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Abstract: The use of satellite precipitation products can overcome the limitations of rain gauges in
flood hazard mapping for mitigation purposes. Hence, this study aims to evaluate the capabilities of
three global precipitation measurement (GPM) integrated multisatellite retrievals for GPM (IMERG)
products in tropical flood hazard mapping in the Kelantan River Basin (KRB), Malaysia, using the
GIS-based analytic hierarchy process (AHP) method. In addition to the precipitation factor, another
eleven factors that contribute to flooding in the KRB were included in the AHP method. The findings
demonstrated that the spatial pattern and percentage area affected by floods simulated under the
IMERG-Early (IMERG-E), IMERG-Late (IMERG-L), and IMERG-Final (IMERG-F) products did not
differ significantly. The receiver operating characteristics curve analysis showed that all three IMERG
products performed well in generating flood hazard maps, with area under the curve values greater
than 0.8. Almost all the recorded historical floods were placed in the moderate-to-very-high flood
hazard areas, with only 1–2% found in the low flood hazard areas. The middle and lower parts of
the KRB were identified as regions of “very high” and “high” hazard levels that require particular
attention from local stakeholders.

Keywords: flood hazard; multicriteria decision making (MCDM); analytical hierarchy process (AHP);
satellite precipitation products (SPPs); global precipitation measurement (GPM); climate change;
climate adaptation; flood; Kelantan; Malaysia

1. Introduction

Floods have an impact on communities across the world in a number of ways, includ-
ing property damage, loss of life, and the destruction of crops and livestock [1]. According
to the United Nations Office for Disaster Risk Reduction (UNDRR), floods are the most
common and costly natural disaster in the world, causing more deaths and economic losses
than any other natural disaster. The Emergency Events Database of the Centre for Disaster
Epidemiology Research (CRED) reported that floods killed 41,816 people and impacted
more than 660 million people in Asia between 2010 and 2020, making the region the most
disaster-prone in the world [2]. These factors highlight the need of flood hazard mapping
for the purpose of planning and mitigating flood damage and risk.
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The identification of flood hazard zones is a crucial element of funding allocations,
as highlighted by Bubeck et al. [3] and Chapi et al. [4]. To effectively control and reduce
floods, flood hazard mapping is a fundamental requirement [5]. Numerous techniques
have been developed to study floods, such as frequency ratios [6–8], logistic regression
modeling [9], artificial neural networks [10–12], bivariate statistical approaches [13], time
series modeling [14–16], and machine learning [17,18]. These techniques are more suitable
for flood forecasting, but they may not be able to capture the complex interactions among
different factors that contribute to flood risk. The multicriteria decision-making (MCDM)
method that combines expert knowledge and multiple factors is regarded as one of the
most reliable ways to produce flood hazard maps. This is demonstrated by the 35% increase
in publications on the application of MCDM in flood hazard mapping between 2000 and
2019 [19].

Many MCDM methods have been developed with the interfaces of the geographic
information system (GIS) [20]. MCDM can be useful in a wide range of considerations when
making decisions regarding flood events [21–25]. The climatic, hydrological, lithological,
soil, and topographic characteristics of a region have a significant impact on how often
flood events occur [26]; hence, flood hazard mapping needs various geospatial data. GIS
is a system developed for processing, understanding, organizing, and quantifying a vast
amount of geospatial data [27]; therefore, many studies have utilized GIS-based MCDM
methods in the field of flood hazard mapping [28–30]. The analytical hierarchy process
(AHP) is one of the famous MCDM methods to compare multiple criteria pairwise to
allow experts’ and decision-makers’ perspectives to be incorporated when producing flood
hazard maps for accomplishing targeted goals [31]. Geospatial data of various criteria or
factors related to flood risk can be integrated and used as input for the AHP. For example,
Rahmati et al. [32] evaluated the effectiveness of the AHP in identifying flood hazard zones
by comparing the results with a hydraulic model and reported that the AHP holds promise
in accurately and reliably predicting the extent of flood hazards. Such assessment is also
required for tropical regions to understand the reliability of the AHP, especially with the
complex topography and climatic conditions.

Several studies have produced flood hazard maps using MCDM in Malaysia.
Elsheikh et al. [33] and Dano et al. [34] applied different GIS-based MCDM methods
to map high-risk flooding areas in Terengganu and Perlis, respectively. They ranked and
displayed different categories of very high to no flood risk zones using factors such as
annual rainfall, slope, drainage network, and soil type. Both studies relied heavily on
the rainfall data measured from gauges as the input to MCDM. Rain gauges are able to
provide precise information as they record precipitation as it directly falls on the Earth’s
surface [35–38]. However, rain gauges often have a restricted area of coverage, i.e., moun-
tainous and forest areas. In fact, there are not enough rain gauges in many places around the
world to reliably record the spatial and temporal variability of precipitation systems [39,40],
particularly over mountainous regions. This situation leads to difficulty in measuring and
understanding the impact of rainfall on flooding accurately and effectively. To overcome
this challenge, satellite precipitation products (SPPs) can be regarded as alternative climate
data to provide rainfall information for regions with limited rain gauges.

Satellite technology has advanced significantly in recent years, making it possible to
monitor severe rainfall over large areas at a relatively low cost. As a follow-up mission
to the Tropical Rainfall Measuring Mission (TRMM), the National Aeronautics and Space
Administration (NASA) and the Japan Aerospace Exploration Agency (JAXA) launched
global precipitation measurement (GPM) in 2014 [41]. GPM’s spatial resolution of 0.1◦ is
comparable to TRMM’s spatial resolution of 0.25◦ [42]. Recent attempts to use GPM to
construct a rainfall map and other inputs have been promising [43]. Pradhan et al. [44]
reported the integrated multisatellite retrievals for GPM (IMERG) products are able to
provide reliable global precipitation information. Ma et al. [45] found that GPM IMERG
products are able to increase the reliability of the flash flood warning system in Yunnan
province and the nearby area. Similarly, Parsian et al. [46] concluded that flood mapping
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in Iran can be improved by incorporating GPM IMERG data. However, the assessment
of the performance of GPM IMERG products for tropical flood hazard mapping using
the AHP method is relatively limited, despite the widespread use of SPPs in monitoring
precipitation during the flooding seasons in the past few years. Validating GPM IMERG
products in flood hazard mapping is, therefore, crucial to enhance their accuracy and
reliability [47]. Additionally, insights from studies will be useful to support the use of SPPs
in the GIS-based AHP flood mapping by local stakeholders.

This study aims to assess the reliability of three GPM IMERG products in MCDM
to generate flood hazard maps for the Kelantan River Basin (KRB) in Malaysia, which is
frequently affected by extreme floods [48]. The most devastating flood events of the basin
that occurred in 2014, 2017, and 2020 were selected for the assessment. The findings of
this study, including the generated flood hazard maps, can be utilized by stakeholders
and decision-makers for flood mitigation strategy development. In addition, the entire
framework may be extended to different river basins in Malaysia and nearby countries to
generate flood hazard mapping without relying on rainfall data from gauges. This will help
local stakeholders to produce flood hazard maps faster as some of the IMERG products, i.e.,
IMERG-Early (IMERG-E) and IMERG-Late (IMERG-L), are freely available to the public
after a few hours of capturing the rainfall pattern.

2. Materials and Methods
2.1. Study Area

The KRB is located in the northeastern region of Peninsular Malaysia between 4◦40′

to 6◦12′ N latitudes and 101◦20′ to 102◦20′ E longitudes (Figure 1). The Kelantan River is
248 km in length, with a drainage area of 12,686 km2. The river passes through several
populated districts, such as Kuala Krai and Tanah Merah, as well as the state capital, Kota
Bharu, before discharging into the South China Sea. The KRB experiences a monsoon
climate system, with two major seasons of the northeast monsoon (NEM) from November
to March and the southwest monsoon (SEM) from May to September. Meanwhile, April
and October are another two inter-monsoon seasons. The KRB receives an average annual
precipitation of around 2500 mm (Figure 1), mostly during the early NEM season from
November to January. The massive floods in December 2014 and January 2015 caused
by monsoon rainfall are considered one of the worst natural catastrophes in Kelantan’s
history [49]. The incident caused the displacement of over 200,000 individuals, resulted
in the death of 21 people [50]. According to the Department of Irrigation and Drainage
Malaysia, the 2014 flood in Kelantan, Malaysia resulted in significant economic losses
in the agriculture and infrastructure sectors, estimated at approximately RM 1.5 billion
(equivalent to USD 350 million). This estimation reflects the damages incurred due to the
flood event.
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Figure 1. Topography conditions of the (a) Kelantan River Basin, its (b) location in Peninsular
Malaysia, and (c) annual precipitation from 2000 to 2020.

2.2. Data Description

Several factors were chosen for MCDM modeling after reviewing literature and con-
sulting experts. A model for assessing flood hazards requires identifying parameters
related to floods, and there is no consensus on which criteria should be used for this anal-
ysis [31,51]. In addition, the selection of criteria should also be based on the availability
of data. Rainfall, surface runoff, elevation, distance to rivers, slope, soil type, land use,
lithology, road network density, building density, and population density criteria were
chosen for their potential importance in relation to flood hazards, as indicated in previous
research [52,53]. The process of creating a flood hazard map includes creating a geographic
database, integrating spatial data, performing the AHP method, validating the model using
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historical flood data, and producing the final flood map, as shown in Figure 2. Detailed
explanations of these criteria can be found in the following section.
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Figure 2. A flowchart for flood hazard mapping using the AHP method and three GPM IMERG
products.

2.3. Data Processing and Analysis

The description and data sources of all the selected criteria, excluding rainfall, are
presented in Table 1. The selection of these criteria was based on their significance in
relation to the flood hazard in the study area and the quality of the available datasets. The
data were processed using ArcGIS 10.6 and projected onto the Kertau RSO Malaya (m)
coordinate system to preserve the accuracy of the results and protect the integrity of the
study area.

Table 1. Data source and classification method.

Criteria Data Source Method Classification Method

Elevation

SRTM DEM—USGS
https://earthexplorer.usgs.gov/

(accessed on 11 January 2022)
SRTM DEM—USGS
SRTM DEM—USGS
SRTM DEM—USGS

An elevation map with a resolution of
30 m was prepared using the SRTM

DEM.
Manual

Slope
The slope map was created from the

SRTM DEM data using the raster
surface analysis in ArcGIS.

Manual

Distance to rivers

Stream networks were delineated using
the default stream generation in the soil

and water assessment tool (SWAT)
model. The Euclidian distance

approach based on the digital stream
was used to construct the distance to

rivers map.

Natural breaks

Drainage network
density

Calculated drainage density using the
detailed method (line density) in

ArcGIS.
Natural breaks

https://earthexplorer.usgs.gov/
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Table 1. Cont.

Criteria Data Source Method Classification Method

Surface runoff Surface runoff data from Tan et al.
[54].

A surface runoff distribution map
generated using the SWAT model. Manual

Soil type

FAO Digital Soil Map of the
World (DSMW),

http://www.fao.org (accessed on
14 January 2022)

Soil texture classifications were
assigned according to USDA standards.
The physical characteristics of soil were
determined using texture classifications

[55].

Manual

Land use (2020) Department of Town and Country
Planning (PLANMalaysia)

Interpreted land use according to the
hydrological parameter (soil roughness)

based on [56].
Manual

Lithology Department of Minerals and
Geosciences, Malaysia

Interpreted lithology class to
permeability level. Manual

Road network density National Geospatial Centre (PGN)

Road network analysis and calculating
density on a road network using the

kernel density method within ArcGIS
environment.

Quantile

Building density National Geospatial Centre (PGN)

Building point analysis and calculating
density on a road network using the

kernel density method within ArcGIS
environment.

Quantile

Population density National Geospatial Centre (PGN) Created a density map by district
within an ArcGIS environment. Quantile

2.4. Selection of Flooding Hazard Factors

The selection of flooding hazard factors and their significance varies among studies,
lacking consistency [57,58]. Researchers often choose flooding hazard factors based on
the specific physical and natural properties of the study area [59]. In the present study,
a comprehensive literature review was conducted to identify and select twelve flood
causative factors based on their relevance and significance, as reported in previous research.
In addition, the availability of geospatial data is also a major consideration when deciding
the use of the factors or variables.

The ArcGIS platform was used to reclassify and rank all the selected criteria from 1 to
5, indicating a very low to a very high flood hazard. The cell sizes were set to minimum
units of 30 m × 30 m to capture as much detail as possible on the ground. All the created
layers are illustrated in Figure 3a–k. The specific details of each layer are discussed in the
following subsections.

http://www.fao.org
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2.4.1. Meteorological Data
Rain Gauge Data

Daily observed rainfall data from 25 rain gauges, as shown in Figure 1, for 2014,
2017, and 2020 were collected from Malaysian Meteorological Department (MMD). The
rain gauges were distributed across the KRB, with more rain gauges installed in the
highly populated areas in the downstream part of the KRB. We generated annual rainfall
distribution maps using the inverse distance weighted (IDW) interpolation technique in
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ArcGIS 10.6. Utilizing a statistical spatial correlation of variables, IDW can predict values
at unknown places based on those at known locations [60]. It is well-accepted as one of the
most reliable interpolations techniques in rainfall data interpolation.

Satellite Datasets

The GPM IMERG products have full global coverage (60◦ S~60◦ N) [37], with spa-
tial resolution of 0.1◦ × 0.1◦ and temporal resolution of 30 min. All three different
products, (1) IMERG-Early Run (IMERG-E) available with a latency of 4 h, (2) IMERG-
Late Run (IMERG-L) available after 12 h of latency, and (3) IMERG-Final Run (IMERG-
F), a research product with a latency of 3.5 months [61], were used in flood hazard
mapping. The GPM IMERG products can be accessed and downloaded from https:
//pmm.nasa.gov/dataaccess/downloads/gpm (accessed on 16 January 2022) in NetCDF-4
file format. Annual precipitation data were downloaded and imported into ArcGIS 10.6
using the multidimensional function. The downloaded global precipitation measurement
integrated multisatellite retrievals for GPM (GPM IMERG) dataset were reprojected to the
Kertau RSO Malaya Meters coordinate system. NetCDF files are widely used for storing
multidimensional scientific data, including remote sensing datasets, such as IMERG GPM.
To achieve a consistent resolution, the GPM IMERG products were resampled to a 30 m
resolution using the bilinear interpolation (BL) method, as recommended by Ulloa et al. [62],
who applied the same approach to resample the TRMM 3B43V7 product due to its simplic-
ity. It has been recognized as a common technique to resample SPPs before performing the
AHP method [63–65]. However, bilinear interpolation may lead to the smoothing of the
precipitation field, potentially reducing the precision of the estimates. The effectiveness of
the resampling procedure was evaluated by comparing the resampled IMERG data to the
original data using general statistical metrics, such as the correlation coefficient (CC), root
mean square error (RMSE), and relative bias (RB) [36,66–68]. Next, 100 points were created
randomly and then compared between resampled IMERG data and the original data. The
point-to-grid approach was used to compare GPM IMERG and rain gauges, as most grids
were only covered by a single rain gauge [69]. The equations of the statistical metrics are
shown as follows:

CC =
∑n

i=1 (Oi −O)
(

Si − S
)

√
∑n

i=1

(
Oi −O )2.

√
∑n

i=1

(
Si − S

)2
(1)

RMSE =

√
∑n

i=1(Oi − Si)
2

n
(2)

RB =
∑n

i=1(Si −Oi)

∑n
i=1 Oi

(100) (3)

These metrics are derived using the original IMERG (Oi), resampled IMREG (Si), and
the number of samples (n). Between −1 and 1, the CC measures the linear relationship
between two variables. Strong correlations are shown by values towards 1; weak corre-
lations are denoted by values nearer to 0. To calculate the root mean squared error, the
errors’ standard deviations were averaged. The systematic bias between the resampled
IMERG data and the original data were evaluated using the relative bias (RB), with the
RB represented as a percentage. Resampling operations inherently involve transforming
data from one spatial resolution to another, which may lead to the loss or alteration of
specific spatial information and cause uncertainties in the final outputs [70]. To further
investigate the resampling effects, three resampling techniques, nearest neighbor, bilinear
interpolation, and cubic convolution, were used to resample the GPM IMERG-F product to
produce the 2014 flood for comparison with the gauge-generated FHI map and historical
observed flood events.

https://pmm.nasa.gov/dataaccess/downloads/gpm
https://pmm.nasa.gov/dataaccess/downloads/gpm
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2.4.2. Surface Runoff

Flooding often occurs due to increases in surface runoff, which can contribute to
higher flood peaks [71,72]. According to Pradhan et al. [73], floods in Malaysia are caused
by monsoons or convective rains, resulting in high surface runoff. The surface runoff data
used in this study were derived from the soil and water assessment tool (SWAT) model
developed by Tan et al. [54]. A river network was integrated into the 90 m digital elevation
model (DEM) using the “burn-in” method for more accurate basin delineation. The model
performance in terms of monthly scale simulation at the Jambatan Guillemard Bridge is
rated as “very good” for both the calibration (R2 = 0.84 and NSE = 0.72) and validation
(R2 = 0.84 and NSE = 0.63) periods. Overall, surface runoff in the KRB ranges from 37.0 to
155.0 mm/year per subbasin, as shown in Figure 3a.

2.4.3. Elevation

Water flow and surface accumulation are both influenced by elevation because of to-
pographic variations [74]. Compared to higher altitudes, which are less likely to flood [75],
lower altitudes have a greater potential for runoff and faster water flow [76]. In this study,
elevation was determined using the freely available SRTM DEM with a resolution of 30 m.
Based on mean elevation, the study region was divided into five primary topographic ele-
vation classes [77]: (1) low-lying (15 m above sea level), (2) rolling (16–30 m), (3) undulating
(31–75 m), (4) hilly (76–300 m), and (5) mountainous (>301 m). As shown in Figure 3b, the
KRB’s elevation spans from 0 to 2187 m above sea level. The highest peak in the study area,
located on the border between Kelantan and Pahang in the southeast, reaches an elevation
of over 2000 m. The lowest point in the region, found in the northern part of the KRB, is
below 15 m in elevation.

2.4.4. Slope

A slope with a low gradient will lead to water accumulation and slow infiltration,
which can increase the risk of flooding [78,79] Both runoff flow and vertical percolation
are influenced by the slope of the terrain [32]. In the KRB, the slope ranged from 2 to
74.30 (see Figure 3c) and was classified into six levels: nearly flat (0–3), gently sloping
(3–8), sloping (8–15), moderately steep (15–30), and extremely severe (>30), as proposed by
Rahmati et al. [32]. The class with the smallest slope range was assigned the highest weight
because of the relatively flat terrain, while the class with the largest slope range was given
the lowest weight due to its higher runoff potential.

2.4.5. Distance to Rivers

Distance to a river is one factor that can contribute to the risk of flooding. When a river
is close to an area, there is a higher chance that the area will be affected by floods during
heavy rain or when the river overflows its banks [58,59]. Areas located close to rivers are
known as a higher flood risk region because the floodwaters can reach them more quickly.
The thematic map generated using ArcMap 10.6 was divided into five categories of 200 m,
500 m, 1000 m, 2000 m, and more than 2000 m (Figure 3d).

2.4.6. Drainage Density

Drainage density refers to the concentration of stream channels in each area. It is
typically measured in terms of the number of feet of stream channel per square foot of
land [80,81]. As peak flow is affected by drainage density, it is a crucial factor in predicting
flood risk [82]. The stream network of the watershed was extracted from DEM using the
auto-delineation function in SWAT, with the threshold of 10,000 ha. Then, the drainage
density map of the KRB area was prepared using the line density tool in ArcGIS, as
indicated in Table 1. The relationship between flooding risk and drainage density is such
that as drainage density increases, the risk of flooding decreases, and as drainage density
decreases, the risk of flooding increases [83]. The drainage density in the region ranges
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from 0.06 km/km2 to 0.72 km/km2 and has been categorized into five groups, as shown in
Figure 3e.

2.4.7. Soil Type

The Hydrologic Soil Groups (HSGs) established by the United States Department of
Agriculture (USDA) categorize soil into four groups: A, B, C, and D. These HSGs serve as
a vital tool for hydrological assessments, particularly in the evaluation of soil infiltration
and runoff characteristics. This classification is based on the infiltration rate of each soil
texture (Table 2). To assess the amount of infiltration occurring in a watershed, soil texture
information is used [84,85].

Table 2. USDA Hydrologic Soil Group (HSG) classification according to soil properties.

Hydrological Soil
Group Type of Soil Runoff

Potential
Infiltration Rate

(mm/h)

A Sand, loamy sand, or sandy loam Low >7.5
B Loam, silt loam, or silt Moderate 3.8–7.5
C Sandy clay loam Moderate 1.3–3.8

D Clay loam, silty clay loam, sandy
clay, silty clay, or clay High <1.3

2.4.8. Land Use

In regions where precipitation events impact surface runoff and erosion, land use plays
a crucial role in flood management [86]. As flow is inversely proportional to Manning’s
n roughness coefficient [87], lower n values correspond to more discharge. Flood-prone
locations may be associated with lower Manning’s n values using this strategy. The
Manning values of the research region were derived from [88,89]. This analysis categorized
land use into five categories (Table 3). Figure 3g demonstrates the land use distribution of
these categories across the KRB.

Table 3. Manning roughness coefficients applied to the Kelantan River Basin.

Description Manning Roughness
Coefficient Source

Water body 0.030 [82]
Built area (urbanization, residential,

industrial, commercial, infrastructure) 0.013 [81]

Agriculture 0.035 [81]
Road 0.016 [82]

Forest, open space 0.100 [81]

2.4.9. Lithology

Runoff and infiltration are impacted by the porosity and permeability of soil and
rock [32,39]. Four categories of rocks may be used to roughly classify the region’s geology:
unconsolidated sediments are the first type of rock, followed by extrusive (volcanic) rocks,
sedimentary rocks, and granitic rocks (Table 4). Figure 3h shows that igneous rocks may be
found along the study’s west and east borders as well as in the middle area. Igneous rocks
are found at the west and east borders, as well as in the middle of the study area.
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Table 4. The descriptions of lithology classes in the KRB.

Lithology Class Permeability Level

Unconsolidated deposits Clay, silt, sand (mainly marine), gravel High

Sedimentary rocks
Shale, sandstone, conglomerate, mudstone, siltstone,

limestone/marble, metasandstone, phyllite, slate,
ignimbrite

Moderate

Metamorphic rocks Hornfels or calc-silicates facies, schist, and gneiss Low
Igneous rocks Vein quartz, acid, intermediate, basic, and ultrabasic Very low

2.4.10. Road Network Density

Impervious surfaces, as defined by the US Geological Survey (USGS), are hard areas
that prevent water from penetrating the earth. These surfaces, which include roads, pave-
ments [90,91], and parking lots, can increase the rate of surface runoff by blocking water
from infiltrating the ground [67,68]. For this study, the road network density is categorized
into five classes, as shown in Figure 3i.

2.4.11. Building Density

As building density, or the number of buildings per unit area, increases, so does
the risk of flood disasters [92,93]. A higher building density results in less open space
for water to infiltrate into the ground or be absorbed by vegetation, leading to increased
surface runoff and flood risks. Furthermore, buildings can obstruct or redirect the flow of
water [85,94], leading to increased flood risks in some areas and reduced risks in others.
For this study, building density is categorized into five classes, as shown in Figure 3j. Most
of the high building density areas can be found in Kota Bharu, which is in the downstream
part of the basin, and in Kuala Krai in the middle part of the basin, which is close to the
streamflow station.

2.4.12. Population Density

The risk of flooding tends to increase as the population grows in a particular area [95].
This is because the more people there are in an area, the more exposed the area is to
flood risks. Similarly, areas with a higher population density tend to have a higher risk of
flooding, as there are more people living in a smaller space. This can disproportionately
impact residents living in flood-prone locations, who may be burdened because of high
population density. Furthermore, growth in population can also impact the amount of
solid waste and rubbish that is discarded in drainage systems, which can exacerbate the
frequency and intensity of floods if the expansion is uncontrolled or poorly planned [96].
According to this study, population density by district ranged from 14.5 to 1551.5 people
per km2, with the city of Kota Bharu in the north of KRB having the most densely populated
area, as shown in Figure 3k.

2.5. Assigned Weights of Criterion

The data layers described in Section 2.4 were converted into the raster format to allow
the data to be analyzed in a consistent and standardized way. After the data format conver-
sion, it was necessary to reclassify them into five comparable classes. The reclassification
process in this study involved creating a reclassification table that considered the effects of
different factors on floods. The detailed information regarding these factors is summarized
in Table 5. In order to provide a more descriptive analysis, ratings were assigned to the
classes within each thematic layer based on their relative importance for flood hazard,
which are very high risk (5), high risk (4), moderate risk (3), low risk (2), and very low risk
(1). These ratings were determined by incorporating expert knowledge and conducting a
comprehensive literature review to ensure that the reclassification accurately reflected the
significance of each factor in contributing to flood hazards. Once the reclassification table
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was defined, it was applied to the input raster to generate the reclassified output raster
using the reclassify tool within the spatial analyst extension in ArcGIS.

Table 5. Classes of the criteria and their rating.

Criteria Rating
Rainfall (mm/day) 1 2 3 4 5

Rain gauge (2014) 1492.0–2455.0 2455.1–3037.9 3038–3430.8 3430.9–3899.6 3899.7–4723.2
IMERG-E (2014) 2546.5–2858.1 2858.2–3086.7 3086.8–3315.3 3315.4–3668.5 3668.6–4312.6
IMERG-L (2014) 2406.8–2712.3 2712.4–2985.6 2985.7–3299.2 3299.3–3717.3 3717.4–4456.9
IMERG-F (2014) 2870.4–3124.8 3124.9–3312 3312.1–3499.2 3499.3–3748.8 3748.9–4094.4

Rain gauge (2017) 1889.7–2676.8 2676.9–2997.4 2997.5–3250 3250.1–3628.9 3629–4367.4
IMERG-E (2017) 2306.9–2735.7 2735.8–2928 2928.1–3147.9 3148–3389.8 3389.9–3708.6
IMERG-L (2017) 2149.4–2616.2 2616.3–2869.1 2869.2–3135 3135.1–3407.3 3407.4–3802.9
IMERG-F (2017) 2416.8–2716.9 2717–2953 2953.1–3194 3194.1–3420.2 3420.3–3671.1

Rain gauge (2020) 1937–2452.4 2452.5–2761.7 2761.8–3118.5 3118.6–3499.1 3499.2–3959
IMERG-E (2020 2104.3–2428.7 2428.8–2617.1 2617.2–2795 2795.1–3014.7 3014.8–3438.6
IMERG-L (2020) 2349–2596.8 2596.9–2771.2 2771.3–2945.7 2945.8–3161.4 3161.5–3519.4
IMERG-F (2020) 2621.8–2791.9 2792–2922 2922.1–3052.1 3052.2–3215.5 3215.6–3472.3

Elevation (m) 0–20 20–50 50–100 100–150 >300
Surface runoff 36.9–53.5 54.0–65.7 67.2–80.8 82.7–113.7 129.1–154.9

Slope (◦C) 25–74.3 5–25 5–15 3-5 0–3
Distance to rivers (m) 0–200 200–500 500–1000 1000–2000 >2000

Drainage density
(km/sq.km) 0.00018–0.082 0.083–0.15 0.16–0.3 0.31–0.53 0.54–0.72

Soil type Sandy loam Silty clay Sandy clay loam Silty clay Clay

Land use Forest, open
space

Infrastructure,
road Agriculture

Built area
(urbanization,

residential,
industrial,

commercial)

Water body

Lithology Igneous
rocks

Intrusive
igneous

Metamorphic
rocks

Sedimentary
rocks

Unconsolidated
deposits

Road network density 0 0.01–0.09 0.1–0.14 0.15–0.25 0.26–4.51
Building density 0 0.01–1.02 1.03–3.06 3.07–13.25 13.26–259.91

Population density (per
km2) 0 0–14.5 14.5–56.7 56.8–418.3 418.4–1551.5

2.6. Application of Analytical Hierarchy Process (AHP)

AHP is a method for making decisions by breaking down a complex problem into
smaller components and using expert judgment to assign relative importance to each
element in the hierarchy. This approach relies on expert opinion to identify the most
accurate weightings for the criteria in the decision-making process, which ultimately
determine the overall weightings for each factor.

A total of 15 local experts, including specialists in hydrology, civil and environmen-
tal engineering, and geology, and officers from National Disaster Management Agency
(NADMA), were interviewed. The number and distribution of the experts are listed in
Table 6. The purpose of the questionnaire was to collect data and insights from these
experts to guide the AHP decision-making procedure. Experts or decision-makers were
asked to compare each factor with other factors. The purpose was to determine the relative
importance or preference between the two elements being compared. For example, if there
were three factors of A, B, and C, pairwise comparisons would involve comparing A with B,
A with C, and B with C. During the pairwise comparisons, decision makers assigned values
on Saaty’s 1–9 scale to express the relative importance or preference. The scale provides
nine values representing the degrees of importance or preference, ranging from 1 (equal
importance) to 9 (extreme importance) [97].



Water 2023, 15, 2195 13 of 29

Table 6. The distribution of responses.

Expert Specialists No. of Experts Percentage (%)

Hydrology 4 26.7
Civil and environmental engineering 5 33.3

Geology 1 6.7
Urban and regional planning 3 20.0

The National Disaster Management
Agency (NADMA) 2 13.3

Total 15 100

Then, a (12 × 12) pairwise comparison matrix for the AHP-based flood hazard
mapping was created (Table 7). It is a square matrix where the rows and columns represent
the criteria or alternatives being compared, and the values in the matrix represent the
relative importance assigned through pairwise comparisons. The AHP technique takes the
results of the pairwise comparisons as input, then employs those results to assign relative
weights to each criterion. Checking the consistency of judgments are a consistency ratio
(CR) and a consistency index (CI), which are computed using Equation (4):

CR =
CI

RCI
(4)

where RI is the random consistency index, and CI is the consistency index, as expressed in
Equation (5):

CI =
λmax − n

n− 1
(5)

where λmax is the principal eigenvector computed using eigenvector technique; and n is
number of criteria. To proceed with the analysis, a CR of 10% or less is required. A CR
score of zero indicates that the consistency of the pairwise comparisons is satisfactory and
that the resulting priorities are reliable.

Table 7. Normalized AHP pairwise comparison matrix.
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Rainfall 0.16 0.196
Surface
runoff 0.16 0.18 0.176

Elevation 0.16 0.18 0.09 0.080
Slope 0.05 0.04 0.09 0.05 0.055

Distance
to rivers 0.03 0.04 0.09 0.05 0.05 0.062

Drainage
density 0.03 0.04 0.09 0.05 0.05 0.05 0.067

Soil type 0.16 0.04 0.09 0.05 0.15 0.05 0.08 0.111
Lithology 0.02 0.04 0.02 0.01 0.01 0.01 0.03 0.02 0.018
Land use 0.16 0.18 0.09 0.05 0.05 0.05 0.08 0.06 0.09 0.086

Road
density 0.02 0.04 0.09 0.05 0.01 0.01 0.02 0.06 0.02 0.03 0.035

Building
density 0.03 0.04 0.09 0.14 0.05 0.05 0.02 0.06 0.09 0.03 0.04 0.057

Population
density 0.03 0.04 0.09 0.14 0.05 0.05 0.02 0.06 0.09 0.03 0.04 0.04 0.057
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AHP Normalized Pairwise Comparison

Table 7 demonstrates the rankings of the thematic layers and the criteria weightings
that were obtained through the AHP analysis in this study. Based on the AHP analysis
and ranking values, the weightings assigned to the flood components were determined to
be objective, as indicated by a consistency ratio (CR) of 0.09. According to Saaty [97], the
consistency ratio (CR) can be used to evaluate the consistency of the weightings assigned
by decision makers. A CR value less than 0.1 is desirable, as it indicates a low likelihood
that the weightings were assigned randomly. According to the weight values, rainfall was
deemed the most significant indicator, with a value of 0.196, followed by surface runoff,
elevation, slope, drainage density, distance to rivers, soil type, lithology, land use, road
density, building density, and population density, whose relative weights were 0.176, 0.080,
0.055, 0.062, 0.067, 0.111, 0.018, 0.086, 0.035, 0.057, and 0.057 (Table 7), respectively.

2.7. Sensitivity Analysis

AHP may introduce a subjective element in the assignment of weights to the criteria
used in decision-making [98]. To address this issue, sensitivity analysis can be used to
evaluate the robustness of the final rankings or decisions and identify potential sources of
bias in the AHP method. The sensitivity analysis of the rankings or decisions to change
criterion weights, which represent subjective judgments, is particularly important [99].
The sensitivity analysis involves examining the effect of small changes in weight values
on the rankings or decisions. If the rankings remain unchanged, errors in the estimation
of the weights may be insignificant, but if the rankings are sensitive to changes in one or
more weights, the accuracy of the weights should be carefully examined. The Stillwell
ranking method was employed to validate and examine the sensitivity of results to flood
hazard [100]. This approach utilizes two functions as its basis and were defined using the
rank sum weight function:

Wj(RS) = (n− rj + 1)/∑n
k=1(n− rk + 1) = 2(n + 1− rj/n(n + 1)) (6)

and reciprocal rank function:

Wj(RR) =
1
rj

/∑n
k=1

(
1
rk

)
(7)

where Wj is the normalized weight for the jth criterion, n is the number of criteria under
consideration (k = 1, 2 . . . n), and rj is the rank position of the criterion.

2.8. Flood Hazard Index

To calculate the Flood Hazard Index (FHI), a raster calculator was used to combine
the different criteria, taking into account their relative weights. The FHI reflects the degree
of impact of each component on the risk of flooding, based on the significance of its effect.

To create a flood hazard map, a weighted linear combination (WLC) technique was
used to derive the normalized weights of all the data from the pairwise comparison matrix.
The constructed method incorporates an FHI into the multicriteria analysis, as shown
below:

FHI = ∑n
i=1 Weight× Thematic Layer (8)

The WLC technique is commonly used in flood hazard mapping due to its compat-
ibility with GIS software that has overlay capabilities, allowing for the straightforward
application of Equation (8) in the analysis. However, it is important to note that the WLC
technique is based on two underlying assumptions [101,102]. The first assumption is
linearity, which assumes that the benefit derived from increasing the input of a criterion
remains constant and independent of the problem’s characteristics. In other words, the
relationship between the criterion and the overall hazard is assumed to be linear. The
second assumption is additivity, which assumes that the selected variables or criteria are
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independent of each other. This implies that the criteria do not interact or depend on one
another when contributing to the overall hazard assessment. While the WLC technique
offers simplicity and compatibility with GIS software, it is essential to recognize that the
linearity and additivity assumptions may not always hold true in real-world scenarios. The
relationships between criteria and their contributions to the overall hazard can be nonlinear,
and criteria may exhibit interdependencies.

Validation and uncertainty analysis are necessary for assessing the reliability of the
generated flood hazard maps [19]. Two techniques, a visual comparison and the receiver
operating characteristic (ROC) curve, were employed to determine the reliability of the
flood hazard maps. A visual comparison was performed using the ArcGIS’s “extract by
mask” function, where the flood hazard maps were compared with the previous flood
records. A total of 102 historical floods for the years 2012–2020 were recorded in the flood
reports prepared by the Department of Irrigation and Drainage. These historical flood
events were rasterized into a map layer format and then overlaid with the flood hazard
maps. Then, we calculated the overlapping percentages of “very high” and “high” risk
areas generated from the MCDM model with the previous flood events, where 60% of
matching indicates the model is acceptable [103]. The second technique was a numerical
evaluation based on the ROC curve by considering the area under curve (AUC) value,
which has been utilized in numerous flood-related studies [82,83]. The ROC curve between
the flood hazard map and actual flood events was calculated using the ArcSDM toolkit.
In the ROC analysis, the AUC value ranges from 0.5 to 1.0 [104–106]. The accuracy of the
model improves as its AUC values increase. An AUC value of 0.5 or lower signifies that
the model is appropriate for the study, whereas an AUC value approaching 1 demonstrates
the highest level of accuracy.

3. Results
3.1. AHP Sensitivity Analysis

The sensitivity analysis was used to determine how changing the weight values would
affect the parameters. Table 8 shows that the rankings of the factors remained relatively
stable even when the weight values were altered. The results show that there are no
significant changes in the factor ranking even if the values of the weights are changed. This
finding suggests that the effect of changes in weight values on the rankings is minimal,
validating the accuracy of the final maps. The approach used in this investigation is similar
to that used by Souissi et al. [107].

Table 8. Weights using different methods.

Criteria

Saaty 1980 [97] Ranking Methods [100]

Pairwise Rank Sum (RS) Rank Reciprocal (RR)

Straight Rank AHP (n − rj + 1)/∑(n − rk + 1) (1/rj)/∑(1/rk)

Rainfall 1 0.196 0.15 0.32
Runoff 2 0.176 0.13 0.16

Elevation 5 0.080 0.10 0.06
Slope 9 0.055 0.05 0.04

Distance to rivers 7 0.062 0.07 0.05
Drainage density 6 0.067 0.09 0.05

Soil types 3 0.111 0.12 0.11
Lithology 11 0.018 0.02 0.03
Land use 4 0.086 0.11 0.08

Road density 10 0.035 0.04 0.03
Building density 8 0.057 0.06 0.04

Population 8 0.057 0.06 0.04
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3.2. Statistical Analysis on the Original and Resampled Data of IMERG

Figure 4 presents the statistical analysis comparing the original and resampled IMERG
data in the study area. The results demonstrate a strong correlation between the two
datasets, with a correlation coefficient above 0.8. The RMSE values of GPM IMERG-E, -L,
and -F products ranged from 1.00 to 7.51 mm/month, and the RB values ranged from 1 to
7%. This demonstrates that the resampled data are a reliable representation of the original
data and that there is a strong relationship between the two sets of data. Furthermore, a
value of relative bias almost close to 0 implies that the resampled data are unbiased and
offer an accurate representation of the original data [108].
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The 2014 FHI maps generated from the gauges and the IMERG-F product resampled
using the nearest neighbor, bilinear, and cubic convolution methods are shown in Figure 5.
Upon a visual comparison, no notable variations were found for the generated FHI maps
using the three resampling techniques (Table 9), except for the very “high risk” area in
the lower part of the basin using the nearest neighbor method. This is consistent with
Sliwinski et al. [108], who reported there is no significant difference between the nearest
neighbor, bilinear, and cubic methods. Tolche et al. [63] utilized the bilinear method to
resample the GPM IMERG-v5 precipitation product to a spatial resolution of 250 m to study
the vulnerability of land degradation in the Wabe Shebele River Basin in Ethiopia. As the
bilinear method resulted in the closest results to the gauge-generated flood hazard map in
identifying the flood locations (Table 9) and is a more common resampling technique in the
AHP method, it was selected for FHI mapping in the next steps.
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Table 9. Number of historical flood events under different flood hazard levels generated by rain
gauges and three resampling techniques.

Level
No. of Flood Events

Rain Gauge Nearest
Neighbor

Bilinear
Interpolation

Cubic
Convolution

Very low 0 0 0 0
Low 2 1 2 2

Moderate 9 13 8 11
High 71 79 71 70

Very high 20 9 21 19

3.3. Spatial Pattern of the IMERG Product and Rain Gauges

The spatial pattern of the total annual precipitation in 2014, 2017, and 2020 of the
gauges and three IMERG products is shown in Figure 6. In general, all three IMERG
products captured the spatial distribution of the annual precipitation quite well. Regions
with a higher precipitation amount are generally found in the northern and eastern regions
of the KRB, while lower precipitation is distributed in the western and southern regions.
Particularly, all IMERG products capture a very distinct pattern in the area of the South
China Sea, represented by slightly higher precipitation totals than the inland areas. These
results are similar to those reported by Getirana [109] in Brazil and Tan et al. [110] in
Malaysia.
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All three IMERG products correlated moderately with the rain gauges in their annual
precipitation estimations, with the CC values ranging from 0.61 to 0.63 and the RMSE
values from 12.93 to 13.69 mm/day, as listed in Table 10. A moderate correlation in terms of
the accuracy and reliability of the products indicates a reasonably good level of agreement
between the IMERG data and the reference data used for comparison. The strength of
the correlation can vary depending on factors such as regional characteristics, including
topography and rainfall intensity [25]. Similar findings were reported by Anjum et al. [111],
who advised against using IMERG products in mountainous regions due to the elevated
uncertainty in daily precipitation estimates, particularly for light rainfall events.

Table 10. Results of CC, RMSE, and ME for annual precipitation comparison between IMERG
products and rain gauges across the KRB.

Year Product CC RMSE (mm/day) RB (%)

2014
IMERG-E 0.63 11.50 4.93
IMERG-L 0.65 21.50 3.66
IMERG-F 0.62 11.75 10.73

2017
IMERG-E 0.48 28.28 −2.33
IMERG-L 0.50 14.53 −3.21
IMERG-F 0.49 23.03 −2.03

2020
IMERG-E 0.40 11.50 4.59
IMERG-L 0.38 6.98 2.78
IMERG-F 0.30 9.75 7.02

All the IMERG products overestimated the annual precipitation of the KRB in 2014
and 2020, ranging from 2.78% to 7.02%, while an underestimation of the annual precip-
itation was found by all three IMERG products in 2017 from 2.03 to 3.21%; IMERG–L
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underestimated the daily precipitation measured using rain gauges by 10.42 to 17.92%,
while IMERG-F showed an overestimation of 7.14%. Similarly, Tan et al. [112] also found
GPM IMERG products are able to detect 70% of precipitation and nonprecipitation days,
where the detection capability is even higher during flood periods of up to 90%.

3.4. Validation of Flood Hazard Index

Figure 7 demonstrates ROC curves for a comparison between the actual flood events
and flood hazard maps. In general, all flood hazard maps that incorporated the GPM
IMERG products performed very well in capturing the actual flooding area, with AUC
values of more than 0.90 for the three evaluated flood years. It has been shown that
utilizing IMERG as the rainfall input results in accurate flood hazard mapping. The
findings indicate that the IMERG products can be used for flood hazard mapping, although
they underestimated heavy rainfall during the 2014 flood in the KRB by 4 to 12%, as
reported by Tan et al. [110].
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The flood hazard maps developed were further confirmed by actual flood events
(Table 11). The results indicate that the flood hazard maps and historical data are in good
agreement. According to Table 11, most of the recorded flood events are found in high
and very high flood hazard regions, ranging from 68 to 78 events and 16 to 29 events,
respectively. Subsequently, areas in the moderate class demonstrated 7 to 13 flood events,
whereas areas in the low and very low class showed 1 to 2 and 0 flood events, respectively.
Almost all the recorded historical floods took place in the moderate to very high flood
hazard areas, with only 1–2% of them in areas of low flood hazard.
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Table 11. Percentage of area and number of historical flood events for each hazard level.

Year Product

FHI Level

Very Low Low Moderate High Very High

% No. of
Events % No. of

Events % No. of
Events % No. of

Events % No. of
Events

2014

Rain gauge 1.5 0 8.1 2 30.5 9 51.8 71 8.0 20
IMERG-E 1.7 0 7.2 2 26.2 9 48.8 70 16.0 21
IMERG-L 1.7 0 7.1 2 26.2 8 49.1 73 15.9 19
IMERG-F 1.7 0 7.8 2 26.2 9 47.8 72 16.5 22

2017

Rain gauge 1.2 0 8.9 1 29.6 7 50.9 71 9.5 23
IMERG-E 1.0 0 11.7 1 27.9 13 45.9 70 13.5 18
IMERG-L 1.2 0 11.6 1 27.7 12 45.9 69 13.6 20
IMERG-F 1.2 0 10.7 2 26.3 11 44.1 68 17.7 21

2020

Rain gauge 0.9 0 11.1 2 26.5 13 43.5 70 18.1 17
IMERG-E 1.3 0 9.0 2 27.2 9 50.3 73 12.1 18
IMERG-L 0.7 0 8.0 1 26.6 8 49.3 78 15.5 16
IMERG-F 1.9 0 8.1 2 25.9 13 49.4 67 14.7 20

3.5. Flood Hazard Index Mapping

The flood hazard maps generated by the rain gauges and GPM IMERG products
are shown in Figure 8. With reference to Figure 8 and Table 11, the FHI distribution
using the rain gauges and IMERG does not show significant differences in terms of the
number of events at the FHI level of very low, low, moderate, and high. Interestingly, the
coverage of the very high flood hazard area tended to be slightly higher under the IMERG-
F-simulated FHI maps, particularly during 2014 and 2017. One of the possible explanations
might be due to the overestimation of the daily precipitation by IMERG-F in the KRB,
while the other two IMERG products tended to underestimate daily precipitation [110].
Analysis of the historical flood data consistently reveals that flood prone areas exhibit
common characteristics, including low elevation and proximity to rivers. In the case of
the neighboring areas of Tanah Merah and Jeli, these regions are predominantly classified
as “very high” due to their flat topography, low elevation, and close proximity to the
Galas and Lebir Rivers. This underscores the suitability of using all IMERG products
for the generation of hazard index maps. However, it is important to note that there are
notable differences in the distribution of the FHI between the rain gauge and IMERG data,
particularly in the western and southern regions of the KRB.

The relative proportion of the flood hazard areas for all the five risk classes was
calculated and is summarized in Figure 9. On average, the moderate to very high hazard
class for KRB contributed a total area of 4778.9 km2, equivalent to 37.7% of the total area.
The results showed that most of the areas in the very low and low classes were in varying
morphological conditions between undulating hills and forests located in the southern part
of KRB, which represented about 57.7% (7357.9 km2) of the total area.
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Figure 10 shows that the town of Kota Bharu is situated in a very high-risk flooding
area. This is due to the fact that Kota Bharu is completely exposed to the potential of
monsoon floods occurring due to its proximity to the Kelantan River and its downstream
location at the river’s mouth, which goes to the South China Sea. Another reason contribut-
ing to the monsoon flood disaster might due to the rapid development of Kota Bharu [113],
with its more impervious surface than other regions. The Kuala Kerai district has more
high and very high hazard areas, followed by the Machang, Tanah Merah, and Kota Bharu
districts. Kuala Krai is the second largest district in Kelantan after Gua Musang. The two
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main subdistricts of Kuala Krai, Manek Urai and Dabong, are often exposed to floods [114].
In 2014, the Kuala Kerai district experienced a major flood due to the northeast monsoon
that brought heavy rain. In addition, the confluence of the Galas and Lebir Rivers in that
region also caused flooding [115].

Water 2023, 15, x FOR PEER REVIEW 22 of 29 
 

 

 
Figure 10. Flood Hazard Index map in the Kuala Kerai district simulated using IMERG-F in 2014. 

4. Discussion 
To effectively address the flood problem, it is crucial to develop a more detailed flood 

map by incorporating the GIS-based AHP method with the GPM IMERG product as an 
input for rainfall data [88,89]. Some studies have reported the limitations of IMERG prod-
ucts, such as their inability to accurately depict rapidly changing daily precipitation and 
the lack of reliable ground-based gauge rainfall information in certain areas [9,110,116]. 
Additionally, a high variability in precipitation extremes in IMERG grid boxes results in 
large spatial sampling errors when compared to individual precipitation measurements 
[117], and the downscaled precipitation products can have inherent systematic biases 
[118]. Topographic complexity, as noted by Sharifi et al. [119], Yang et al. [120], and Hirpa 
et al. [121], also adds to this challenge. The IMERG�s ability to detect rainfall events has 
moderate performance during validation, but its accuracy in flood hazard mapping is 
comparable to the rain gauge data, i.e., in terms of the differences in spatial patterns and 
total high-risk areas, as shown in Figures 8 and 9. The validation results showed that 
IMERG-E and IMERG-L performed slightly better in capturing precipitation patterns 
compared to the IMERG-F product. This finding is supported by other studies as well 
[45,122–124]. For example, Hou et al. [61] found that the IMERG-E and IMERG-L products 
that are designed for real-time applications, such as flood monitoring, water management, 
crop forecasting, and flood mapping, are useful for these purposes. This aligns with the 
findings of this study. 

As per the results presented in Table 10, it was observed that the IMERG products 
tended to overestimate precipitation in the years 2014 and 2020. Meanwhile, the IMERG 
products tended to underestimate precipitation in the year 2017. Ebrahimi et al. [66] 
pointed out that both moderate and heavy rainfalls may be difficult for satellite sensors to 
detect, which might result in the inadequate monitoring of extreme weather events. 
Downscaling and interpolating IMERG data might contribute to the errors present in the 
IMERG data [125]. In addition, the usage of different temporal resolutions (subdaily, 
daily, and monthly) and flood periods (from when to when) in the GPM IMERG products 

Figure 10. Flood Hazard Index map in the Kuala Kerai district simulated using IMERG-F in 2014.

4. Discussion

To effectively address the flood problem, it is crucial to develop a more detailed flood
map by incorporating the GIS-based AHP method with the GPM IMERG product as an in-
put for rainfall data [88,89]. Some studies have reported the limitations of IMERG products,
such as their inability to accurately depict rapidly changing daily precipitation and the lack
of reliable ground-based gauge rainfall information in certain areas [9,110,116]. Addition-
ally, a high variability in precipitation extremes in IMERG grid boxes results in large spatial
sampling errors when compared to individual precipitation measurements [117], and the
downscaled precipitation products can have inherent systematic biases [118]. Topographic
complexity, as noted by Sharifi et al. [119], Yang et al. [120], and Hirpa et al. [121], also adds
to this challenge. The IMERG’s ability to detect rainfall events has moderate performance
during validation, but its accuracy in flood hazard mapping is comparable to the rain
gauge data, i.e., in terms of the differences in spatial patterns and total high-risk areas, as
shown in Figures 8 and 9. The validation results showed that IMERG-E and IMERG-L
performed slightly better in capturing precipitation patterns compared to the IMERG-F
product. This finding is supported by other studies as well [45,122–124]. For example,
Hou et al. [61] found that the IMERG-E and IMERG-L products that are designed for
real-time applications, such as flood monitoring, water management, crop forecasting, and
flood mapping, are useful for these purposes. This aligns with the findings of this study.

As per the results presented in Table 10, it was observed that the IMERG products
tended to overestimate precipitation in the years 2014 and 2020. Meanwhile, the IMERG
products tended to underestimate precipitation in the year 2017. Ebrahimi et al. [66]
pointed out that both moderate and heavy rainfalls may be difficult for satellite sensors
to detect, which might result in the inadequate monitoring of extreme weather events.
Downscaling and interpolating IMERG data might contribute to the errors present in the
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IMERG data [125]. In addition, the usage of different temporal resolutions (subdaily, daily,
and monthly) and flood periods (from when to when) in the GPM IMERG products may also
influence the outputs. Therefore, future research should be carried out to establish efficient
bias–correction algorithms and to test the sensitivity of different temporal resolutions for
improving the entire flood hazard mapping framework.

When used as an input, IMERG can deliver good results when combined with other
factors in developing a flood hazard index map. This is proven by most of the recorded flood
events area falling within the high and very high-risk flood hazard areas simulated by all
three IMERG products. This is consistent with a prior study conducted by Parsian et al. [46],
who found IMERG can accurately identify flood risk areas in Pol-e Doktar with about
95% accuracy rate. However, please note that the AHP method requires all geospatial
data to be consistent and in the same resolution. Many GIS-based AHP studies have
utilized the simple bilinear resampling technique to resample the pixel values of SPPs to
a higher resolution [62–65], but resampling errors might occur, particularly in complex
topography and mountainous areas. The minimization of these errors using optimal
downscaling techniques, i.e., geographically weighted regression, and cubist and artificial
neural networks (ANNs) [126], before applying SPPs in the GIS-based AHP simulations
should be considered in the future.

Based on the flood hazard mapping results, it can be observed that the areas that
are mostly affected by floods are mainly distributed in the bottom and middle parts of
the KRB. This corresponds with the distribution of rainfall, as shown in Figure 6. Town
areas are more susceptible to flooding due to inadequate drainage systems that cannot
manage the increased runoff, resulting in a higher risk of flooding [127]. The distribution
pattern of hazard levels appeared to be significantly different between the upper and lower
parts of the KRB. Low land areas with an elevation less than 15 m are more vulnerable
to flooding. Low elevation and flat slope angles were among the factors that tended to
increase community exposure to flood hazards. The result is compatible with previous
studies, such as [77,113,128]. Flooding occurred in the low-lying areas of KRB and affected
the districts of Kota Bharu, Tanah Merah, and Kuala Kerai.

The FHI map also showed high and very high hazard class areas located along or near
rivers, where the distance from the river was <500 m. Most of the moderate, high, and
very high areas were located along the rivers. Pham et al. [129] found that the distance
to rivers is the key factor in predicting flash floods. As a result, the distance from rivers
was included as a crucial element in creating the FHI map. This highlights that the AHP
considers more than just rainfall, as other factors can also contribute to flooding.

5. Conclusions

This research attempts to assess the reliability of three GPM IMERG products in
tropical flood hazard mapping using the AHP method, focusing on the Kelantan River
Basin (KRB), Malaysia. Rainfall, surface runoff, elevation, drainage density, distance to
rivers, slope gradient, soil type, land use, lithology, road density, building density, and
population density were identified to be important factors affecting floods in the study
area. All these thematic layers were integrated with the IMERG products to generate flood
hazard maps for mitigation and planning purposes.

Compared to rain gauges, the GPM IMERG products are able to capture the spatial
variability of annual precipitation, where high precipitation regions are in the lower and
middle parts of the basin, near the sea, exhibiting the usefulness of alternative precipitation
information. However, the AHP requires all the layers to be in the same spatial resolution.
High correlations and low biases between the original and resampled GPM IMERG prod-
ucts show that the resampling technique has minimal impact on the outputs, but a more
comprehensive assessment should be conducted in the future to understand the influence
of different resampling techniques on flood hazard mapping.

Most of the recorded flood events fall in high and very high-risk flooding areas, as
simulated using the rain gauges and all three GPM IMERG products. This shows the
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GPM IMERG products have the potential to be used for tropical flood hazard mapping via
the GIS-based AHP method. Interestingly, IMERG-F tended to cover slightly bigger very
high-risk areas, particularly in 2014 and 2017. However, the ROC analysis showed all three
GPM IMERG products performed well in generating flood hazard maps, with AUC values
greater than 0.8.

Author Contributions: Conceptualization, M.L.T.; methodology, M.L.T. and N.S.; validation, N.S.;
formal analysis, M.L.T. and N.S.; resources, M.L.T.; data curation, M.L.T., M.H.P.R. and N.S.;
writing—original draft preparation, N.S.; writing—review and editing, M.L.T., Z.Z., F.Z., F.T., C.K.C.,
W.M.M.W.I. and M.H.P.R.; supervision, M.L.T. and W.M.M.W.I.; project administration, M.L.T.; fund-
ing acquisition, M.L.T. and F.T. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was funded by the Ministry of Higher Education Malaysia via the Long-Term
Research Grant Scheme (LRGS) project 2, grant number LRGS/1/2020/UKM-USM/01/6/2, which is
under the program of LRGS/1/2020/UKM/01/6.

Data Availability Statement: The flood hazard maps presented in this study are available on request
from the corresponding author. However, the raw data are not publicly available as the authors are
not the owners of the data and have no right to share the data.

Acknowledgments: Thanks to the Meteorological Department of Malaysia, Department of Irrigation
and Drainage Malaysia, PLANMalaysia, Department of Minerals and Geosciences Malaysia, and
National Geospatial Centre (PGN) for providing the data in this study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Jonkman, S.N. Global Perspectives on Loss of Human Life Caused by Floods. Nat. Hazards 2005, 34, 151–175. [CrossRef]
2. Cred, U.G. The Human Cost of Disasters: An Overview of the Last 20 Years 2000–2019; United Nations Office for Disaster Risk

Reduction: Geneva, Switzerland, 2020.
3. Bubeck, P.; Botzen, W.J.W.; Aerts, J.C.J.H. A Review of Risk Perceptions and Other Factors That Influence Flood Mitigation

Behavior. Risk Anal. 2012, 32, 1481–1495. [CrossRef]
4. Chapi, K.; Singh, V.P.; Shirzadi, A.; Shahabi, H.; Bui, D.T.; Pham, B.T.; Khosravi, K. A Novel Hybrid Artificial Intelligence

Approach for Flood Susceptibility Assessment. Environ. Model. Softw. 2017, 95, 229–245. [CrossRef]
5. Dung, N.B.; Long, N.Q.; An, D.T.; Minh, D.T. Multi-Geospatial Flood Hazard Modelling for a Large and Complex River Basin

with Data Sparsity: A Case Study of the Lam River Basin, Vietnam. Earth Syst. Environ. 2022, 6, 715–731. [CrossRef]
6. Majid, N.A.; Nazi, N.M.; Idris, N.D.M.; Taha, M.R. GIS-Based Livelihood Vulnerability Index Mapping of the Socioeconomy of

the Pekan Community. Sustainability 2019, 11, 6935. [CrossRef]
7. Ullah, K.; Zhang, J. GIS-Based Flood Hazard Mapping Using Relative Frequency Ratio Method: A Case Study of Panjkora River

Basin, Eastern Hindu Kush, Pakistan. PLoS ONE 2020, 15, e0229153. [CrossRef] [PubMed]
8. Seejata, K.; Yodying, A.; Chatsudarat, S.; Chidburee, P.; Mahavik, N.; Kongmuang, C.; Tantanee, S. Assessment of Flood Hazard

Using Geospatial Data and Frequency Ratio Model in Sukhothai Province, Thailand. In Proceedings of the 40th Asian Conference
on Remote Sensing, ACRS 2019: Progress of Remote Sensing Technology for Smart Future, Daejeon, Republic of Korea, 14–18
October 2019.

9. Costache, R.; Zaharia, L. Flash-Flood Potential Assessment and Mapping by Integrating the Weights-of-Evidence and Frequency
Ratio Statistical Methods in GIS Environment—Case Study: Bâsca Chiojdului River Catchment (Romania). J. Earth Syst. Sci. 2017,
126, 59. [CrossRef]

10. Nandi, A.; Mandal, A.; Wilson, M.; Smith, D. Flood Hazard Mapping in Jamaica Using Principal Component Analysis and
Logistic Regression. Environ. Earth Sci. 2016, 75, 465. [CrossRef]

11. Kalantar, B.; Ueda, N.; Saeidi, V.; Janizadeh, S.; Shabani, F.; Ahmadi, K.; Shabani, F. Deep Neural Network Utilizing Remote
Sensing Datasets for Flood Hazard Susceptibility Mapping in Brisbane, Australia. Remote Sens. 2021, 13, 2638. [CrossRef]

12. Rahmati, O.; Darabi, H.; Haghighi, A.T.; Stefanidis, S.; Kornejady, A.; Nalivan, O.A.; Bui, D.T. Urban Flood Hazard Modeling
Using Self-Organizing Map Neural Network. Water 2019, 11, 2370. [CrossRef]

13. Kabenge, M.; Elaru, J.; Wang, H.; Li, F. Characterizing Flood Hazard Risk in Data-Scarce Areas, Using a Remote Sensing and
GIS-Based Flood Hazard Index. Nat. Hazards 2017, 89, 1369–1387. [CrossRef]

14. Abu El-Magd, S.A. Flash Flood Hazard Mapping Using GIS and Bivariate Statistical Method at Wadi Bada’a, Gulf of Suez, Egypt.
J. Geosci. Environ. Prot. 2019, 7, 372–385. [CrossRef]

15. Kuenzer, C.; Guo, H.; Huth, J.; Leinenkugel, P.; Li, X.; Dech, S. Flood Mapping and Flood Dynamics of the Mekong Delta:
ENVISAT-ASAR-WSM Based Time Series Analyses. Remote Sens. 2013, 5, 687–715. [CrossRef]

https://doi.org/10.1007/s11069-004-8891-3
https://doi.org/10.1111/j.1539-6924.2011.01783.x
https://doi.org/10.1016/j.envsoft.2017.06.012
https://doi.org/10.1007/s41748-021-00215-8
https://doi.org/10.3390/su11246935
https://doi.org/10.1371/journal.pone.0229153
https://www.ncbi.nlm.nih.gov/pubmed/32210424
https://doi.org/10.1007/s12040-017-0828-9
https://doi.org/10.1007/s12665-016-5323-0
https://doi.org/10.3390/rs13132638
https://doi.org/10.3390/w11112370
https://doi.org/10.1007/s11069-017-3024-y
https://doi.org/10.4236/gep.2019.78025
https://doi.org/10.3390/rs5020687


Water 2023, 15, 2195 25 of 29

16. Sciance, M.B.; Nooner, S.L. Decadal Flood Trends in Bangladesh from Extensive Hydrographic Data. Nat. Hazards 2018, 90,
115–135. [CrossRef]

17. Sghaier, M.O.; Hammami, I.; Foucher, S.; Lepage, R. Flood Extent Mapping from Time-Series SAR Images Based on Texture
Analysis and Data Fusion. Remote Sens. 2018, 10, 237. [CrossRef]

18. Norallahi, M.; Seyed Kaboli, H. Urban Flood Hazard Mapping Using Machine Learning Models: GARP, RF, MaxEnt and NB. Nat.
Hazards 2021, 106, 119–137. [CrossRef]

19. Mudashiru, R.B.; Sabtu, N.; Abustan, I.; Balogun, W. Flood Hazard Mapping Methods: A Review. J. Hydrol. 2021, 603, 126846.
[CrossRef]

20. De Brito, M.M.; Evers, M. Multi-Criteria Decision-Making for Flood Risk Management: A Survey of the Current State of the Art.
Nat. Hazards Earth Syst. Sci. 2016, 16, 1019–1033. [CrossRef]

21. De Brito, M.M.; Evers, M.; Delos Santos Almoradie, A. Participatory Flood Vulnerability Assessment: A Multi-Criteria Approach.
Hydrol. Earth Syst. Sci. 2018, 22, 373–390. [CrossRef]

22. Malczewski, J.; Rinner, C. Multicriteria Decision Analysis in Geographic Information Science. In Advances in Geographic Information
Science; Springer: Berlin/Heidelberg, Germany, 2015. [CrossRef]

23. Skilodimou, H.D.; Bathrellos, G.D.; Alexakis, D.E. Flood Hazard Assessment Mapping in Burned and Urban Areas. Sustainability
2021, 13, 4455. [CrossRef]

24. Zzaman, R.U.; Nowreen, S.; Billah, M.; Islam, A.S. Flood Hazard Mapping of Sangu River Basin in Bangladesh Using Multi-Criteria
Analysis of Hydro-Geomorphological Factors. J. Flood Risk Manag. 2021, 14, e12715. [CrossRef]

25. Mahmoody Vanolya, N.; Jelokhani-Niaraki, M. The Use of Subjective–Objective Weights in GIS-Based Multi-Criteria Decision
Analysis for Flood Hazard Assessment: A Case Study in Mazandaran, Iran. Geojournal 2021, 86, 379–398. [CrossRef]

26. Pradhan, B. Flood Susceptible Mapping and Risk Area Delineation Using Logistic Regression, GIS and Remote Sensing. J. Spat.
Hydrol. 2009, 9, 1–18.

27. Ouma, Y.O.; Tateishi, R. Urban Flood Vulnerability and Risk Mapping Using Integrated Multi-Parametric AHP and GIS:
Methodological Overview and Case Study Assessment. Water 2014, 6, 1515–1545. [CrossRef]

28. Youssef, A.M.; Hegab, M.A. Flood-Hazard Assessment Modeling Using Multicriteria Analysis and GIS: A Case Study—Ras
Gharib Area, Egypt. In Spatial Modeling in GIS and R for Earth and Environmental Sciences; Elsevier: Amsterdam, The Netherlands,
2019.

29. Ajjur, S.B.; Mogheir, Y.K. Flood Hazard Mapping Using a Multi-Criteria Decision Analysis and GIS (Case Study Gaza Governorate,
Palestine). Arab. J. Geosci. 2020, 13, 44. [CrossRef]

30. Ghosh, S.; Das, A. Urban Expansion Induced Vulnerability Assessment of East Kolkata Wetland Using Fuzzy MCDM Method.
Remote Sens. Appl. 2019, 13, 191–203. [CrossRef]

31. Tehrany, M.S.; Jones, S.; Shabani, F.; Martínez-Álvarez, F.; Tien Bui, D. A Novel Ensemble Modeling Approach for the Spatial
Prediction of Tropical Forest Fire Susceptibility Using LogitBoost Machine Learning Classifier and Multi-Source Geospatial Data.
Appl. Clim. 2019, 137, 637–653. [CrossRef]

32. Rahmati, O.; Haghizadeh, A.; Stefanidis, S. Assessing the Accuracy of GIS-Based Analytical Hierarchy Process for Watershed
Prioritization; Gorganrood River Basin, Iran. Water Resour. Manag. 2016, 30, 1131–1150. [CrossRef]

33. Elsheikh, R.F.A.; Ouerghi, S.; Elhag, A.R. Flood Risk Map Based on GIS, and Multi Criteria Techniques (Case Study Terengganu
Malaysia). J. Geogr. Inf. Syst. 2015, 7, 348–357. [CrossRef]

34. Dano, U.L.; Balogun, A.L.; Matori, A.N.; Yusouf, K.W.; Abubakar, I.R.; Mohamed, M.A.S.; Aina, Y.A.; Pradhan, B. Flood
Susceptibility Mapping Using GIS-Based Analytic Network Process: A Case Study of Perlis, Malaysia. Water 2019, 11, 615.
[CrossRef]

35. Kidd, C. Satellite Rainfall Climatology: A Review. Int. J. Climatol. 2001, 21, 1041–1066. [CrossRef]
36. Li, J.; Wang, Z.; Wu, X.; Xu, C.Y.; Guo, S.; Chen, X. Toward Monitoring Short-Term Droughts Using a Novel Daily Scale,

Standardized Antecedent Precipitation Evapotranspiration Index. J. Hydrometeorol. 2020, 21. [CrossRef]
37. Li, J.; Wang, Z.; Wu, X.; Zscheischler, J.; Guo, S.; Chen, X. A Standardized Index for Assessing Sub-Monthly Compound Dry and

Hot Conditions with Application in China. Hydrol Earth Syst Sci 2021, 25. [CrossRef]
38. Villarini, G.; Mandapaka, P.V.; Krajewski, W.F.; Moore, R.J. Rainfall and Sampling Uncertainties: A Rain Gauge Perspective. J.

Geophys. Res. Atmos. 2008, 113, D11102. [CrossRef]
39. Xie, X.; Xie, B.; Cheng, J.; Chu, Q.; Dooling, T. A Simple Monte Carlo Method for Estimating the Chance of a Cyclone Impact.

Natural Hazards 2021, 107, 2573–2582. [CrossRef]
40. Zhu, G.; Liu, Y.; Wang, L.; Sang, L.; Zhao, K.; Zhang, Z.; Lin, X.; Qiu, D. The Isotopes of Precipitation Have Climate Change Signal

in Arid Central Asia. Glob. Planet. Chang. 1016, 225, 104103. [CrossRef]
41. Huffman, G.; Bolvin, D.; Braithwaite, D.; Hsu, K.; Joyce, R.; Kidd, C.; Nelkin, E.; Sorooshian, S.; Tan, J.; Xie, P. NASA GPM

Integrated Multi-SatellitE Retrievals for GPM (IMERG) Algorithm Theoretical Basis Document (ATBD) Version 06; NASA/GSFC:
Greenbelt, MD, USA, 2020; p. 29.

42. Wang, J.; Petersen, W.A.; Wolff, D.B. Validation of Satellite-Based Precipitation Products from TRMM to GPM. Remote Sens. 2021,
13, 1745. [CrossRef]

43. Das, S.; Gupta, A. Multi-Criteria Decision Based Geospatial Mapping of Flood Susceptibility and Temporal Hydro-Geomorphic
Changes in the Subarnarekha Basin, India. Geosci. Front. 2021, 12, 101206. [CrossRef]

https://doi.org/10.1007/s11069-017-3036-7
https://doi.org/10.3390/rs10020237
https://doi.org/10.1007/s11069-020-04453-3
https://doi.org/10.1016/j.jhydrol.2021.126846
https://doi.org/10.5194/nhess-16-1019-2016
https://doi.org/10.5194/hess-22-373-2018
https://doi.org/10.1007/978-3-540-74757-4
https://doi.org/10.3390/su13084455
https://doi.org/10.1111/jfr3.12715
https://doi.org/10.1007/s10708-019-10075-5
https://doi.org/10.3390/w6061515
https://doi.org/10.1007/s12517-019-5024-6
https://doi.org/10.1016/j.rsase.2018.10.014
https://doi.org/10.1007/s00704-018-2628-9
https://doi.org/10.1007/s11269-015-1215-4
https://doi.org/10.4236/jgis.2015.74027
https://doi.org/10.3390/w11030615
https://doi.org/10.1002/joc.635
https://doi.org/10.1175/JHM-D-19-0298.1
https://doi.org/10.5194/hess-25-1587-2021
https://doi.org/10.1029/2007JD009214
https://doi.org/10.1007/s11069-021-04505-2
https://doi.org/10.1016/j.gloplacha.2023.104103
https://doi.org/10.3390/rs13091745
https://doi.org/10.1016/j.gsf.2021.101206


Water 2023, 15, 2195 26 of 29

44. Pradhan, R.K.; Markonis, Y.; Vargas Godoy, M.R.; Villalba-Pradas, A.; Andreadis, K.M.; Nikolopoulos, E.I.; Papalexiou, S.M.;
Rahim, A.; Tapiador, F.J.; Hanel, M. Review of GPM IMERG Performance: A Global Perspective. Remote Sens. Environ. 2022, 268,
112754. [CrossRef]

45. Ma, M.; Wang, H.; Jia, P.; Tang, G.; Wang, D.; Ma, Z.; Yan, H. Application of the GPM-IMERG Products in Flash Flood Warning: A
Case Study in Yunnan, China. Remote Sens. 2020, 12, 1954. [CrossRef]

46. Parsian, S.; Amani, M.; Moghimi, A.; Ghorbanian, A.; Mahdavi, S. Flood Hazard Mapping Using Fuzzy Logic, Analytical
Hierarchy Process, and Multi-Source Geospatial Datasets. Remote Sens. 2021, 13, 4761. [CrossRef]

47. Jiang, S.; Ren, L.; Xu, C.Y.; Yong, B.; Yuan, F.; Liu, Y.; Yang, X.; Zeng, X. Statistical and Hydrological Evaluation of the Latest
Integrated Multi-SatellitE Retrievals for GPM (IMERG) over a Midlatitude Humid Basin in South China. Atmos. Res. 2018, 214,
418–429. [CrossRef]

48. Tan, M.L.; Liang, J.; Samat, N.; Chan, N.W.; Haywood, J.M.; Hodges, K. Hydrological Extremes and Responses to Climate Change
in the Kelantan River Basin, Malaysia, Based on the CMIP6 Highresmip Experiments. Water 2021, 13, 1472. [CrossRef]

49. Alias, N.E.; Mohamad, H.; Chin, W.Y.; Yusop, Z. Rainfall Analysis of the Kelantan Big Yellow Flood 2014. J. Teknol. 2016, 78, 83–90.
[CrossRef]

50. Baharuddin, K.A.; Wahab, S.F.A.; Rahman, N.H.N.A.; Mohamad, N.A.N.; Kamauzaman, T.H.T.; Noh, A.Y.M.; Majid, M.R.A. The
Record-Setting Flood of 2014 in Kelantan: Challenges and Recommendations from an Emergency Medicine Perspective and Why
the Medical Campus Stood Dry. Malays. J. Med. Sci. 2015, 22, 1.

51. Xie, X.; Tian, Y.; Wei, G. Deduction of Sudden Rainstorm Scenarios: Integrating Decision Makers’ Emotions, Dynamic Bayesian
Network and DS Evidence Theory. Nat. Hazards 2022, 2935–2955. [CrossRef]

52. Shadmehri Toosi, A.; Calbimonte, G.H.; Nouri, H.; Alaghmand, S. River Basin-Scale Flood Hazard Assessment Using a Modified
Multi-Criteria Decision Analysis Approach: A Case Study. J. Hydrol. 2019, 574, 660–671. [CrossRef]

53. Seejata, K.; Yodying, A.; Wongthadam, T.; Mahavik, N.; Tantanee, S. Assessment of Flood Hazard Areas Using Analytical
Hierarchy Process over the Lower Yom Basin, Sukhothai Province. Procedia Eng. 2018, 212, 340–347. [CrossRef]

54. Tan, M.L.; Ibrahim, A.L.; Yusop, Z.; Chua, V.P.; Chan, N.W. Climate Change Impacts under CMIP5 RCP Scenarios on Water
Resources of the Kelantan River Basin, Malaysia. Atmos. Res. 2017, 189, 1–10. [CrossRef]

55. Field, H.L.; Solie, J.B. Introduction to Agricultural Engineering Technology: A Problem Solving Approach; Springer: Berlin/Heidelberg,
Germany, 2007.

56. Bunya, S.; Dietrich, J.C.; Westerink, J.J.; Ebersole, B.A.; Smith, J.M.; Atkinson, J.H.; Jensen, R.; Resio, D.T.; Luettich, R.A.; Dawson,
C.; et al. A High-Resolution Coupled Riverine Flow, Tide, Wind, Wind Wave, and Storm Surge Model for Southern Louisiana and
Mississippi. Part I: Model Development and Validation. Mon. Weather. Rev. 2010, 138, 345–377. [CrossRef]

57. Radmehr, A.; Araghinejad, S. Flood Vulnerability Analysis by Fuzzy Spatial Multi Criteria Decision Making. Water Resour. Manag.
2015, 29, 4427–4445. [CrossRef]

58. Sahana, M.; Patel, P.P. A Comparison of Frequency Ratio and Fuzzy Logic Models for Flood Susceptibility Assessment of the
Lower Kosi River Basin in India. Environ. Earth Sci. 2019, 78, 289. [CrossRef]

59. Hu, S.; Cheng, X.; Zhou, D.; Zhang, H. GIS-Based Flood Risk Assessment in Suburban Areas: A Case Study of the Fangshan
District, Beijing. Nat. Hazards 2017, 87, 1525–1543. [CrossRef]

60. Singh, S.K.; Srivastava, P.K.; Pandey, A.C. Fluoride Contamination Mapping of Groundwater in Northern India Integrated with
Geochemical Indicators and GIS. Water Sci. Technol. Water Supply 2013, 13, 1513–1523. [CrossRef]

61. Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The Global
Precipitation Measurement Mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [CrossRef]

62. Ulloa, J.; Ballari, D.; Campozano, L.; Samaniego, E. Two-Step Downscaling of TRMM 3b43 V7 Precipitation in Contrasting
Climatic Regions with Sparse Monitoring: The Case of Ecuador in Tropical South America. Remote Sens. 2017, 9, 758. [CrossRef]

63. Tolche, A.D.; Gurara, M.A.; Pham, Q.B.; Anh, D.T. Modelling and Accessing Land Degradation Vulnerability Using Remote
Sensing Techniques and the Analytical Hierarchy Process Approach. Geocarto Int. 2021, 37, 7122–7142. [CrossRef]

64. Sandeep, P.; Reddy, G.P.O.; Jegankumar, R.; Arun Kumar, K.C. Modeling and Assessment of Land Degradation Vulnerability in
Semi-Arid Ecosystem of Southern India Using Temporal Satellite Data, AHP and GIS. Environ. Model. Assess. 2021, 26, 143–154.
[CrossRef]

65. Malav, L.C.; Yadav, B.; Tailor, B.L.; Pattanayak, S.; Singh, S.V.; Kumar, N.; Reddy, G.P.O.; Mina, B.L.; Dwivedi, B.S.; Jha, P.K.
Mapping of Land Degradation Vulnerability in the Semi-Arid Watershed of Rajasthan, India. Sustainability 2022, 14, 10198.
[CrossRef]

66. Ebrahimi, S.; Chen, C.; Chen, Q.; Zhang, Y.; Ma, N.; Zaman, Q. Effects of Temporal Scales and Space Mismatches on the TRMM
3B42 v7 Precipitation Product in a Remote Mountainous Area. Hydrol. Process. 2017, 31, 4315–4327. [CrossRef]

67. Chen, Z.; Liu, Z.; Yin, L.; Zheng, W. Statistical Analysis of Regional Air Temperature Characteristics before and after Dam
Construction. Urban Clim. 2022, 41, 101085. [CrossRef]

68. Zhang, Y.; Luo, J.; Li, J.; Mao, D.; Zhang, Y.; Huang, Y.; Yang, J. Fast Inverse-Scattering Reconstruction for Airborne High-Squint
Radar Imagery Based on Doppler Centroid Compensation. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–17. [CrossRef]

69. Tan, M.L.; Duan, Z. Assessment of GPM and TRMM Precipitation Products over Singapore. Remote Sens. 2017, 9, 720. [CrossRef]
70. Dai, X. The Effects of Image Misregistration on the Accuracy of Remotely Sensed Change Detection. IEEE Trans. Geosci. Remote

Sens. 1998, 36, 1566–1577. [CrossRef]

https://doi.org/10.1016/j.rse.2021.112754
https://doi.org/10.3390/rs12121954
https://doi.org/10.3390/rs13234761
https://doi.org/10.1016/j.atmosres.2018.08.021
https://doi.org/10.3390/w13111472
https://doi.org/10.11113/jt.v78.9701
https://doi.org/10.1007/s11069-022-05792-z
https://doi.org/10.1016/j.jhydrol.2019.04.072
https://doi.org/10.1016/j.proeng.2018.01.044
https://doi.org/10.1016/j.atmosres.2017.01.008
https://doi.org/10.1175/2009MWR2906.1
https://doi.org/10.1007/s11269-015-1068-x
https://doi.org/10.1007/s12665-019-8285-1
https://doi.org/10.1007/s11069-017-2828-0
https://doi.org/10.2166/ws.2013.160
https://doi.org/10.1175/BAMS-D-13-00164.1
https://doi.org/10.3390/rs9070758
https://doi.org/10.1080/10106049.2021.1959656
https://doi.org/10.1007/s10666-020-09739-1
https://doi.org/10.3390/su141610198
https://doi.org/10.1002/hyp.11357
https://doi.org/10.1016/j.uclim.2022.101085
https://doi.org/10.1109/TGRS.2021.3069499
https://doi.org/10.3390/rs9070720
https://doi.org/10.1109/36.718860


Water 2023, 15, 2195 27 of 29

71. Ab. Ghani, A.; Chang, C.K.; Leow, C.S.; Zakaria, N.A. Sungai Pahang Digital Flood Mapping: 2007 Flood. Int. J. River Basin
Manag. 2012, 10, 139–148. [CrossRef]

72. Liu, Y.; Zhang, K.; Li, Z.; Liu, Z.; Wang, J.; Huang, P. A Hybrid Runoff Generation Modelling Framework Based on Spatial
Combination of Three Runoff Generation Schemes for Semi-Humid and Semi-Arid Watersheds. J. Hydrol. 2020, 590, 125440.
[CrossRef]

73. Pradhan, B.; Youssef, A.M. A 100-Year Maximum Flood Susceptibility Mapping Using Integrated Hydrological and Hydrodynamic
Models: Kelantan River Corridor, Malaysia. J. Flood Risk Manag. 2011, 4, 189–202. [CrossRef]

74. Wen, J.; Liu, Q.; Xiao, Q.; Liu, Q.; You, D.; Hao, D.; Wu, S.; Lin, X. Characterizing Land Surface Anisotropic Reflectance over
Rugged Terrain: A Review of Concepts and Recent Developments. Remote Sens. 2018, 10, 370. [CrossRef]

75. Fernández, D.S.; Lutz, M.A. Urban Flood Hazard Zoning in Tucumán Province, Argentina, Using GIS and Multicriteria Decision
Analysis. Eng. Geol. 2010, 111, 90–98. [CrossRef]

76. Shahabi, H.; Shirzadi, A.; Ghaderi, K.; Omidvar, E.; Al-Ansari, N.; Clague, J.J.; Geertsema, M.; Khosravi, K.; Amini, A.; Bahrami,
S.; et al. Flood Detection and Susceptibility Mapping Using Sentinel-1 Remote Sensing Data and a Machine Learning Approach:
Hybrid Intelligence of Bagging Ensemble Based on K-Nearest Neighbor Classifier. Remote Sens. 2020, 12, 266. [CrossRef]

77. Nazaruddin, D.A.; Fadilah, N.S.; Zulkarnain, Z. Geological Review of the Rafflesia Trail, Near Kampung Jedip, Lojing Highlands:
Inputs for a Nature-Based Tourism Site in Kelantan, Malaysia. J. Trop. Resour. Sustain. Sci. 2015, 3, 86–97. [CrossRef]

78. Towfiqul Islam, A.R.M.; Talukdar, S.; Mahato, S.; Kundu, S.; Eibek, K.U.; Pham, Q.B.; Kuriqi, A.; Linh, N.T.T. Flood Susceptibility
Modelling Using Advanced Ensemble Machine Learning Models. Geosci. Front. 2021, 12, 101075. [CrossRef]

79. Bilskie, M.V.; Hagen, S.C. Defining Flood Zone Transitions in Low-Gradient Coastal Regions. Geophys. Res. Lett. 2018, 45,
2761–2770. [CrossRef]

80. Abah, R. Clement An Application of Geographic Information System in Mapping Flood Risk Zones in a North Central City in
Nigeria. Afr. J. Environ. Sci. Technol. 2013, 7, 365–371. [CrossRef]

81. Yousefi, S.; Mirzaee, S.; Keesstra, S.; Surian, N.; Pourghasemi, H.R.; Zakizadeh, H.R.; Tabibian, S. Effects of an Extreme Flood on
River Morphology (Case Study: Karoon River, Iran). Geomorphology 2018, 304, 30–39. [CrossRef]

82. Zhou, Z.; Stefanon, L.; Olabarrieta, M.; D’Alpaos, A.; Carniello, L.; Coco, G. Analysis of the Drainage Density of Experimental
and Modelled Tidal Networks. Earth Surf. Dyn. 2014, 2, 105–116. [CrossRef]

83. Sajedi-Hosseini, F.; Choubin, B.; Solaimani, K.; Cerdà, A.; Kavian, A. Spatial Prediction of Soil Erosion Susceptibility Using a
Fuzzy Analytical Network Process: Application of the Fuzzy Decision Making Trial and Evaluation Laboratory Approach. Land
Degrad. Dev. 2018, 29, 3092–3103. [CrossRef]

84. Lalitha Muthu, A.C.; Helen Santhi, M. Estimation of Surface Runoff Potential Using SCS-CN Method Integrated with GIS. Indian
J. Sci. Technol. 2015, 8, 28. [CrossRef]

85. Qi, B.; Xu, P.; Wu, C. Analysis of the Infiltration and Water Storage Performance of Recycled Brick Mix Aggregates in Sponge City
Construction. Water 2023, 15, 363. [CrossRef]

86. Khayyun, T.S.; Alwan, I.A.; Hayder, A.M. Hydrological Model for Hemren Dam Reservoir Catchment Area at the Middle River
Diyala Reach in Iraq Using ArcSWAT Model. Appl. Water Sci. 2019, 9, 133. [CrossRef]

87. Vieux, B.E.; Cui, Z.; Gaur, A. Evaluation of a Physics-Based Distributed Hydrologic Model for Flood Forecasting. J. Hydrol. 2004,
298, 155–177. [CrossRef]

88. Chow, V. Bibliography: 1) Handbook of Applied Hydrology. Int. Assoc. Sci. Hydrol. Bull. 1965, 10, 82–83. [CrossRef]
89. Barnes, K.B.; Iii, J.M.M.; Roberge, M.C.; Roberge, M. Impervious Surfaces and the Quality of Natural and Built Environments;

Department of Geography and Environmental Planning: Towson, MD, USA, 2002.
90. Starke, P.; Göbel, P.; Coldewey, W.G. Urban Evaporation Rates for Water-Permeable Pavements. Water Sci. Technol. 2010, 62,

1161–1169. [CrossRef]
91. Ma, X.; Dong, Z.; Quan, W.; Dong, Y.; Tan, Y. Real-Time Assessment of Asphalt Pavement Moduli and Traffic Loads Using

Monitoring Data from Built-in Sensors: Optimal Sensor Placement and Identification Algorithm. Mech. Syst. Signal Process. 2023,
187. [CrossRef]

92. Barnes, K.B.; Morgan, J.; Roberge, M. Impervious Surfaces and the Quality of Natural and Built Environments; Department of
Geography and Environmental Planning, Towson University: Towson, MD, USA, 2001.

93. Sun, R.; Gong, Z.; Gao, G.; Shah, A.A. Comparative Analysis of Multi-Criteria Decision-Making Methods for Flood Disaster Risk
in the Yangtze River Delta. Int. J. Disaster Risk Reduct. 2020, 51, 101768. [CrossRef]

94. Wang, G.; Zhao, B.; Lan, R.; Liu, D.; Wu, B.; Li, Y.; Li, Q.; Zhou, H.; Liu, M.; Liu, W.; et al. Experimental Study on Failure Model of
Tailing Dam Overtopping under Heavy Rainfall. Lithosphere 2022, 2022, 5922501. [CrossRef]

95. Eigenbrod, F.; Bell, V.A.; Davies, H.N.; Heinemeyer, A.; Armsworth, P.R.; Gaston, K.J. The Impact of Projected Increases in
Urbanization on Ecosystem Services. Proc. R. Soc. B Biol. Sci. 2011, 278, 3201–3208. [CrossRef]

96. Hsu, M.H.; Chen, S.H.; Chang, T.J. Inundation Simulation for Urban Drainage Basin with Storm Sewer System. J. Hydrol. 2000,
234, 21–37. [CrossRef]

97. Saaty, T.L. How to Make a Decision: The Analytic Hierarchy Process. Eur. J. Oper. Res. 1990, 48, 9–26. [CrossRef]
98. Kazakis, N.; Kougias, I.; Patsialis, T. Assessment of Flood Hazard Areas at a Regional Scale Using an Index-Based Approach and

Analytical Hierarchy Process: Application in Rhodope-Evros Region, Greece. Sci. Total Environ. 2015, 538, 555–563. [CrossRef]

https://doi.org/10.1080/15715124.2012.680022
https://doi.org/10.1016/j.jhydrol.2020.125440
https://doi.org/10.1111/j.1753-318X.2011.01103.x
https://doi.org/10.3390/rs10030370
https://doi.org/10.1016/j.enggeo.2009.12.006
https://doi.org/10.3390/rs12020266
https://doi.org/10.47253/jtrss.v3i1.694
https://doi.org/10.1016/j.gsf.2020.09.006
https://doi.org/10.1002/2018GL077524
https://doi.org/10.5897/AJEST12.182
https://doi.org/10.1016/j.geomorph.2017.12.034
https://doi.org/10.5194/esurf-2-105-2014
https://doi.org/10.1002/ldr.3058
https://doi.org/10.17485/ijst/2015/v8i28/83324
https://doi.org/10.3390/w15020363
https://doi.org/10.1007/s13201-019-1010-0
https://doi.org/10.1016/j.jhydrol.2004.03.035
https://doi.org/10.1080/02626666509493376
https://doi.org/10.2166/wst.2010.390
https://doi.org/10.1016/j.ymssp.2022.109930
https://doi.org/10.1016/j.ijdrr.2020.101768
https://doi.org/10.2113/2022/5922501
https://doi.org/10.1098/rspb.2010.2754
https://doi.org/10.1016/S0022-1694(00)00237-7
https://doi.org/10.1016/0377-2217(90)90057-I
https://doi.org/10.1016/j.scitotenv.2015.08.055


Water 2023, 15, 2195 28 of 29

99. Yahaya, S. Multicriteria Analysis for Flood Vulnerable Areas in Hadejia-Jama’are River Basin, Nigeria. In Proceedings of the
American Society for Photogrammetry and Remote Sensing—ASPRS Annual Conference 2008—Bridging the Horizons: New
Frontiers in Geospatial Collaboration, Portland, OR, USA, 28 April–2 May 2008; Volume 2, pp. 777–785.

100. Stillwell, W.G.; Seaver, D.A.; Edwards, W. A Comparison of Weight Approximation Techniques in Multiattribute Utility Decision
Making. Organ. Behav. Hum. Perform. 1981, 28, 62–77. [CrossRef]

101. Eastman, J.R. Idrisi for Windows, Version 2.0: Tutorial Exercises, Graduate School of Geography; Clark University: Worcester, MA, USA,
1997.

102. Malczewski, J. On the Use of Weighted Linear Combination Method in GIS: Common and Best Practice Approaches. Trans. GIS
2000, 4, 5–22. [CrossRef]

103. Bandira, P.N.A.; Mahamud, M.A.; Samat, N.; Tan, M.L.; Chan, N.W. Gis-Based Multi-Criteria Evaluation for Potential Inland
Aquaculture Site Selection in the George Town Conurbation, Malaysia. Land 2021, 10, 1174. [CrossRef]

104. Souissi, D.; Souie, A.; Sebei, A.; Mahfoudhi, R.; Zghibi, A.; Zouhri, L.; Amiri, W.; Ghanmi, M. Flood Hazard Mapping and
Assessment Using Fuzzy Analytic Hierarchy Process and GIS Techniques in Takelsa, Northeast Tunisia. Arab. J. Geosci. 2022, 15,
1405. [CrossRef]

105. Arabameri, A.; Rezaei, K.; Cerdà, A.; Conoscenti, C.; Kalantari, Z. A Comparison of Statistical Methods and Multi-Criteria
Decision Making to Map Flood Hazard Susceptibility in Northern Iran. Sci. Total Environ. 2019, 660, 443–445. [CrossRef]

106. Nandi, A.; Shakoor, A. A GIS-Based Landslide Susceptibility Evaluation Using Bivariate and Multivariate Statistical Analyses.
Eng. Geol. 2010, 110, 11–20. [CrossRef]

107. Souissi, D.; Zouhri, L.; Hammami, S.; Msaddek, M.H.; Zghibi, A.; Dlala, M. GIS-Based MCDM–AHP Modeling for Flood
Susceptibility Mapping of Arid Areas, Southeastern Tunisia. Geocarto Int. 2020, 35, 991–1017. [CrossRef]
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