected to the ocean through the Carquinez Strait, San Pablo Bay,
and San Francisco Bay. Suisun Marsh has mixed semidiurnal tides propagating east from
the Pacific Ocean and highly variable freshwater flow from the Delta. Formerly a den-
dritic tidal marsh, in the last century, Suisun Marsh was largely converted to managed
wetlands, and the principal current use of the area is duck hunting and other recreation. Of
a total area of ~405 km2, ~210 km2 is managed wetland, 31 km2 is remnant tidal marsh,
104 km2 is tidal sloughs, and the remainder is upland [16]. Suisun Marsh is a focal point for
habitat restoration and scientific studies [17]. Fish populations have been monitored there
since 1979 [18], and plans for the conversion of managed wetlands to open tidal wetlands
are proceeding, with the expectation of a benefit for threatened and endangered species,
including the delta smelt Hypomesus transpacificus [19] and the longfin smelt Spirinchus
thaleichthys [20].
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The recovery of these species is likely limited by food availability [21] as well as
temperature [22,23] in rearing habitats throughout the upper estuary [21]. Phytoplankton
biomass in the main channels of the northern San Francisco Estuary declined sharply in
1987, largely as a result of grazing by the introduced clam Potamocorbula amurensis [12].
Phytoplankton biomass and productivity have remained low [24], with similar declines in
zooplankton, attributed to declines in food and consumption by clams [25], and declines in
fish attributed to food limitation [19].

The continuing declines in fishes of special concern, including listed species, have
stimulated efforts to increase shallow habitats in the hopes of stimulating planktonic
production. Several restoration projects are proposed or ongoing within Suisun Marsh [26].
These projects are based on the assumption that the phytoplankton growth rate is light-
limited and therefore high in shallow waters, allowing for the accumulation of biomass if
clams are not abundant [2,27]. Phytoplankton biomass can be higher in small, dead-end
sloughs in the marsh than in larger channels [28], and clams are abundant mainly in larger
sloughs [15].

The Suisun Marsh Salinity Control Gates (SMSCG; Figure 1) at the east end of Mon-
tezuma Slough were designed to decrease salinity for the managed waterfowl habitat by
opening on ebb tides and closing on flood tides. This leads to tidal pulses of freshwater
moving westward through the main distributary channel of the marsh, Montezuma Slough.
The gates are typically operated in spring but were operated on an experimental basis
during August 2018 in an attempt to improve habitats for endangered fish species by
reducing salinity in the marsh [17].
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2.2. Overview of Approach

The analysis proceeded in three distinct steps. First, we developed the three-dimensional
hydrodynamic model of Suisun Marsh and calibrated it by comparing model predictions
to observed water level, flow, and salinity data.

Next, we applied the calibrated model to simulate the three-dimensional and time-
varying distributions of a set of properties using numerical tracers. The computational
domain was divided into four compartments: the main channel, side channel, low intertidal,
and marsh plain (Figure 2). The numerical model calculated the time for water to travel
from the seaward boundary in Grizzly Bay (Figure 1) to each element in the model for each
time step in the simulation. In addition, the duration of exposure to these compartments
and mean depth encountered in each were predicted.
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Third, we developed and applied a phytoplankton model to predict the chlorophyll
concentration. Two datasets were used. To calibrate the model, we used continuous moni-
toring data collected at 15 min intervals at four stations (Figure 1). To validate the model,
we used a near-synoptic dataset collected underway from a high-speed boat during a single
day. Our approach estimated time-varying light-limited growth rates for each compartment
and loss rates from clam grazing, zooplankton grazing, and phytoplankton mortality over
the mean tracer age from the entry of the tracer from the seaward boundary. While the
growth rate used an existing formulation without the adjustment of any parameters, four
loss rate parameters were determined by optimizing the fit of the model to continuous
monitoring chlorophyll observations. The four parameters were clam grazing in the main
channel, clam grazing in the side channel, phytoplankton mortality, and a nonlinear param-
eter representing density-dependent feedback mechanisms [6]. Using estimates of these
parameters determined by fitting, predicted chlorophyll was compared to the underway
data. Finally, the contributions of individual processes in each compartment to chlorophyll
predictions were analyzed.
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2.3. Hydrodynamic Model

The hydrodynamic model domain extends through Suisun Marsh (Figure 1). The
eastern boundary is located at the National Steel station north of the SMSCG (Figure 1),
and the western boundary is at the junction of Montezuma and Suisun Sloughs with
Grizzly Bay (Figure 1). This model domain extent was guided by the availability of data
for boundary conditions.

The three-dimensional UnTRIM model [29] was applied in this domain with an un-
structured computational mesh with edge lengths in the range of 2 m to 10 m in slough
channels and up to 100 m near the Grizzly Bay boundary. This model simulates physical
processes resulting in the transport of salt and other tracers and allows for the wetting and
drying of computational cells [30] and a sub-grid-scale representation of bathymetry [31].
Bottom roughness and other model parameters were specified to be consistent with previ-
ous applications extending throughout the San Francisco Estuary [9]. Wind forcing was not
included in the simulation and is expected to have a limited influence on transport in this
region of strong tidal flows.

The model simulated hydrodynamics and tracer distributions (see Section 2.3) for
1 March 2018 to 1 September 2018 so that the tracer distributions were appropriately “spun
up” from the initial condition of zero age for chlorophyll simulations from 23 June 2018
to 6 August 2018. The hydrodynamic model time step was 30 s. Boundary conditions
were specified using continuous-flow and salinity data from the National Steel station
operated by the California Department of Water Resources (DWR), salinity data from the
USGS Grizzly Bay station (380631122032201), and stage data from the DWR Hunter Cut
station (Figure 1). An initial salinity field throughout the model domain was derived by
interpolating observed salinity.

Hydrodynamic model predictions were compared with observed stage and salinity
data collected at continuous monitoring stations in the model domain (Figure 3). Per-
formance metrics were computed at each calibration location, as in previous calibration
efforts in the San Francisco Estuary [9]. Performance metrics included the coefficient of
determination (R2) and a commonly used model skill metric [32],

Skill = 1− ∑n
i=1|Pi −Oi|2

∑n
i=1
(∣∣Pi −O

∣∣+ ∣∣Oi −O
∣∣)2 (1)

where n is the number observations, Oi and Pi are the ith pair of observed and predicted
values, and overbar denotes an average over i. Skill ranges from 0 to 1, with 1 indicating a
perfect model.

2.4. Water Age and Property Tracking

An essential component of the Lagrangian tracer-based approach was the mean age
of water, quantifying the time since it entered the model domain from the boundary in
Grizzly Bay. Flows that enter the domain from the eastern end of Montezuma Slough
have little influence on the study sites during the chlorophyll simulation period and were
not tracked. To estimate age, we applied the widely used Constituent-oriented Age and
Residence Time theory (CART) [33]. The equations for this approach are provided in
Appendix A. A “partial age” approach, as defined in [8], quantified the exposure time of
tracers to four spatial compartments (Figure 2). These habitats were defined based on bed
elevation and location. Channel habitat was less than 0 m NAVD (North American Vertical
Datum), corresponding approximately to mean lower low water in Suisun Marsh. The
two compartments of the subtidal channel were the “main channel” and “side channel”
(Figure 2), with the main channel corresponding to regions where clams were found to be
abundant in field studies [15]. The low intertidal compartment extends from 0 to 1.8 m
NAVD, approximately corresponding to bed elevation from mean lower low water to mean
higher high water. The marsh plain compartment is located above mean higher high water,
defined as above 1.8 m NAVD.
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Property exposure tracking estimated depths encountered by tracers since entering
from Grizzly Bay using the method described and applied in [9]. This method was general-
ized to estimate depth exposure in different compartments, as described in Appendix A.

2.5. Predicting Chlorophyll

Chlorophyll concentration can be modeled in an Eulerian frame with a depth-averaged
advection–reaction equation [6] (i.e., neglecting diffusion),

∂P
∂t

+∇ · (uP) =
(
µgrowth − µloss

)
P = µnetP (2)

where P = P(x, t) is the chlorophyll concentration at an arbitrary position x (bold fonts
denote vectors) and time t, µgrowth = µgrowth(t) is the growth rate of phytoplankton and
µloss = µloss(t) is loss rate, and ∇ · (uP) is the horizontal advection of chlorophyll by the
hydrodynamic velocity vector u.

Equation (2) can be rewritten in a Lagrangian frame for a specific water parcel follow-
ing a horizontal trajectory x = x(a) such that the left-hand side simplifies to an ordinary
derivative with respect to age:

dP
da

= µnetP (3)

where a is the total water age defined in Appendix A.
This approach was extended [6] to include a nonlinear term to represent food web

interactions, such as increased zooplankton grazing at higher chlorophyll concentrations.

dP
da

= µnet(1 + kPP)P (4)
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where kP is a term for density dependence.
Equation (4), when integrated from t− a to t, permits an analytical solution:

P(a) =
Pin(t− a)eµnet a

1 + kpPin(t− a)(1− eµnet a)
(5)

where Pin is the incoming chlorophyll concentration, and a is the total water age at the time
(t) and location (x) of a chlorophyll prediction. The incoming chlorophyll concentration
(Pin) is the measured chlorophyll at the Grizzly Bay station, low-pass filtered to remove
tidal variability (Figure 4). The rate µnet is the mean net production rate from time t− a to
time t as a water parcel travels from the source of the tracer (Grizzly Bay in our application)
to x. Note that while µnet in Equation (4) may vary in time, the solution in Equation (5)
depends only on the time-averaged rate µnet.
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values in Suisun Marsh, (C) temperature from continuous values in Suisun Marsh, (D) measured
photosynthetically available radiation (PAR) at First Mallard station. The light attenuation and
temperature data in panels B and C were calculated as the median value across the four continuous
monitoring stations in Suisun Marsh (Figure 1).
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This approach was generalized to multiple compartments with unique rates by av-
eraging the compartment-specific rates according to the exposure time (partial age) for
each compartment:

µnet =
1
a

∫ t

t−a
∑j µnet,j

(
t′
)
δj
(
t′
)
dt′ ≈ 1

a ∑j µnet, jaj (6)

where δj(t′) ∈ [0, 1] reflects the exposure of water to compartment j at time t′, µnet,j is the
mean rate (d−1) in compartment j, and the exposure times to the individual compartments
(aj) sum to the total age (a) in days. The rates are time-averaged at each chlorophyll
monitoring station over the period corresponding to the total age (a) to account for time-
varying PAR, light attenuation, and temperature. Since µnet appears in Equation (5) only
as a time average, the solution is independent of the order in which compartments are
encountered and depends only on the mean rate aggregated across compartments.

The chlorophyll simulation period was limited to the period when the tracer repre-
senting the fraction of water from Grizzly Bay that entered during the simulation period
was continuously greater than 0.5 at each chlorophyll monitoring station. The fraction is
less than one primarily because water initially in the domain, with a tracer concentration
of zero, has not been fully exchanged with Grizzly Bay water. The resulting period was
23 June 2018 to 6 August 2018.

2.6. Estimating Phytoplankton Growth and Loss

Several assumptions were implicit in the phytoplankton model formulation, including
the lack of nutrient limitation. Clam grazing varied by compartment but was represented as
constant in time. We specified time-varying but spatially uniform turbidity and temperature
from observations at the four chlorophyll stations (Figure 1). Each spatially uniform value
was estimated as the median of the data at the individual stations at a given time (Figure 4).
We used equations from [14] to estimate the depth-averaged light-limited growth rate
as follows:

µgrowth = Gmax f I (7)

where Gmax is the maximum potential growth rate (d−1) at a given temperature, and f I
characterizes the light limitation (see Table 1 for definitions of all variables).

Gmax = 1.25
(

2(T−15)/10
)

(8)

f I = min
[

I
Imax

, 1
]

(9)

where T is temperature in degrees Celsius, I is water column mean photosynthetically
active radiation (PAR), and Imax is the irradiance supporting maximum water column
growth, both in moles of photons m−2 d−1.

I =
E

Hk
(1− e−Hk) (10)

where E is the surface PAR in moles of photons m−2 d−1, measured at the First Mal-
lard station (Figure 1) [34]. H is water column depth (m), and k is the light attenuation
coefficient (m−1).

Imax = 15.3
(

2(T−15)/10
)

(11)
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Table 1. Definitions of variables in phytoplankton model and tracer simulations.

Term Definition

P Chlorophyll concentration (µg L−1)
u Hydrodynamic velocity vector (m s−1)

µgrowth Phytoplankton growth rate (d−1)
µloss Phytoplankton loss rate (d−1)
µnet Net phytoplankton growth rate (d−1)

a Mean age (d)
kP Phytoplankton density-dependent gain/loss term (-)
x Horizontal position vector (m)

Pin Boundary concentration of chlorophyll (µg L−1)
µnet Time-averaged net phytoplankton growth rate (d−1)
aj Mean exposure time to compartment j (d)
j Compartment index (-)

Gmax Maximum growth rate at a given temperature (d−1)
T Temperature (degrees C)
f I Light limitation factor (-)
H Water column depth (m)
I Water column mean photosynthetically active radiation (moles m−2 d−1)

Imax Irradiance supporting maximum water column growth (moles m−2 d−1)
k Light attenuation coefficient (m−1)
S Turbidity (FNU)
M Phytoplankton mortality rate (d−1)
Z Microzooplankton grazing rate (d−1)
C Clam grazing rate (m d−1)

Cmain Clam grazing rate in main channel (m d−1)
Cside Clam grazing rate in side channel (m d−1)

The light attenuation coefficient, k (m−1), was estimated from turbidity using a rela-
tionship developed from data for the northern San Francisco Estuary [35]:

k = 0.069Turb + 0.90 (12)

where 0.90 m−1 is the background light attenuation, and Turb is turbidity in FNU.
Growth rates were calculated from Equations (7)–(12). Temperature (T), irradiance

(E), and turbidity (S) varied only in time, but H varied in time, by station, and by com-
partment, necessitating a distinct growth rate calculation for each combination of station,
compartment, and 15 min time interval. This growth rate therefore varied in time and by
compartment and varied slightly among stations because of variation in the mean depth
encountered by water as it traveled from the boundary through each compartment to each
station. The parameters of these equations were taken from the literature, as described
above, leaving no parameters in the growth formulation to be fit in the optimization.

In contrast, several loss rates were fit in our optimization because these rates are
uncertain and likely both to be site-specific and to vary seasonally [15,36]. The loss terms
in [14] are

µloss = M + Z + C/H (13)

where M is the specified constant phytoplankton mortality (d−1), C is the clam grazing rate
(m d−1), which is constant in time, H is water depth (m), and Z is the time-varying micro-
zooplankton grazing rate (d−1), specified in our model as a function of the phytoplankton
growth rate [3]:

Z = max
(

0,−0.3 + 0.93µgrowth

)
(14)

where µgrowth was calculated for each compartment at each time interval in Equation (7).
Mesozooplankton grazing was not specified with a distinct term but is considered to have
a constant component, lumped in with the term M, and a component that varies with
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chlorophyll levels, represented by the nonlinear coefficient kC. Ecological processes that
could contribute to kC include a density-dependent component of mortality.

The depth used in Equations (10) and (13) was estimated using property (depth)
exposure modeling, described in Appendix A. The resulting depth represents the mean
depth that water currently at a station has encountered in each compartment. For each
observed chlorophyll value, the production term (Equation (5)) was calculated for each
compartment over the time corresponding to the total age (i.e., from t− a to t, where t
is the time of the observation). The loss rates were applied, resulting in net rates in each
individual compartment, which were then weighted by fractional exposure (aj/a) to each
compartment (Equation (6)) to estimate chlorophyll at one specific time and location. The
procedure was repeated for each individual chlorophyll observation independently of other
chlorophyll observations. Changes in predictions were driven primarily by the spatially
and tidally varying mean exposure time and mean depth in each compartment from the
tracer simulations.

The unknown rates in the formulation above were phytoplankton mortality (M), the
nonlinear coefficient (kP), and clam grazing in the main channel (Cmain) and side channels
(Cside). Each of these variables is assumed to be constant in time and space (or constant
within a compartment in the case of clam grazing), leaving a total of four unconstrained
degrees of freedom in the model. The closed-form phytoplankton model (Equation (5))
using exposure times and property tracking, given a set of model parameters, predicts
chlorophyll at the time and location of each observation. Differential evolution [37], a
robust stochastic optimization approach from the Python scipy [38] library, was then used
to find parameter values that minimize root-mean-squared error (RMSE) in predicted
chlorophyll compared to the observed chlorophyll, described in Section 2.7, at the four
stations (Figure 1) at 15 min intervals during the simulation period. The evaluation of
RMSE for a single set of parameters entails 4224 distinct chlorophyll predictions and
requires approximately 0.3 s on a laptop computer. Similar results were obtained from
faster, deterministic optimization methods, but the possibility of local minima motivated
the use of the more robust differential evolution.

In order to quantify the role of each individual growth or loss term, the right-hand
side of Equation (4) was decomposed into contributions from these terms, and each was
integrated separately. The numerical integration was performed by the odeint ODE solver
in Python’s scipy library [38].

2.7. Chlorophyll Observations

The UC Davis continuous monitoring data used in calibrating the model were col-
lected from April to September 2018 at four stations (Figure 1; Sheldrake, First Mallard,
Peytonia, and Hill Sloughs) located in channels of Suisun Marsh. At each station, a YSI
EXO II sonde measured pressure, temperature, conductivity, chlorophyll fluorescence,
turbidity, fluorescent dissolved organic matter (fDOM), pH, and dissolved oxygen. Sondes
recorded data every 15 min and were serviced and calibrated approximately monthly.
Calibrations for chlorophyll and turbidity were performed using standard solutions. Con-
tinuous chlorophyll data were corrected using simple multiple regression against values
for chlorophyll concentration and turbidity obtained from whole-water grabs. Water grabs
were analyzed in the UC Davis Geochemistry Lab using standard techniques [39]. Strong
tidal variability was typically apparent in these data, with higher chlorophyll at low water
suggesting higher phytoplankton biomass in low intertidal and marsh plain compartments
than in channels.

A separate set of near-synoptic chlorophyll data [40] was collected underway from a
high-speed boat on 27 July 2018 from 7:57 to 15:16 PST. The boat was fitted with a flow-
through system equipped with an EXO v2 sonde (YSI, Yellow Springs, OH, USA) that was
calibrated immediately prior to use [25]. These observations were collected at intervals of
1 s throughout the main channels of Suisun and Montezuma Sloughs while underway at
speeds of up to 13 m s−1, providing a map of chlorophyll concentrations at spatial intervals
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of meters. In places where observations were dense, they were averaged within each
hydrodynamic model grid cell (~10 m length) for comparison with predicted chlorophyll.
These underway data were collected during the period of continuous data availability and
were useful in examining spatial patterns in model accuracy due to large spatial extent.

Continuous monitoring data at each station were compared to the underway obser-
vations to assess biases between the two sets of observations. Continuous monitoring
stations were located in smaller slough channels adjacent to Suisun Slough, while the
underway data were collected in the main channels (Figure 1). To mitigate the effect of
horizontal separation between a station and underway observations, station data at the
time of high tide were compared to the underway data nearest to the station location, under
the assumption that water in the channel (sampled by underway observations) would have
advected to the station location during the flood tide. In these comparisons, continuous
monitoring data were consistently lower than the underway data (Table 2). Possible reasons
for the differences are different sensors deployed or differences in the calibration approach.
The underway sensor data were calibrated to laboratory measurements on the day of the
survey, while the continuous monitoring data were calibrated once per multiple-week
deployment, so we assumed that the underway data gave more accurate estimates of
chlorophyll concentrations. We used the calculated fixed offsets from the underway data to
reduce chlorophyll in the continuous monitoring data (Table 2). Chlorophyll measured in
underway surveys conducted outside our simulation period was also persistently higher
than contemporaneous data from the continuous monitoring stations.

Table 2. Comparison of continuous monitoring station chlorophyll observations at high water to
adjacent underway observations in the Suisun Slough channel, used to specify continuous data offsets.

Station Continuous (mg L−1) Underway (mg L−1)

First Mallard 2.08 6.49
Sheldrake 4.54 5.39
Peytonia 7.60 10.01
Hill 5.86 9.43

3. Results
3.1. Hydrodynamic Model Calibration

The hydrodynamic model predicted salinity and water level accurately during the
portion of the hydrodynamic simulation period when the chlorophyll simulations were
performed (Table 1). The model predicted water level particularly well, with a computed
skill of 1.00, partially due to the limited spatial variability in water level in the small model
domain. The model skill for salinity was 0.84, and predicted salinity was 0.35 lower than
the observed salinity on average (Table 3). The range of observed salinity at the calibration
stations during this period was 0.9 to 16.4 with a mean of 5.8.

Table 3. Model performance metrics averaged across continuous monitoring stations.

Parameter R2 Bias RMSE Skill

Water level 0.99 0.00 0.06 1.00
Salinity 0.81 −0.35 0.72 0.84

Hydrodynamic conditions were generally vertically well mixed throughout the model
domain during the simulation period. A small degree of stratification formed intermittently
at some locations during ebb tides.

3.2. Age and Property Exposure Predictions

The tracer concentration and mean age corresponding to the transport of water from
the Grizzly Bay boundary to the marsh were calculated on the three-dimensional model
grid at 30 min time intervals. An example snapshot of the tracer fields shows that the
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Grizzly Bay tracer had filled most of the model domain (Figure 5) at the time of underway
data collection. The mean exposure time was calculated for each of the four compartments
(Figure 2) throughout the model grid and simulation. The calculated mean exposure times
at each station varied tidally, as water with more exposure to low intertidal and marsh plain
compartments and less exposure to the main channel passes by each station during the ebb
tide. Exposure to the main channel was larger than exposure to other compartments at all
stations (Figure 6A) because the tracer must pass through the main channel to arrive at the
stations. At any location and point in time, the mean exposure times summed exactly to
the mean age.
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Figure 6. Predictions for tracer traveling from the Grizzly Bay boundary to each station during the
simulation period. (A) Mean exposure times to each compartment. (B) Mean depth encountered
while in each compartment. Boxes indicate interquartile ranges, horizontal lines indicate medians,
and whiskers indicate the range of 95% of predictions.

The chlorophyll simulation period of 23 June 2018 to 6 August 2018 was chosen as
the period when the tracer concentration representing the fraction of water from Grizzly
Bay that entered during the simulation period was continuously greater than 0.5 at each
chlorophyll monitoring station. The end time of the simulation corresponds to the timing of
a significant fraction of water reaching the stations from the eastern entrance of Montezuma
Slough when SMSCG gates were opened during flood tides starting in early August [17].

The mean depth encountered by the tracer was extracted from the simulation for each
combination of station, time, and compartment. The mean depths encountered by the
tracer between the Grizzly Bay boundary and each station varied little among stations but
greatly among compartments (Figure 6B). The mean depths encountered were typically less
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than 0.2 m in the marsh plain compartment, about 1 m in the low intertidal compartment,
roughly 3 m in the side channel compartment, and approximately 7 m in the main channel
compartment. Since more of the water column in shallow compartments was in the photic
zone, these compartments had higher estimated phytoplankton growth rates.

3.3. Chlorophyll-a Predictions at Stations

The parameters for both grazing in the side channel and phytoplankton mortality
derived in the optimization were estimated to be zero, and the other two parameters were
non-zero. The chlorophyll simulation using the estimated parameters (Table 4) allowed
the accurate prediction of chlorophyll, which generally increased with the predicted water
age (Figure 7). Median chlorophyll was predicted well at all four stations (Figure 8), with
both observed and predicted chlorophyll increasing with the distance from Grizzly Bay,
where tidally averaged measured chlorophyll was roughly 2.5 mg L−1 (Figure 4) during
the simulation period. The range of chlorophyll at each station was also predicted well
by the model (Figure 8), except at Sheldrake Slough, where some observed values at high
water were much higher than those predicted by the model. The tidal phase of variability
in observed chlorophyll was predicted well by the model (Figure 9). The model predictions
were largely unbiased, though the range of variability was underpredicted at the Sheldrake
Slough station (Figure 8).
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Table 4. Parameter values for clam grazing, density-dependent feedback parameter, and phytoplank-
ton mortality estimated in optimization.

Parameter Location Value Units

Cmain Main channel 1.13 m d−1

Cside Side channel 0.0 m d−1

kc Global −0.091 L µg−1

M Global 0.0 d−1
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Figure 9. Observed and predicted chlorophyll at each station during a two-week period centered on
the time of underway data collection. (A) First Mallard Slough station. (B) Sheldrake Slough station.
(C) Hill Slough station. (D) Peytonia Slough station.

3.4. Chlorophyll Growth and Loss Terms

We calculated the relative rates of various processes that result in the estimated changes
in chlorophyll between the Grizzly Bay boundary and sampling stations (Figure 10). As
evident in Equation (6), the contribution to chlorophyll predictions from the time spent in
each compartment depends both on the compartment-specific rate (Figure 10) and on the
compartment exposure time (Figure 6). The calculated growth and loss rates varied across
compartments and, to a lesser degree, sampling stations. The net rates were negative (loss)
in the channel regardless of the sampling station, while all net rates were positive (growth)
for the other compartments.



Water 2023, 15, 2097 18 of 26Water 2023, 15, x FOR PEER REVIEW 20 of 28 
 

 

 
Figure 10. Calculated phytoplankton growth and loss rates averaged over the simulation period for 
each compartment (x-axis) and station (letters above individual bars; see Figure 1). The black hori-
zontal line across each bar indicates the net growth rate. Net growth rates were negative in the main 
channel and positive elsewhere. 

3.5. Phytoplankton Model Validation  
The underway chlorophyll data were not used for optimization but were saved for 

model validation. Chlorophyll was predicted by the model at the time and location of each 
of the 2369 thinned underway data points, and the two sets of data were compared (Figure 
11A,B). Because the net production of chlorophyll was positive in the side channel, low 
intertidal, and marsh plain compartments (Figure 10), we explored the relationship of ob-
served and predicted chlorophyll with the modeled mean exposure to these compart-
ments (Figure 11C). Both observed and predicted chlorophyll show a clear increase with 
mean exposure to these “margin” compartments (Figure 11D). 

Figure 10. Calculated phytoplankton growth and loss rates averaged over the simulation period
for each compartment (x-axis) and station (letters above individual bars; see Figure 1). The black
horizontal line across each bar indicates the net growth rate. Net growth rates were negative in the
main channel and positive elsewhere.

3.5. Phytoplankton Model Validation

The underway chlorophyll data were not used for optimization but were saved for
model validation. Chlorophyll was predicted by the model at the time and location of
each of the 2369 thinned underway data points, and the two sets of data were compared
(Figure 11A,B). Because the net production of chlorophyll was positive in the side channel,
low intertidal, and marsh plain compartments (Figure 10), we explored the relationship of
observed and predicted chlorophyll with the modeled mean exposure to these compart-
ments (Figure 11C). Both observed and predicted chlorophyll show a clear increase with
mean exposure to these “margin” compartments (Figure 11D).
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Figure 11. (A) Observed underway chlorophyll. (B) Predicted chlorophyll. (C) Mean exposure time
to margin (side channel, low intertidal, and marsh plain) compartments. (D) Observed vs. predicted
chlorophyll with a best-fit line. (E) Relationship of predicted and observed chlorophyll with mean
exposure time to margin compartments.

4. Discussion

We developed a Lagrangian phytoplankton model, extending the methods of [6] to
account for time spent in distinct spatial compartments with varying growth and loss rates.
A property-tracking approach [9] provided estimates of the average depth encountered
by the tracer in each spatial compartment. Growth and loss terms were parameterized
using this depth information. We estimated growth rates over the travel time from the
boundary by a light-limited growth formulation [14] and fit unknown loss rates to optimize
the prediction of chlorophyll at fixed stations. Net flows during the study period were
negligible, and hydrodynamic transport was dominated by tidal dispersion processes.
Despite significant additional complexity relative to previous tracer-based Lagrangian
models, such as [6], our approach maintained extremely high computational efficiency.

The Lagrangian model accurately predicted spatial and tidal chlorophyll variability
across the four fixed stations by choosing optimal phytoplankton loss parameters repre-
senting clam grazing rates, general mortality, and a nonlinearity parameter representing
increased losses with increased phytoplankton concentration. It underpredicted the ob-
served peak chlorophyll at Sheldrake Slough, which occurred at low water and is possibly
associated with unquantified discharges from managed wetlands. The predicted con-
centrations were all substantially larger than boundary concentrations, with predicted
chlorophyll generally increasing with the distance from the boundary. The model accu-
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rately predicted an independent underway chlorophyll dataset, and both the observed and
predicted chlorophyll increased with exposure to shallow “margin” compartments.

The calculated growth and loss rates (Figure 10) varied among compartments, primar-
ily because the water depth varied among compartments, and clam grazing was specified
to occur only in the main channel. The average rates also varied slightly by station because
water in transit from the Grizzly Bay boundary encountered depth profiles that differed
among stations. As evident in Equation (6), the contribution to chlorophyll predictions
from time spent in each compartment depends both on the compartment-specific rate
(Figure 10) and on the compartment exposure time (Figure 6). For example, the high rates
predicted for the marsh plain compartment have a small net effect on predicted chlorophyll
due to the relatively short exposure time of the tracer to the marsh plain compartment
(Figure 6). Predicted net losses in the main channel were exceeded by net gains across the
other compartments at all stations (Figure 10). For that reason, chlorophyll at the stations
was roughly 0.5 to 7.5 mg L−1 higher than chlorophyll at the boundary (Figure 4D).

The robust optimization approach required 4100 biological simulations and 47.2 min
on a laptop computer, corresponding to 0.69 s of computation for an individual chlorophyll
model run. Most of this computational time is required for calculating the average growth
rate for individual spatial compartments (µnet,j) comprising time-averaged growth rates
calculated using Equations (7)–(12) [14] and constant in time loss rates.

4.1. Suisun Marsh Phytoplankton Dynamics

Several aspects of our approach and conclusions are consistent with previous studies
in Suisun Bay and Suisun Marsh. Consistent with [15], the parameter-fitting approach esti-
mated non-zero clam grazing only in the main channel. Consistent with [36], we assumed
no nutrient limitations and used their microzooplankton grazing approach. While [36]
estimated net phytoplankton loss in channels and net gains in shoals in the low-salinity
zone (salinity from 0.5 to 5), which often overlaps with Suisun Bay, we similarly estimated
the net loss of chlorophyll in the main channels and net growth in the other spatial com-
partments of Suisun Marsh. Though the tracers spent most of the time in the main channel
(Figure 6A), the strong positive production in margin compartments offsets the losses
in the main channel, giving increased chlorophyll predictions at fixed stations (Figure 8)
relative to the model boundary in Grizzly Bay (Figure 4). The attributes of the shallow
compartments that enhance phytoplankton production in our model are shallow depth and
a lack of clam grazing, conceptually consistent with [27]. For this reason, the exposure time
to the other spatial compartments (“margins”) was predictive of observed and predicted
chlorophyll (Figure 11). Though clam grazing occurred only in the main channel, it was
the most important loss term due to the much larger main channel exposure compared
to exposure times to other compartments (Figure 6). The predicted contribution of clam
grazing to overall losses between the boundary and the four stations ranged from 51% at
PT in Peytonia Slough (Figure 1) to 71% at SD in Sheldrake Slough (Figure 1).

We did not address several aspects of phytoplankton dynamics in Suisun Marsh,
including seasonal variability in grazing and other loss parameters, but could do so with
adequate data availability in other periods. Representing transport processes and phyto-
plankton dynamics in the wetter winter and spring conditions would also require consider-
ation of incoming chlorophyll with freshwater inflows. These inflows may also cause some
degree of salinity stratification, which would make our depth-averaged phytoplankton
model less appropriate. We also did not account for phytoplankton biomass from man-
aged wetland discharges. This could be challenging because chlorophyll concentrations in
wetland discharges are generally not monitored.

4.2. General Applicability

Our model can readily be extended to solve the coupled equations of an NPZ model
by utilizing an ordinary differential equation integration approach while maintaining the
Lagrangian approach, which obviates the need to solve the equations on a computational
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grid. These ordinary differential equations could be integrated at orders of magnitude
larger time steps than used in multi-dimensional hydrodynamic and tracer transport
models. Multiple sources of water and chlorophyll can be added to our model by adding
tracers to track these sources, including exposure to different compartments and the depth
encountered in each. The model can also be applied to scenarios such as sea level rise
using process rates determined from historical conditions. A Monte Carlo approach can be
applied to account for uncertainty in rates and other model inputs.

The Lagrangian nature of the approach allows for high computational efficiency but
also limits the applicability of the approach. To understand the strengths and limitations
of the approach more generally, consider the examples of nutrient-limited phytoplankton
production and light-limited phytoplankton production. The former is better suited to our
approach than the latter. In a nutrient-limited phytoplankton model, the predicted phyto-
plankton biomass would evolve and interact with the nitrate and any additional nutrients
in a coupled Lagrangian biogeochemical model using nutrient equations accounting for
uptake by phytoplankton and other processes.

In contrast, light-limited phytoplankton modeling would be challenging. In many
systems, including the SFE, turbidity is strongly variable in space and time and often
covaries with depth. If the turbidity distribution is predicted by a sediment transport
model or interpolated from observations, the tracer simulations can readily yield the
average turbidity experienced but would not account for the covariability of turbidity,
water depth, and incoming solar irradiation. This limitation can be partially addressed by
tracking the exposure of a tracer to photosynthetically active radiation (PAR), resulting in
the predicted average light exposure. However, typical light-limited growth equations are
strongly nonlinear with light exposure and vary with temperature [14], such that aggregate
light exposure may still be insufficient. To remedy that, one could instead calculate a light
limitation factor in the transport model along with property-tracking tracers to track the
average light limitation. Taking this approach a step further, the phytoplankton growth rate
could be calculated in the hydrodynamic model, and a tracer could track the average growth
rate experienced. At each step along this progression, more assumptions, formulations, and
parameters are pushed into the hydrodynamic model tracer simulations, enabling complex
dynamics but hindering subsequent exploration and optimization.

Given the limitations of age-tracer-based phytoplankton modeling, it should be con-
sidered a useful tool in conjunction with the Eulerian modeling of phytoplankton. For
example, an age tracer approach could be utilized to estimate the values of several model
parameters, which could then be incorporated into an Eulerian model that represents
additional processes or more complex spatial variability in rates. The Lagrangian biogeo-
chemical model is applicable to many waterbodies, provided that the simulations identify
the provenance of nearly all water at the times and locations of biogeochemical predictions.
For this reason, it would typically be more challenging to apply this approach in many
oceanic and lake settings with high water ages. It is critical that transport processes are
represented accurately by the hydrodynamic model used for tracer predictions. Biolog-
ical rates can be estimated most reliably when the incoming constituent concentrations
are known from observations or can reasonably be assumed to be constant and fit in the
parameter optimization.

4.3. Management Implications

Several restoration projects have been planned or implemented for the San Francisco
Estuary. Part of the motivation of these projects is to provide food for aquatic organisms [41].
Endangered and threatened fish populations have declined simultaneously with their
food species [42]. Because our analysis supports the understanding that shallow regions
of Suisun Marsh are more productive than deep regions, an increased area of the low
intertidal area and marsh plain can be expected to increase primary productivity. Some
of this primary production in shallow regions will subsidize adjacent deep regions. The
currently abundant managed wetlands are also highly productive and likely contribute



Water 2023, 15, 2097 22 of 26

to the productivity of Suisun Marsh [43]. Our work suggests that productivity will be
influenced by aspects of restoration design, including bed elevation and exchange between
shallow habitats with channels, which can be influenced by breach and channel dimensions,
among other factors.

Therefore, the benefits of restoration to open tidal habitats can be expected to vary
among existing land uses. While the conversion of managed wetlands to open tidal habitats
may not increase overall productivity, the restoration of currently dry areas is expected to
benefit productivity. The benefits may decrease due to colonization by clams or aquatic
vegetation, which may reduce productivity by shading out light to the water column [44]. In
addition, note that the high predicted mean water age during summer conditions indicates
the slow exchange with Suisun Bay and the low export of productivity from Suisun Marsh.
Therefore, restoration in Suisun Marsh may have little influence on food resources in
Suisun Bay during summer conditions. Subsidies of food resources might be increased
by the management of tidal or freshwater flows to induce net transport through Suisun
Marsh [17].

Due to the increased production predicted in shallower regions, Suisun Marsh phyto-
plankton dynamics may vary as the marsh depth evolves. With the sea level rise predicted
to be as large as 2.7 m in the next 75 years [45] and low-sediment conditions in the San
Francisco Estuary [46], which limit accretion, the drowning of marshes and a shift toward
deeper water is likely. This is likely to lower the productivity of Suisun Marsh.

5. Conclusions

Our phytoplankton modeling approach generalizes the approach of [6] to allow dis-
tinct phytoplankton growth and loss rates to differ among spatial compartments. The net
production in the main channel is negative (net loss), while the net production in other
compartments is positive, showing the importance of distinguishing exposure to different
compartments. The approach also allows for the rapid (~1 min) fitting of clam grazing rates
and other parameters that produce chlorophyll predictions that are consistent with the
observed chlorophyll. These predictions produced credible grazing rates. The Lagrangian
approach described can be applied and extended substantially in future work to provide
additional insight into the relative importance of different water sources and seasonal
variability in loss rates.
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Appendix A

An essential input to the Lagrangian tracer-based approach is the mean age of water
since it was tagged at the model boundary (Grizzly Bay in our application). To estimate the
mean age of a source of water, we simulated the transport of two conservative tracers in the
hydrodynamic model [7]. The first tracer, representing the fraction of water that entered
from the boundary, follows a three-dimensional advection–diffusion equation:

∂C
∂t

+∇ · (uC) =
∂

∂z

(
KT

∂C
∂z

)
(A1)

where C is the tracer concentration with dimensions of mass per volume, u is a three-
dimensional velocity vector with the dimensions of length per time, and KT is the vertical
eddy diffusivity with dimensions of length squared per time. Horizontal eddy diffusion
was neglected. The scalar advection–diffusion equation was integrated at a time step equal
to or less than the hydrodynamic time step of 30 s. When necessary, the scalar time step
was reduced from 30 s by using multiple “substeps” of the advection–diffusion integration
to meet a stability condition [47].

This equation was discretized with a conservative finite volume approach. The dis-
cretized equation can be represented as

Cn+1 = A(Cn) (A2)

where A is the discrete advection–diffusion operator [8] representing a hydrodynamic
model’s tracer transport solver, and superscripts denote the discrete-time level (i.e., Cn is
the spatial concentration distribution at time n∆t, and A represents the evolution of that
distribution by advection and diffusion from time n∆t to (n + 1)∆t for a computational
time step ∆t).

A second equation is used to represent age–concentration, which characterizes the
age content of a water parcel [7,8]. Age–concentration is conceptually equivalent to the
product of age and concentration and is more practical to compute than the age itself. The
governing equation of age–concentration is similar to Equation (3),

∂α

∂t
+∇ · (uα) =

∂

∂z

(
KT

∂α

∂z

)
+ C (A3)

where α is the age–concentration with dimensions of time-mass per volume. Using the
notation in Equation (A2), its discretized form is written as

αn+1 = A(αn) + ∆tCn (A4)

where ∆t is the computational time step. The mean age was calculated as the ratio of the
age–concentration and the tracer concentration.

an =
αn

Cn (A5)

where an has dimensions of time. The initial conditions of the scalar transport equations
were 0 concentration and 0 age–concentration throughout the domain. The boundary
conditions of C were 1 at the Grizzly Bay boundary and 0 at other boundaries. The
boundary conditions of age–concentration were 0 at all boundaries.

An analogous approach was applied for partial age [8], which we will refer to as
exposure time. The exposure time quantified the time that the tracer spent in each non-
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contiguous spatial compartment. A unique tracer assigned to each compartment was incre-
mented to accumulate partial age–concentration only within the assigned compartment.
The partial age–concentration for compartment j in computational cell i was calculated as

αn+1
i,j = A

(
αn

i,j

)
+ δi,j∆tCn (A6)

where δi,j is 1 if cell i was in compartment j and 0 otherwise. Then, the exposure time
(partial age) to compartment j was calculated as

aj =
αj

C
(A7)

To quantify the mean exposure of a tracer to a water property (depth in our applica-
tion), we estimated the property–age–concentration β with the equation

∂β

∂t
+∇ · (uβ) =

∂

∂z

(
KT

∂β

∂z

)
+ ψC (A8)

where ψ is the instantaneous value of the property. Its discretized form can be written as

βn+1 = A(βn) + ∆tψnCn. (A9)

Then, the mean property encountered by the tracer can be estimated as the ratio of the
property–age–concentration and age–concentration.

bn =
βn

αn (A10)

where b is the mean property encountered by the tracer. The initial condition and boundary
conditions of β were zero in the domain and at all boundaries.

By analogy to partial age–concentration, we estimated the partial property–age–concentration
encountered in cell i for each compartment j as

βn+1
i,j = A

(
βn

i,j

)
+ δi,j∆tψn

i Cn. (A11)

where ψi represents the property value in cell i. The partial property value for cell i
indicating the mean property value encountered by the tracer in compartment j is then

bi,j
n =

βi,j
n

αi,j
n (A12)

We used this approach to estimate the depth encountered by the tracer in each com-
partment. In this case, ψi in Equation (A12), the depth in cell i at the time, was updated at
each time step and cell in the simulation. In our application, β in Equation (A9) was the
water-depth–age–concentration associated with the tracer C, and bi,j was an estimate of the
mean depth that the tracer in cell i at time step n has encountered in compartment j since
entering the domain.
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