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Abstract: A methodology to estimate surface water quality using remote sensing is presented based
on Landsat satellite imagery and in situ measurements taken every six months at four separate
sampling locations in a tropical reservoir from 2015 to 2019. The remote sensing methodology
uses the Box–Cox transformation model to normalize data on three water quality parameters: total
organic carbon (TOC), total dissolved solids (TDS), and chlorophyll a (Chl-a). After the Box–Cox
transformation, a mathematical model was generated for every parameter using multiple linear
regression to correlate normalized data and spectral reflectance from Landsat 8 imagery. Then,
significant testing was conducted to discard spectral bands that did not show a statistically significant
response (α = 0.05) from the different water quality models. The r2 values achieved for TOC, TDS, and
Chl-a water quality models after the band discrimination process were found 0.926, 0.875, and 0.810,
respectively, achieving a fair fitting to real water quality data measurements. Finally, a comparison
between estimated and measured water quality values not previously used for model development
was carried out to validate these models. In this validation process, a good fit of 98% and 93% was
obtained for TDS and TOC, respectively, whereas an acceptable fit of 81% was obtained for Chl-a.
This study proposes an interesting alternative for ordered and standardized steps applied to generate
mathematical models for the estimation of TOC, TDS, and Chl-a based on water quality parameters
measured in the field and using satellite images.

Keywords: surface water quality; remote sensing; Box–Cox optimization; linear modeling;
Landsat imagery

1. Introduction

Surface water quality monitoring is essential to assess the impacts of anthropogenic
activities and natural phenomena [1,2], but it is labor-intensive, time-consuming, and
costly [3]. Several studies have demonstrated that using remote sensing for water quality
evaluation has significant advantages for surface water quality monitoring [4–7]. Remote
sensing for water quality evaluation is based on measuring the radiance emerging from
the water related to electromagnetic radiation that interacts with both suspended and
dissolved matter through absorptive, refractive, and scattering mechanisms [8,9]. Specific
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imagery bands are required to measure water quality parameters, but the remotely sensed
reflectance may be influenced by external conditions, such as atmospheric and air-water
interface effects, illumination conditions, or instrument characteristics [10]. To avoid
these interferences, some authors have suggested observing the scattering and absorption
characteristics of optically active constituents (OACs) to obtain accurate inherent optical
properties [11]. However, identifying specific wavelengths for water quality estimation is a
complex task because water constituents absorb and scatter light across the entire visible
spectral range, which complicates their estimation from optical measurements [10].

The most employed methodologies to estimate surface water quality uses empirical
approaches with multispectral sensors [12]. Water quality modeling using remote sensing is
often carried out using normalized difference indices and spectral band ratios. Normaliza-
tion can remove brightness variations, reducing the influence of atmospheric, and air-water
surface effects [13–15]. Other water quality studies using remote sensing are based on
water quality parameters and spectral reflectance multiple regression [16–20] consisting of
obtaining correlations between water leaving radiance (Lw) and several optically active
parameters such as chlorophyll-a, total suspended solids, and turbidity. Despite some
studies having achieved satisfying results using broadband sensors, others report less
accurate results because of the presence of suspended material in turbid and/or eutrophic
water bodies [21].

Although significant advancements in mathematical models for surface water quality
using reflectance values from satellite imagery are given, improving existing models using
multiple linear regression to estimate water quality using Landsat 8 imagery remains an
interesting pending research task. Recently, Sharaf El Din and Zhang [22] have proposed
a regression-based technique to estimate surface water quality parameters using Landsat
8 OLI imagery. They propose a stepwise regression (SWR) to minimize the number of
predictor variables and to maximize the precision of the water quality estimation. Highly
accurate results were achieved when using the Landsat 8-based-SWR approach (r2 > 85%).

The present study proposes a series of ordered and standardized steps to generate
mathematical models from a multiple linear regression analysis. The multiple regression
analysis was carried out between the reflectance values of Landsat 8 images and the
normalized concentrations of water quality parameters. Normalizing water quality data
was used to eliminate the effects of certain errors that may be still present after the data-
set validation procedures, such as outliers, censored values, seasonality trends, or serial
correlations, and that can affect the accuracy of the data, making it more consistent, reliable,
and suitable for further processing and analysis.

Some studies have normalized the dataset, but they were not used for the estimation
of water quality from satellite imagery. For instance, Feng [23] developed normalized
water quality indexes using band combination, and Qi et al. [24] normalized reflectance
data for water quality estimation. Asadollahfardi et al. [25] suggested using the Box–Cox
transformation for the normalization of water quality data.

The methodology proposes the use of the Box–Cox transformation to normalize data
on three water quality parameters: total organic carbon (TOC), total dissolved solids (TDS),
and chlorophyll a (Chl-a). After the Box–Cox transformation, a mathematical model was
generated for every parameter using multiple linear regression between normalized data
and spectral reflectance from Landsat 8 imagery. Using the proposed methodology, a
surface water quality assessment was carried out in the Adolfo López Mateos (ALM)
reservoir in Culiacan, Mexico. These mathematical models could be considered a crucial
tool for decision-making since they could be used to estimate water quality during periods
when field monitoring is not conducted.

2. Materials and Methods
2.1. Study Area

The ALM reservoir (Culiacan, Mexico) is in the Humaya River basin (25◦05′25′′,
25◦20′15′′ North, 107◦33′00′′, 107◦15′00′′ West) at 186.5 m above the sea level (m.a.s.l.). The
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ALM dam is 105.5 m high, and 765 m long, considered one of the main sources of water for
agricultural irrigation, power generation, fishing, and tourist activities [26–28], covering
11,354 ha and ranked tenth in Mexico according to its storage capacity [29] (Figure 1).
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Figure 1. Geographic location of ALM reservoir.

The Humaya River basin is characterized by a warm humid climate toward the center
and south, with summer rains. From the center toward the north, the climate is semi-warm
sub-humid. The average annual temperature is 24.5 ◦C and the mean annual rainfall is
698.9 mm per year. The basin has a mountainous geography, with deep canyons, low
mountains, highlands, and large plateaus with ravines. The basin elevation varies between
150 and 2300 m.a.s.l. [30].

The predominant vegetation is tropical deciduous forest, with small areas of pine-oak
and pine forests toward the northwestern part [26]. Since high productivity is observed
in the basin, a large proportion of the land is intended for agricultural and livestock
activities [31]. According to Sanhouse-Garcia et al. [30] and Monjardin et al. [32], the
Humaya River basin is affected by both natural (fires and frequent frosts) and anthro-
pogenic (deforestation) factors that cause continuous and rapid changes in land use and
aquatic ecosystems.

2.2. Methodology

Figure 2 sketches the methodology for water quality parameters estimation using
satellite imagery, which was carried out in three phases: (i) processing Landsat 8 sensor im-
agery and reflectance data extraction, (ii) obtaining water quality data, and (iii) developing
mathematical models for water quality parameters.
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2.2.1. Satellite Imagery Acquisition

Satellite imagery was obtained through the United States Geological Survey database [33]
and coincided with the dates of water quality monitoring campaigns. GeoTiff level 1 (L1T)
images from Landsat 8 were used. The L1T images are terrain-corrected; hence, these
images already provide a radiometric and geodetic accuracy in a cartographic projection
UTM (Universal Transversal of Mercator), referenced in WGS84 (Word Geodetic System
1984). The images correspond to Path 32, Row 43 of the Landsat 8 sensor, which covered
the reservoir surface during the study period (January 2015 to June 2019). Table 1 shows
the acquisition dates of images from Landsat 8.

Table 1. Dates of acquisition of satellite images.

Sensor Year Acquisition Date Path/Row

Landsat 8 OLI

2015
May 4th

32/43

October 27th

2016
May 22nd

September 11th

2017
March 6th

September 30th

2018
February 2nd

October 2nd

2019 January 17th
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2.2.2. Imagery Pre-Processing

Landsat-8 imagery at level 1T was rescaled to the top of atmosphere (TOA) reflectance
using radiometric rescaling coefficients [22,33]. This radiometric rescaling was performed
in QGIS software based on TOA reflectance (Equations (1) and (2)) and using the semi-
automatic classification plug-in [34].

ρ∗ = Mρ ∗Qcal + Aρ (1)

where ρ∗ is the TOA planetary reflectance, without correction for solar angle; Mρ is the
band-specific multiplicative rescaling factor from the metadata; Qcal is the quantized
and calibrated standard product pixel values (DN); and Aρ is the band-specific additive
rescaling factor from the metadata.

Since the reflectance obtained from the Landsat 8 data is not corrected for the solar
zenith angle, the provided reflectance is generally too low and this error increases at high
latitudes and in the cold season [22]. Therefore, a TOA reflectance correction for the solar
zenith angle was performed using Equation (2).

ρ =
ρ∗

cos(θSZ)
=

ρ∗

sin(θSE)
(2)

where ρ is the TOA planetary reflectance; θSE is the local sun elevation angle: θSZ local
solar zenith angle; θSZ = 90◦ − θSE.

Atmospheric correction processes were carried out using dark object subtraction
(DOS). The basic assumption of the DOS method is that within the image some pixels are
in complete shadow and their radiances measured at the satellite are due to atmospheric
scattering (path radiance), selecting the spectral-band haze values that are correlated to
each other [35]. This process was performed in QGIS by using Equations (3)–(7) [22].

ρsur f ace =
[
π ∗ (Lλ − LP) ∗ d2

]
/(TV ∗ {[ESunλ ∗ cos θSZ] ∗ TZ}+ Edown) (3)

LP = Lλmin − LDO1% (4)

Lλmin = ML ∗ DNmin + AL (5)

LDO1% = (0.01 ∗ TV ∗ {[ESunλ ∗ cos θSZ] ∗ TZ}+ Edown)/
[
π ∗ d2

]
(6)

ESunλ =
[
π ∗ d2 ∗ Radiancemax

]
/[Re f lectancemax] (7)

where ρsur f ace is the surface reflectance; Lλ is the spectral radiance at the sensor’s aperture;
LP is the path radiance due to atmospheric effects; d is the Earth–Sun distance in astronom-
ical units; TV is the atmospheric transmittance in the viewing direction; ESunλ is the mean
solar radiation; TZ is the atmospheric transmittance in the illumination direction; Edown is
the downwelling diffuse irradiance; Lλmin is the radiance values correspond to the mini-
mum pixel values; LDO1% is the radiance of dark object; ML is the radiance band-specific
multiplicative rescaling factor; DNmin is the minimum pixel value; and AL is the radiance
band-specific additive rescaling factor.

2.2.3. Reflectance Data Extraction

The study area was delimited from satellite imagery with a polygon mask using QGIS
software and a semi-automatic extraction utility. Then, reflectance data of corrected bands
were extracted using the QGIS point sampling tools [36]. Landsat 8 has eleven bands, but
in this study, the extraction process was carried out only for the bands B1, B2, B3, B4, B5, B6,
and B7. Since the TOC, TDS, and Chl-a are known as optically active parameters and their
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spectral responses are mainly in visible and near-infrared domains, B9 (cirrus band), B10,
and B11 (infrared thermal bands) were excluded [37,38]. The B8 panchromatic band was
also excluded from the extraction process since this band combines blue (B2), green (B3),
and red (B4) bands with a greater spatial resolution and does not contain any additional
wavelength-specific information.

2.2.4. Water Quality Monitoring

Water quality is monitored at the ALM reservoir every six months through sampling
campaigns at four sampling sites by Mexico’s National Water Commission (CONAGUA).
CONAGUA is responsible for implementing processes to guarantee quality assurance/control
(QA/QC). Hence, the sampling, transportation, and preservation of samples meet the
appropriate Mexican standards, and the samples are analyzed in triplicate by an accredited
laboratory, based on international standard methods for water analysis [39]. Official
water quality information from CONAGUA has been used to assess water quality by
other studies [26,28,40]. In this study, water quality data from 2015 to 2019 were used.
To demonstrate the appropriateness of the proposed methodology, three water quality
parameters were evaluated: total dissolved solids (TDS), chlorophyll (Chl-a), and total
organic carbon (TOC). TOC, TDS, and Chl-a were measured based on APHA Methods 5310,
2510, and 10200H, respectively [39]. Past studies have shown that these parameters respond
to the energy spectrum changes of reflected solar radiation from waterbodies [41,42].

2.2.5. Box–Cox Transformation of Water Quality Parameters

The Box–Cox transformation is a statistical technique to stabilize the variance of
a certain dataset and ensure normal distribution of deviations around the model [43].
The main goal of data normalization is to adjust values to a common scale, achieving a
standardized data format, which may facilitate comparison and analysis.

The Box–Cox transformation was only applied to the water quality parameters. For
transformation, every data is raised to the λ1 power after changing it to a certain amount
λ2 (often equal to 0). These transformations could be square roots, logarithms, reciprocals,
and/or other common transformations (Table 2) [43]. Hence, the Box–Cox transformation
(Equation (3)) is defined as a continuous function that varies as a function of power (λ) [44].

y′ = (y + λ2)
λ1 , for λ1 6= 0 (8)

where y’ is the normalized water quality parameter, y is the originally measured water
quality data, λ1 and λ2 are values that, when substituted in Equation (3), the standard
deviation of y’ will be zero.

Table 2. Box–Cox power transformation approaches.

Power Transformation Description

λ1 = 2 y′ = y2 Square
λ1 = 1 y′ = y Untransformed data

λ1 = 0.5 y′ =
√

y Square root
λ1 = 0.33 y′ = 3

√
y Cube root

λ1 = 0 ∗ y′ = ln(y) Logarithm
λ1 = −0.5 y′ = 1√

y Inverse square root

λ1 = −1 y′ = 1
y Reciprocal

Note: * Note that as λ1 → 0 , the power transformation approaches a logarithm.

The Statgraphics Centurion XVI software was used to perform the Box–Cox transfor-
mation of water quality data. Initially, the λ1 values of 2, 1, 0.5, 0.33, 0, −0.5, and 1 shown
in Table 2 were investigated to determine which, if any, is most suitable. The software was
used to solve for the optimum value of λ1 using maximum likelihood estimation. Once the
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Box–Cox transformation was performed, the normality of the data was evaluated using the
Kolmogorov–Smirnov goodness of fit test.

2.2.6. Multiple Linear Regression

Multiple linear regression was carried out to correlate normalized water quality data
and reflectance values from Landsat 8 imagery, where a fitted (or estimated) value is
calculated using Equation (4) [45]:

yi = b0 + b1x1 + b2x2 + . . . + bixi + εi foreachobservation i = 1, 2 . . . , n (9)

where yi is the estimated Box–Cox normalized value, x1, x2, . . . , xi are Landsat 8 imagery
bands, b0 is the intercept when all the predictors x1, x2, . . . , xi are all zero, b1, b2, . . . , bi
are the linear regression coefficients obtained from the fitted values and ε is a random
error corresponding to the n observations that are also assumed to be uncorrelated random
variables [46].

2.2.7. Model Performance Evaluation

Two indicators were selected to evaluate model performance in estimating water qual-
ity: the coefficient of determination (r2) and the root-mean-square error (RMSE). Equation
(5) was used to estimate r2, which is a number between 0 and 1 that measures how well a
model estimates an outcome [47]:

r2 = 1− ∑n
i=1(ŷi − yi)

2

∑n
i=1(yi − yi)

2 (10)

where yi is the measured water quality parameter, yi is the average water quality parameter,
ŷi is the estimated water quality values, and n is the number of available data.

RMSE statistically assesses differences between values observed and estimated by the
model, the higher the RMSE, the greater the difference between estimated and observed
values. RMSE was calculated using Equation (6) [47,48]:

RMSE =

√
∑N

i=1(yi − ŷi)
2

n
(11)

2.2.8. Multiple Linear Regression Significance Testing

The significance of individual regression coefficients in the multiple linear regression
model was carried out using a t-test. This test measures the contribution of an independent
variable while the remaining variables are still included in the model. For the model
yi = b0 + b1x1 + b2x2 + . . . + bixi if the test is performed for b1, the significance of the
variable x1 is evaluated while controlling for the presence of the variables x2, . . . , xi (i.e.,
the model yi = b0 + b2x2 + . . . + bixi).

To determine whether x1, x2, . . . , xi variables are useful predictors in this model, the
following null and alternative hypotheses were tested:

H0: bi = 0
H1 : bi 6= 0

To carry out this hypothesis test, a p-value was obtained for all coefficients in the
model. Each p-value is based on a t-statistic calculated as:

t =
bi

sbi
(12)
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where sbi is the standard error of the regression coefficient bi, calculated using Equation (8):

sbi =

√
∑ y2

i − b0 ∑ yi − bi ∑ xiyi

n− 2
(13)

The p-value is then compared with a significance level (α = 0.05). This critical value is
typically set for hypothesis testing.

2.2.9. Water Quality Model Validation

A model validation procedure was performed comparing estimated and measured
water quality values not previously used for model development. In this study, the data
used for model validation were 25% of the total field data for the 2015–2017 period and
the total field data for 2018, as shown in Figure 2. RMSE and r2 were used to estimate the
models’ fitness to field water quality measurements.

2.2.10. Water Quality Mapping

Estimated water quality parameters were used to generate simplified models resulting
from the significant testing and validation process. These models were represented spatially
and temporally using GIS tools (raster calculator) and employing QGIS software for TOC,
TDS, and Chl-a estimation.

3. Results and Discussion
3.1. Water Quality from Field Sampling

Data of water quality parameters (TOC, TDS, and Chl-a) measured in the field are
summarized in Figure 3. Figure 3a shows that TOC has similar spatial distribution in
the reservoir remaining within the 3.4 to 5.4 mg/L range, with a slight increase in 2017.
These results agree with values reported by Zhou et al. [49], where TOC concentrations
of around 2.5 mg/L were found in a northeast China reservoir. Few studies have been
carried out on the organic matter in the study area. Gonzalez-Farias [50] (2006) reported
that the mean concentration of particulate organic carbon in the Culiacan River was 1.73 mg
C/L. TDS also showed slight spatial variation (Figure 3b) where 92.4, 93.8, and 117.8 mg/L
mean concentrations were observed in 2015, 2016, and 2017, respectively. These TDS
concentrations were similar to those reported in other reservoirs located close to the ALM
reservoir, such as Huites (124 mg/L), José Ortiz (137 mg/L), and Miguel Hidalgo (132 mg/L)
reservoirs [51]. Chl-a values in the ALM reservoir ranged from 0.1 to 6.1 mg/m3. These
values are within the reported by Fregoso-López et al. [52] who found a maximum Chl-a
concentration of 3.4 mg/m3 and a minimum concentration of 0.3 mg/m3 in the Miguel
Hidalgo y Costilla reservoir located in El Fuerte, Sinaloa.
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Figure 3 also shows that Chl-a levels in 2015 and 2016 were higher than those observed
in 2017. This behavior is contrary to the behavior observed for TOC and TDS, where the
highest concentration was found in 2017 when Chl-a was significantly reduced. Normally,
there should be a correlation between these parameters because an excess of nitrogen and
phosphorus in the water can lead to an overgrowth of algae or phytoplankton, resulting in
higher Chl-a levels and an increase in organic matter and dissolved solids [53]. However,
if the nutrients are depleted faster than they are being replenished, the algae eventually
die and a decrease in Chl-a levels can be observed, and the decomposition of the excessive
organic matter produced by the algae can increase TOC and TDS levels [54].

3.2. Box–Cox Transformation

Table 3 shows the resulting algorithms (a three-year normalized equation, from January
2015 to December 2017) obtained using the Box–Cox transformation for the water quality
parameters studied. The mathematical models provided in Table 3 were rearranged for
their later use to transform the estimated values to their original water quality units. The
models showed a good fit, with r2 values greater than 0.85 in all cases. Table 4 shows
the results of the Kolmogorov–Smirnov goodness of fit test using the normalized water
quality parameters. According to the Kolmogorov one-sample statistic (Dn) values and
their respective p-values, the Box–Cox transformation was a good tool to normalize the
water quality parameters.

Table 3. Mathematical models and r2 values obtained from the Box–Cox transformation.

Parameter Box–Cox Optimized Mathematical Model r2

TOC Box–Cox (TOC) = 1 + (TOC1.3294 − 1)/(1.3294 × 4.573790.329397) 0.96
TDS Box–Cox (TDS) = 1 + (TDS4.16779 − 1)/(4.16779 × 97.64533.16779) 0.88

Chl-a Box–Cox (Chl-a) = 1 + (Chl-a0.333508 − 1)/(0.333508 × 1.435840.666492) 0.85

Table 4. Kolmogorov–Smirnov test for the normalized water quality parameters.

Water Quality Normalized Parameter
Kolmogorov-Smirnov Test

Dn Value p-Value

Chl-a 0.2393 0.2544
TDS 0.1644 0.7149
COT 0.1554 0.7769

Note: p-value > 0.05 suggests that there is not sufficient evidence to conclude that the data is not normally distributed.

3.3. Multiple Linear Regression Modeling and Discriminant Analysis

Multiple linear regression was performed between normalized water quality parame-
ters and band reflectance values extracted from satellite imagery, using B1, B2, B3, B4, B5,
B6, and B7 Landsat 8 bands. In this method, values from the Box–Cox transformation were
considered dependent variables whereas band reflectance values from imagery captured
by the sensor were considered independent variables. Table 5 shows the multiple linear
regression models for the water quality parameters of the ALM reservoir. The multiple
regression models showed fair fitting with r2 greater than 0.80, considered satisfactory
compared with the results of other empirical models used to estimate water quality through
remote sensing [55,56].

A discriminant analysis was then performed to reduce the number of bands used
in each model. A Student’s t-test was carried out to assess whether each band has a
significant effect on the water quality variables. p-values greater than or equal to 0.05 were
considered not significant [57]. After these variables were eliminated, the hypothesis test
was performed again using the simplified model, and the cycle was repeated until the
model included only significant (p < 0.05) independent variables.



Water 2023, 15, 2606 10 of 19

Table 5. Multiple linear regression models for the water quality parameters of the ALM reservoir
based on the reflectance values of the Landsat 8 satellite images.

Parameter Multiple Linear Regression Model r2 RMSE

TOC Box–Cox (TOC) = 9.61963 − 700.238 × B1 + 707.462 × B2 − 39.2047 × B3
− 25.1903 × B4 − 18.2743 × B5 + 216.704 × B6 − 243.629 × B7 0.95 0.165

TDS Box–Cox (TDS) = 34.849 − 3057.55 × B1 + 4137.63 × B2 − 2526.38 × B3 +
2696.15 × B4 + 1827.6 × B5 − 6080.39 × B6 + 2858.29 × B7 0.88 3.867

Chl-a Box–Cox (Chl-a) = −38.8501 + 212.068 × B1 + 1213.14 × B2 + 1207.01 ×
B3 − 2935.1 × B4 + 261.245 × B5 − 2468.64 × B6 + 3907.26 × B7 0.87 3.430

Table 6 shows the band discrimination process for TOC. As shown, six iterations were
used to eliminate non-significant bands without significantly altering the fitting of the
model. Table 7 shows the different p-value for TOC model parameters in each iteration. The
initial mathematical model without band elimination (iteration 1) is the same as presented
in Table 3. The student’s t-test showed that the highest p-value was observed for B4
(Table 7), so this band was eliminated, and another hypothesis test was then performed
generating a simplified model (Table 7, iteration 2) with a similar fit to the original. The
band elimination process from TOC was repeated until only bands with a p-value less
than 0.05 were included (this value is the established significance level for hypothesis
tests). Through this process, B4, B5, B7, B6, and B3 were discriminated against for the TOC
model. Despite the many bands removed, the simplified model presented a similar r2 value
compared to the initial one. This same methodology was carried out for each of the water
quality parameters considered in this study and the results of the simplified models are
shown in Table 8.

Table 6. Models resulting from the discriminant analysis for TOC and their degree of fit.

Iteration Model Discriminated Bands r2 RMSE

1
Box–Cox (TOC) = 9.61963 − 700.238 × B1 + 707.462 × B2 −

39.2047 × B3 − 25.1903 × B4 − 18.2743 × B5 + 216.704 × B6 −
243.629 × B7

0 0.9608 0.1658

2 Box–Cox (TOC) = 9.82457 − 711.379 × B1 + 705.351 × B2 −
48.6016 × B3 − 25.9899 × B5 + 245.128 × B6 − 273.573 × B7 B4 0.9611 0.1676

3 Box–Cox (TOC) = 9.03939 − 661.472 × B1 + 667.836 × B2 −
45.8407 × B3 + 147.039 × B6 − 191.869 × B7 B4, B5 0.9423 0.1694

4 Box–Cox (TOC) = 8.92542 − 682.488 × B1 + 677.616 × B2 −
38.4808 × B3 + 3.95873 × B6 B4, B5, B7 0.9521 0.1829

5 Box–Cox (TOC) = 8.87165 − 688.128 × B1 + 688.322 × B2 −
40.7919 × B3 B4, B5, B7, B6 0.9520 0.1835

6 Box–Cox (TOC) = 9.15197 − 620.429 × B1 + 587.138 × B2 B4, B5, B7, B6, B3 0.9350 0.2024

Table 7. Statistical analysis for the discrimination of variables (bands).

Iteration Parameter Estimate Standard Error t-Statistic p-Value

TOC model with all bands

1

Constant 9.61963 2.15541 4.46302 0.0012
B1 −700.238 100.765 −6.94922 <0.0000
B2 707.462 109.424 6.4653 0.0001
B3 −39.2047 53.3205 −0.735266 0.4791
B4 −25.1903 136.359 −0.184735 0.8571
B5 −18.2743 56.7695 −0.321903 0.7542
B6 216.704 237.583 0.912119 0.3832
B7 −243.629 244.321 −0.997167 0.3422

TOC model after discriminating B4



Water 2023, 15, 2606 11 of 19

Table 7. Cont.

Iteration Parameter Estimate Standard Error t-Statistic p-Value

2

Constant 9.82457 1.46585 6.70228 <0.0000
B1 −711.379 91.8242 −7.74718 <0.0000
B2 705.351 97.8209 7.21064 <0.0000
B3 −48.6016 23.9244 −2.03147 0.0671
B5 −25.9899 40.4164 −0.643053 0.5334
B6 245.128 185.017 1.32489 0.2121
B7 −273.573 187.063 −1.46247 0.1716

TOC model after discriminating B4 and B5

3

Constant 9.03939 0.526595 17.1657 <0.0000
B1 −661.472 56.2812 −11.753 <0.0000
B2 667.836 80.4374 8.30256 <0.0000
B3 −45.8407 23.0887 −1.98542 0.0704
B6 147.039 102.673 1.43211 0.1776
B7 −191.869 134.751 −1.42388 0.18

TOC model after discriminating B4, B5, and B7

4

Constant 8.92542 0.531479 16.7936 <0.0000
B1 −682.488 55.898 −12.2095 <0.0000
B2 677.616 83.0813 8.15606 <0.0000
B3 −38.4808 23.4277 −1.64254 0.1244
B6 3.95873 21.4212 0.184804 0.8562

TOC model after discriminating B4, B5, B7, and B6

5

Constant 8.87165 0.47848 18.5413 <0.0000
B1 −688.128 47.2176 −14.5735 <0.0000
B2 688.322 60.099 11.4531 <0.0000
B3 −40.7919 19.3641 −2.10657 0.0537

TOC model after discriminating B4, B5, B7, B6, and B3

6
Constant 9.15197 0.510097 17.9416 <0.0000

B1 −620.429 42.8204 −14.4891 <0.0000
B2 587.138 44.5094 13.1913 <0.0000

Table 8. Final models after variable discrimination for the different parameters tested.

Parameter Final Model Bands Used r2

TOC Box–Cox (TOC) = 9.15197 − 620.429 × B1 + 587.138 × B2 B1, B2 0.9263

TDS Box–Cox (TDS) = 55.7042 − 3387.46 × B1 + 4108.64 × B2 −
2874.84 × B3 + 3514.37 × B4 + 1386.56 × B5 − 3490.39 × B6 B1, B2, B3, B4, B6 0.8753

Chl-a Box–Cox (Cha-a) = −24.4586 + 1204.69 × B2 + 956.358 × B3 −
2506.71 × B4 + 996.356 × B7 B2, B3, B4, B7 0.8100

Figure 4a shows the estimated and measured TDS values in the ALM reservoir. The
final TDS model accuracy (r2 = 0.875; RMSE = 3.2613) can be considered satisfactory
showing a better fit compared to other studies [58]. This could be attributed to the bands
used for TDS estimation since low model accuracies have been reported in several studies
that have only used B3, B4, and B5 bands (530 to 890 nm) of Landsat 8 [59,60]. According to
Zhao et al. [61] (2020), the B3–B5 wavelength range (530–890 nm) can be used to characterize
whether the water body contains phytoplankton chlorophyll (560–590 nm), cyanobacteria
(620 nm), phycocyanin (650 nm), algae chlorophyll (675 nm), and suspended inorganic
matter (810 nm). However, in this study, the discriminant analysis demonstrated that TDS
estimation should be carried out using the bands B1, B2, B3, B4, B5, and B6 of Landsat
8. The use of a wider wavelength range could explain the satisfactory fit obtained since
higher dissolved content of inorganic and organic substances could be detected, such as
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the colored dissolved organic matter (CDOM) (420–555 nm). Our results agree with Maliki
et al. [62], who successfully predicted the TDS of surface water in Bangladesh using Landsat
8 OLI and multiple linear models (r2 = 0.95).
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Chl-a is the most studied water quality parameter through remote sensing. Results for
Chl-a showed a lower fit than TOC and TDS probably because of the normalization of water
quality data. Several limitations were observed when Chl-a was normalized using the
Box–Cox transformation, which generated the lowest r2 value (see Table 3) in comparison
with TOC and TDS, likely because Chl-a is a biological parameter showing exponential
growth. In addition, Chl-a is more susceptible to seasonal variations related to physical,
chemical, and climatic factors [63,64].

Mohsen et al. [65] used a multi-linear regression technique for the estimation of
Chl-a through remote sensing using Landsat 7 bands B1 and B3 at Lake Burullus, Egypt,
obtaining r2 = 0.86 (RMSE = 34.6). Bohn et al. [66] reported r2 = 0.83 estimating Chl-a using
Landsat 7 bands B3 and B4. The accuracy of these models was similar to the results of
this study (r2 = 0.81, RMSE = 3.1267) (Figure 4c). In the Chl-a model, some bands (such
as B2 and B7) appear in the final model generated and do not appear in other studies,
such as the one performed by Bohn et al. [66]. This is because these studies estimate Chl-a
by calculating predetermined indices such as the normalized difference vegetation index
(NDVI), normalized area vegetation index (NAVI), enhanced vegetation index (EVI), and
ratio vegetation index (RVI).

The results obtained in this study can be considered low compared to those reported
by Tyler et al. [67], (r2 = 0.95) for a linear mixture model used to estimate Chl-a in Lake
Balaton, Hungary, using Landsat TM imagery. The accuracy of the water quality models
can be improved by removing image interferences. For instance, in this study, the DOS
atmospheric correction method was used which assumes that there are dark targets in
the image, such as water and dense vegetation. But when the water body is turbid, such
as the reservoir in this study, the reflection of water in the near-infrared band is close
to 0, which leads to uncertainties of the atmospheric correction over water [68]. Other
atmospheric correction methods have been proven to be effective for turbid waters, such as
ACOLITE [69,70], ACIX-Aqua [71,72], iCOR [73], POLYMER [74], or MDM [68]. Thus, the
performance of these algorithms on the regression models should be investigated in depth
in further studies.

3.4. Model Validation

The remaining 25% of field water quality data (randomly selected data not previously
used for model development) during the 2015–2017 period and 100% of the data obtained
from January 2018 to June 2019 were used to validate the simplified models, showing a
fair fit between estimated and observed data. The estimated and observed water quality
data for the model development and validation is shown in Table S1. A good fit of 93%
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and 81% was obtained for TOC and Chl-a, respectively (Figure 5b,c). TDS showed a good
adjustment with 98% (Figure 5a). Therefore, this study suggests the high feasibility to
develop mathematical models based on water quality parameters measured in the field
and using satellite images.
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3.5. Spatial and Temporal Distribution of Water Quality Parameters from Optimized Models

Simplified models were used to evaluate the spatial and temporal distribution of water
quality parameters (TOC, TDS, and Chl-a) in the study area (Figures 6 and 7). Figure 6
shows the temporal behavior of TOC, TDS, and Chl-a in the ALM reservoir. In this figure, a
time series comparison between the observed and estimated water quality values is shown.
Only two observations are shown per year because water quality monitoring was carried
out semi-annually. These observations represent the mean value of the four sample sites in
the reservoir.
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The similarity between the values estimated using simplified models derived from
remote sensing and field measurements was explained using the RMSE and coefficient of
determination (r2) indicators. A very low RMSE value was obtained when TOC observed
and estimated concentrations were contrasted (Figure 6b). This figure also shows a fair
estimation for TDS and Chl-a from the optimized models and satellite imagery (Figure 6a,c).
The r2 values obtained for TDS and Chl-a were higher than 0.81, which indicated a low
variation between the observed and estimated water quality parameters.

This study estimated TOC, TDS, and Chl-a in the ALM reservoir on a bimonthly basis,
despite the water quality information was available every six months. One of the main
problems with empirical models is that they can generate unreliable results when applied
at sites where they were not generated or on dates different from those used for their
generation. The results demonstrated that the estimated water quality data agreed with
the data observed in the ALM reservoir. These models were validated and suggest the
feasibility of using Landsat imagery to estimate TDS, TOC, and Chl-a, which can be used
as a decision-support tool for water quality management and policy analysis.

Figure 7 shows the spatial behavior of the TOC, TDS, and Chl-a through time (using
the ISO 8601 date format YYYY-MM-DD). In this figure, a linear color gradient was used
based on the RGB color model, where red and blue colors correspond to the highest and
lowest concentrations of the water quality parameters depicted, respectively. Figure 7b
shows that the TOC concentration in the ALM reservoir is higher during September and
October, corresponding to the rainy season, associated with the entry of organic matter
into the waterbody by runoff. Similarly, TOC concentrations of the nearshore area were
higher than those within the ALM reservoir. According to this figure, the maximum TOC
content occurred in the ALM upper reaches during May, when the water level in the
reservoir is very low. Therefore, TOC behavior in the ALM reservoir is highly related to the
biogeochemical processes of organic carbon. Hence, continuous monitoring of TOC using
remote sensing could provide a quantitative basis for the estimation of carbon dioxide
emission and sediment accumulation.

TDS showed a slight increase during the rainy season as runoff incorporates mineral
salts into the reservoir (Figure 7a). Chl-a showed a slight increase in the first months of
the year (Figure 7c) probably related to the lentic regime of the reservoir and the absence
of rain. The spatial water quality variation observed in this study corresponds to water
characteristics observed in waterbodies located in tropical regions [26,27,40,75].

4. Conclusions

This study proposed a methodology to estimate water quality parameters using
satellite images. We proposed a methodology for band selection, discrimination, and water
quality modeling based on ordered and standardized steps. However, it is important to
highlight that this methodology was only validated for TOC, TDS, and Chl-a in the ALM
reservoir in Mexico. Further studies should be focused on obtaining data from other water
bodies to verify whether the methodology could be generalized.

The Box–Cox normalization proved to be effective in normalizing field water quality
data, which was then used to find an optimal relationship with reflectance data from satellite
bands. The models proposed were found robust since high coefficient of determination (r2)
values were obtained for the different water quality parameters estimated at the different
stages (model development, discrimination, and validation). The obtained models were
then used to estimate water quality parameters during periods where field monitoring was
not conducted, which represents a crucial tool for decision-making.

This study provides an economical and effective alternative to monitor the water
quality of a large water body in a short time based on a standardized repetitive basis. The
methodology provides the spatial and temporal behavior of surface water quality, which
can be used for water resources management. In this sense, this tool could contribute to
improving the monitoring frameworks in many developing countries in the world, which
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are limited by the expensive and time-consuming traditional methods for assessing and
monitoring water quality.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w15142606/s1, Table S1. Estimated and observed water quality
data for the model development and validation.
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