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Abstract: The soil water content (SWC) is a critical factor in agricultural production. To achieve
real-time and nondestructive monitoring of the SWC, an experiment was conducted to measure the
hyperspectral reflectance of soil samples with varying levels of water content. The soil samples were
divided into two parts, SWC higher than field capacity (super-θf) and SWC lower than field capacity
(sub-θf), and the outliers were detected by Monte Carlo cross-validation (MCCV). The raw spectra
were processed using Savitzky–Golay (SG) smoothing and then the spectral feature variable of SWC
was extracted by using a combination of competitive adaptive reweighted sampling (CARS) and
random frog (Rfrog). Based on the extracted feature variables, an extreme learning machine (ELM),
a back-propagation artificial neural network (BPANN), and a support vector machine (SVM) were
used to establish the prediction model. The results showed that the accuracy of retrieving the SWC
using the same model was poor, under two conditions, i.e., SWC above and below θf, mainly due to
the influence of the lower accuracy of the super-θf part. The number of feature variables extracted by
the sub-θf and super-θf datasets were 25 and 18, respectively, accounting for 1.85% and 1.33% of the
raw spectra, and the variables were widely distributed in the NIR range. Among the models, the best
results were achieved by the BPANN model for both the sub-θf and the super-θf datasets; the R2p,
RMSEp, and RRMSE of the sub-θf samples were 0.941, 1.570%, and 6.685%, respectively. The R2p,
RMSEp, and RRMSE of the super-θf samples were 0.764, 1.479%, and 4.205%, respectively. This study
demonstrates that the CARS–Rfrog–BPANN method was reliable for the prediction of SWC.

Keywords: soil water content; hyperspectral reflectance; remote sensing retrieval; variable extraction;
machine learning

1. Introduction

Water plays an important role as a transmitter in the SPAC (Soil–Plant–Atmosphere
Continuum) system, creating a unified, dynamic, and interconnected system of mutual
feedback between the soil, plants, and atmosphere. The soil water content (SWC) is a crucial
parameter of soil physicochemical properties and is one of the necessary conditions for
soil to nurture life. It is also one of the nonconstant parameters in agricultural, ecological,
hydrological, and other research fields [1]. The SWC has been listed as an essential climate
variable by the Global Climate Observing System [2]. In the agricultural industry, the SWC
has always been a very important indicator, mainly playing a role in decision-making for
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irrigation management, efficient water use, and yield prediction [3]. Therefore, achieving
rapid and accurate monitoring of the SWC status has always been a key concern for scholars,
and the results of such research will play an important role in agricultural production.

Different methods have been developed to measure the SWC, including the oven-
drying method, the resistance method, and the tensiometer method. Among the multitude
of methodologies, the oven-drying method provides the most precise measurement for
SWC. However, most of these methods have certain limitations. For instance, the oven-
drying method involves destructive sampling, a tedious process, and poor real-time data [4].
The resistance soil moisture sensor is influenced by factors such as air gap, soil salinity,
temperature, and bulk density, and even requires specific calibration [5]. Tensiometers have
limitations such as lag and susceptibility to soil temperature and salinity, and they also
require regular manual monitoring and maintenance [6]. Furthermore, these traditional
methods are limited to point-scale measurements and do not provide spatially represen-
tative results, making it challenging to meet the requirements of real-time, large-scale,
dynamic moisture estimation for precision agriculture. The active heated fiber optics
(AHFO) method has demonstrated the potential to continuously determine the SWC at the
field scale [7–9]. However, poor mobility, high cost, and professional post-maintenance
have limited the widespread application of AHFO. Therefore, achieving large-scale SWC
determination in real-time with accuracy and continuity remains a challenging task.

Spectrum technology has emerged as a rapidly developing analytical technique in
recent years owing to its non-destructiveness, accuracy, and speed. Due to the inevitable
defects of traditional SWC methods in monitoring on the spatial scale, spectrum technology
has become a research direction for many scholars in SWC monitoring [10,11]. In the early
stages of SWC spectral retrieval research, the majority of scholars focused on the diagnosis
of soil moisture deficiency (much lower than field capacity (θf)). Bowers and Hanks [12]
discovered that soil reflectance decreased as soil water increased in bare ground, and the
spectral reflectance curve could be altered by the soil water [13,14]. As research progressed,
the situation in which SWC was higher than the θf was studied. Neema et al. [15] pointed
out that soil spectral reflectance decreased with increasing SWC when the SWC was below
the θf and increased with increasing SWC when the SWC exceeded a certain threshold
value. Liu et al. [16] demonstrated that the threshold is usually greater than the θf. Previous
remote sensing retrieval studies tended to focus on the SWC below θf [17], and there were
few studies reported on remote sensing retrieval SWC above θf. However, in the realm of
agricultural production, farmers may face many situations that lead to a high SWC, such as
heavy rainfall, over-irrigation, and poor drainage. This can negatively impact crop growth,
resulting in a reduction in crop yield and even total crop failure [18]. Therefore, it is also of
practical importance to diagnose an SWC above the θf. However, as the reflection spectrum
of soil is a process that reduces initially and subsequently increases with an increase in
SWC, using the same model to invert the SWC under the two conditions of water content
above and below θf may lead to poor accuracy.

Hyperspectral data contain thousands of bands, many of which are mixed with noise
and interfering variables. Data preprocessing and feature extraction algorithms can reduce
noise, remove interfering variables, and improve model prediction [19]. However, when
only one method is used to extract feature variables, the stability might be poor, and too
many variables may be located, which would make the prediction model too complex [20].
To address the deficiency with feature band extraction methods, different variable extraction
methods were used, for example, uninformative variable elimination plus the successive
projections algorithm (UVE–SPA). The UVE–SPA method can cause the correlation between
feature variables and targets to be more significant, while also reducing the number of
variables [21]. Xu et al. [22] employed competitive adaptive reweighted sampling plus the
successive projections algorithm (CARS–SPA) method to extract variables, which simplified
the modeling process and improved the prediction accuracy of potato dry matter. Different
coupled feature extraction methods have been studied in some fields, but it remains to be
investigated whether the method can effectively extract SWC-sensitive bands (the SWC
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of samples included both lower and higher θf) and whether the dimensionality of the
hyperspectral data can be sufficiently reduced to simplify model building.

Bowers and Hanks [12] reported absorption bands for soil water at 1400, 1900, and
2200 nm of indoor soil spectral reflectance, and the SWC could be predicted from the
feature band 1900 nm. However, 1400 and 1900 nm are in the water–air absorption band,
which is difficult to apply outdoors. Sun et al. [23] analyzed the absorption spectrum of
black soil in northeast China and observed a strong correlation between the soil absorption
spectrum and the SWC. The maximum absorbance peak point was found at 1946 nm, and
the prediction dataset R2 of the one-dimensional linear regression model of SWC was
greater than 0.95. However, the soil composition is complex and variable, and a simple
linear model may not retrieve the SWC accurately. Relevant findings have revealed that
the relationship between soil spectral reflectance and SWC in a large range was usually
nonlinear [13,16,24–26].

Machine learning has been widely applied in various fields in recent decades because
of its ability to learn and approximate complex nonlinear mappings. In particular, quantita-
tive remote sensing in agriculture has become an active research area for machine learning
applications. The establishment of spectral monitoring of SWC based on the machine
learning method is also an important research field. Research on estimating the SWC
in saline soils also indicates that machine learning methods have more advantages, for
example, the support vector machine model had better overall fitting ability compared to
the multiple linear regression and partial least squares regression models [27]. The study of
the spectral estimation of SWC in different soils (sandy and loamy) demonstrated that the
nonlinear method (back propagation artificial neural network, BPANN) can predict well in
single-soil and mixed-soil samples with R2 > 0.8 [28]. Previous studies have demonstrated
that machine learning methods are capable of effectively handling the nonlinearity of soil
reflectance and SWC. However, further research is required to determine which of the
commonly used machine learning models is best suited for inverting the SWC.

Based on this, the aims of this study were to (1) divide the sample into two parts
with θf as the threshold to establish models, (2) extract the SWC-sensitive bands using a
combination of the competitive adaptive reweighted sampling (CARS) and random frog
(Rfrog) algorithms and evaluate the effectiveness of this integrated approach for identi-
fying SWC-sensitive bands, and (3) establish and compare the performance of machine
learning methods (extreme learning machine, back-propagation artificial neural network,
and support vector machine) to select the optimal model for SWC prediction.

2. Materials and Methods
2.1. Preparation of Soil Samples

In this study, soil samples with a certain range of water content were obtained in
the laboratory. Red soil was used for the soil sample preparation (porosity, 61.65%; bulk
density, 1.01 g/cm3; clay, 20.03%; silt, 62.32%; sand: 17.65%), and the collected soil raw
materials were air-dried, finely ground, cleared of impurities, and made into test soil by
passing through a 2 mm size sieve to reduce the effect of soil particle diameter on the
spectral determination. The prepared soil was packed into a disc with a 16 cm inner
diameter and 1.7 cm height, with several small holes at the bottom. After this, the soil
sample surface was leveled and then placed into a tray with a water depth of approximately
1 cm to be saturated. The disc was removed and placed on air-dried soil lined with filter
paper to allow the water to drain out naturally. Soil samples with various water contents
were obtained by controlling the duration of the water removal. This process of soil
sample preparation can avoid the uneven surfaces in soil samples caused by adding water
from above.

2.2. Remote Sensing Data

The hyperspectral reflectance of the soil samples was determined using an SR-2500
portable geophysical spectrometer (Spectral Evolution, Inc., 1 Canal St., Unit B-1, Lawrence,
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MA 01840 USA). The wavelength range of the instrument was 350–2500 nm, with a total
of 2151 channels. The portable spectroradiometer was equipped with optical fiber with
a length of 1.5 m and an 8◦ field of view (FOV). The sampling intervals were 1.5 nm @
350–1000 nm and 6 nm @ 1000–2500 nm, and the instrument automatically interpolated the
measurement results into 1 nm intervals. To obtain steady spectral data, we chose a clear
and cloudless day between 10:00 and 14:00 local time when the solar altitude angle and
light intensity were optimal. During sampling, the optical fiber was placed 15 cm above
the soil sample in a vertically downward position to ensure that the FOV coverage did not
exceed the disc range. The hyperspectral data were collected 10 times for each soil sample,
and the average value was utilized as the hyperspectral reflectance to reduce random errors.
The instrument was calibrated using a standard whiteboard before measurement, and the
calibration process was repeated every 10 min.

2.3. Soil Water Content Determination

After collecting the hyperspectral data, the SWCs of the samples were determined
by the drying method (Table 1). The Wilcox method was used to measure the field water
capacity of the experiment soil, which was 31.63% (mass water content).

Table 1. The descriptive statistics of the soil water content of samples.

Sample Size Max (%) Min (%) Mean (%) CV (%)

139 47.88 13.48 28.52 26.97
Note: CV means the coefficient of variance of the dataset. The same applies subsequently.

2.4. Spectral Preprocessing

In this study, the soil spectral reflectance was analyzed only in the 350–1349 nm and
1451–1800 nm bands (a total of 1350 bands) due to the presence of a strong absorption
band of water near 1400 nm and the presence of large signal noise for reflectance greater
than 1800 nm. During the acquisition process, the sample spectra were frequently dis-
turbed by stray light, baseline drift, and other factors, which had an impact on the final
analysis results. Therefore, it was necessary to preprocess the raw spectra. Savitzky–
Golay (SG, window width, 3; polynomial, 1) smoothing was utilized to preprocess the raw
spectral data.

2.5. Elimination of the Outliers and Sample Data Division

The collection, processing, and analysis of soil samples might introduce a degree of
error, particularly human measurement error, which could affect subsequent data analysis
and modeling. Samples with errors are called outliers, and it is often necessary to re-
measure or eliminate them to minimize their impact on the subsequent processing results.
To address the issue of outliers in the samples, this study employed Monte Carlo cross-
validation (MCCV) [29] to identify them. The MCCV could efficiently detect outliers in the
spectral array by analyzing the sensitivity of the prediction error to anomalous samples.

In the present study, all data were processed centrally. A total of 1000 PLSR models
with SWC as the dependent variable and raw spectrum as the independent variable were
established using MCCV, with a ratio of randomly selected samples of 0.7. The prediction
error of each sample in the model was calculated, and the mean (MEAN) and standard
deviation (STD) of the prediction errors for each sample were determined. A scatter plot
illustrating the MEAN–STD of the sample set was created. Finally, 2.5 times the average
value of either the MEANs or the STDs was taken as the threshold. The complete flow of
the MCCV is shown in Figure 1.
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Figure 1. The flow chart of MCCV.

During model construction, Sample Set Partitioning based on joint X–Y distance (SPXY)
was implemented to divide the samples into representative calibration and prediction
datasets with a ratio of 2:1. The SPXY algorithm, originally developed by Galvao [30],
involved the calculation of the distance between each sample using spectral and target
values as characteristic parameters to ensure difference and representativeness between the
calibration and prediction datasets. This method effectively covered the multidimensional
vector space and improved the model’s prediction accuracy.

2.6. Feature Variable Extraction

The hyperspectral data contain a large amount of redundant data and irrelevant infor-
mation in addition to information about the SWC, possibly leading to model complexity.
Selecting important bands for the modeling not only reduces the complexity of the model
but also results in better performance and higher accuracy.

In this study, competitive adaptive reweighted sampling (CARS) was chosen for
spectral feature extraction [31]. The CARS algorithm mimicked the “survival of the fittest”
principle of Darwinian evolutionary theory in selecting variables by treating wavelength
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variables as individual entities. During the selection process, bands with a strong adaptive
capacity were retained, while those with a weak adaptive capacity were eliminated. As
the CARS algorithm uses Monte Carlo sampling to randomly select modeling samples, the
variable regression coefficients would change due to the random sample selection, and the
absolute value of the regression coefficients cannot entirely indicate the significance of the
variables, which affected the accuracy of the model.

To mitigate the influence of the randomness of the CARS algorithm, the random frog
(Rfrog) algorithm was adopted to conduct a secondary data filtration after feature extraction
by CARS, further simplifying the model while ensuring its accuracy. Rfrog is a feature
selection algorithm proposed by Li [32], which operates iteratively. The variable selection
process was executed using the reversible jump Markov chain Monte Carlo (RJMCMC)
framework. A sufficient number (≥10,000) of partial least squares regression (PLSR) models
were built to calculate the selection probability of each band, and the probability of each
band being selected was calculated in each iteration. The more information a band contains,
the greater its selection probability. After completing the iterations, bands were ranked by
their probability of being selected, and variables with a high probability of being selected
were preferred as feature variables.

2.7. Modeling Method

In this study, based on the nonlinear characteristics between the soil spectral reflectance
and the SWC [13,16], three nonlinear models, extreme learning machine (ELM), back-
propagation artificial neural network (BPANN), and support vector machine (SVM), were
selected for modeling.

The ELM is a single-hidden-layer feedforward neural network (SLFN) learning algo-
rithm developed by Huang [33]. In contrast to conventional gradient-based feedforward
neural network learning algorithms, the ELM randomly assigns weights and biases to
the input layer. This algorithm’s execution process may not require artificial parameter
adjustment, avoiding repetitive iterations in the traditional training algorithm. As a result,
the model trains extremely fast and achieves high generalization performance. In this work,
the activation function of the hidden-layer neurons was set to “sigmoid” by default, and
the number of hidden layers was initially set at 3, gradually increasing to 100 in steps of
1. Each model structure was operated multiple times to determine the optimal number of
hidden-layer nodes based on the best results trained.

The BPANN is a widely used machine learning algorithm based on the gradient
descent method, which uses gradient search techniques to reduce the mean squared error
between the actual output value and the desired output value of the network. It consists
of an input layer, a hidden layer, and an output layer, each containing several nodes. The
weights of each node are calculated through self-learning to derive the training results.
These results are analyzed for errors with the expected outcomes, and if the training results
do not meet expectations, the weights are modified to reduce the errors. Continuous
iteration helps to achieve consistency with the expected results and to minimize errors. The
training function of the BPANN model was “newff”; the maximum iteration number was
10,000; the minimum error of the training target was 0.000001; the learning rate was 0.01;
and the number of hidden-layer nodes was determined using the same method as for ELM.

The SVM is a learning system that uses linear function hypotheses in high-dimensional
feature spaces [34]. Based on minimal structural risk, this method can better address
practical problems such as the curse of dimensionality and overfitting. The proposed model
effectively handles small samples, nonlinearity, high dimensions, and local minima and
has good generalization ability. To better address the nonlinear characteristics of the data,
the radial basis function (RBF) was used as SVM’s kernel function in this study. There
were two important parameters that needed to be adjusted in the model, i.e., the penalty
factor (c) and the kernel function parameter (g). If either c or g is too large, the model
prediction tends to be overfitted. By contrast, if either is too small, the model prediction
tends to be underfitted. Either extreme situation could result in poor generalization ability.
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A 5-fold cross-validation combined with the grid search method was used to find the
optimal penalty factor c and kernel function parameter g within the range [2−10, 210], with
the step size 20.5 to determine the final model.

2.8. Model Evaluation Metrics and Software

The coefficient of determination (R2), root mean square error (RMSE), and relative root
mean square error (RRMSE) were selected as the evaluation metrics. Generally, RRMSE > 10%
represents that the model accuracy is excellent; furthermore, 10% < RRMSE < 30% represents
that the model accuracy is good, and RRMSE > 30% represents that the model accuracy is poor.

The Unscrambler X 10.4 software was used for spectral preprocessing (SG smoothing).
MATLAB 2020a was adopted for feature extraction and model building. Excel 2021 was
employed for data analysis and scientific drawing.

3. Results
3.1. Spectral Preprocessing and Data Analysis

A prediction model was established by using partial least squares regression (PLSR)
based on the full, pretreated spectrum (Figure 2). The scatter plot of parts with higher water
content is more discrete than others, especially in the prediction dataset. Previous studies
have shown that the soil spectral reflectance decreases as the SWC increases. However,
when the SWC exceeds the θf of the soil, the soil spectral reflectance increases as the SWC
increases.
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Figure 2. PLSR model based on the full, pretreated spectrum. (a) Calibration dataset of PLSR and
(b) prediction dataset of PLSR. Blue scatter points represent sub-θf samples, while red scatter points
represent super-θf samples; the black fitting line represents the total samples.

Considering this characteristic of soil reflectance, the results of the PLSR were divided
into two parts: SWC higher than field capacity (super-θf) (red scatter points in Figure 2) and
SWC lower than field capacity (sub-θf) (blue scatter points in Figure 2). Compared with the
sub-θf samples, the accuracy of the model was lower in the super-θf samples with R2 = 0.439
for calibration and R2 = 0.205 for prediction. This indicates that combining the super-θf
and sub-θf samples may be unreasonable to establish a model for the SWC prediction. To
obtain a higher-accuracy model, the subsequent related work divided the soil samples into
two parts: sub-θf contained 84 samples, and super-θf contained 55 samples. The two datasets
were modeled independently.
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3.2. Identification of the Outliers and Sample Division

The MCCV method was used to identify outliers; data centering was processed first,
and the best latent variables were determined by PLSR. A set of predicted errors for
each sample were obtained by using the MCCV method, and the MEAN and STD of the
predicted errors were determined. A scatter plot of MEAN–STD was drawn (Figure 3),
with 2.5 times the average value of MEAN and STD as the threshold (represented by the
dotted line in Figure 3). The samples outside the dotted line were identified as outliers.
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As shown in Figure 3a, the sub-θf samples numbered 1, 2, 4, 42, and 84 were identified
as outliers that should be eliminated, leaving 79 samples. As shown in Figure 3b, the
super-θf samples numbered 13, 40, 54, and 55 were identified as outliers that should be
eliminated, leaving 51 samples. The results of the descriptive statistics of the samples are
displayed in Table 2. Based on the SPXY method, the calibration dataset and prediction
dataset of the super-θf and sub-θf samples are shown in Table 3.

Table 2. Descriptive statistics of the samples divided by θf as the threshold.

Samples Sample Size Max (%) Min (%) Mean (%) CV (%)

super-θf 51 43.13 31.72 35.87 9.29
sub-θf 79 31.59 14.90 23.71 18.91

Table 3. Descriptive statistics of the calibration dataset and prediction dataset.

Samples Dataset Sample Size Max (%) Min (%) Mean (%) CV (%)

super-θf

calibration
dataset 34 43.13 31.72 36.25 10.04

prediction
dataset 17 40.36 31.79 35.11 7.24

sub-θf

calibration
dataset 53 31.59 14.90 23.87 19.54

prediction
dataset 26 30.85 15.65 23.40 17.78

3.3. Feature Variable Extraction

For the feature variables extracted by the CARS method, the number of Monte Carlo
sampling runs was set as 50 in the fivefold cross-validation, and all the data were processed
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centrally. As the number of sampling times increased, the number of extracted feature
bands gradually decreased, eventually tending to zero (Figure 4a). During this process, the
root mean square error of cross-validation (RMSECV) of the fivefold interaction validation
PLSR model showed a trend of first decreasing and then increasing (Figures 4b and 5b).
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As for the sub-θf sample data, when the number of samples was less than 22 (cor-
responding to the location of “*” in Figure 4c), the RMSECV of the model continuously
decreased as the number of samples increased (Figure 4b). The RMSECV reached a mini-
mum value of 1.082 when the number of samplings was 22, indicating that the wavelength
variables irrelevant to the SWC had been eliminated at this point. When the number of
samples continued to increase, the number of spectra slowly decreased, and the regression
coefficient path changed dramatically. This indicates that the redundant variables in the
spectra had all been removed before “*”; the wavelength variables removed by the model
were correlated with the SWC after “*”, and the loss of relevant information caused the
RMSECV of the model to gradually increase.

According to the minimum RMSECV in Figure 4b, the optimal subset of feature
variables corresponding to the “*” sign was extracted. At this point, the number of sampling
times was 22, and the subset corresponding to 83 feature variables was mainly distributed
over the ranges 366–370, 642–657, 943–967, 1157–1163, 1214–1221, and 1453–1797 nm
(Figure 6).
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Similarly, in the super-θf sample data, the RMSECV value of the fivefold cross-
validation PLSR model was minimized when the number of samples was 24 (at the location
corresponding to the “*” sign in Figure 5c), demonstrating that the model worked optimally
at this time (Figure 5b). Combined with the minimum RMSECV value in Figure 5b, the op-
timal subset of spectral variables corresponding to the “*” sign was selected. At this point,
the number of sampling times was 24, and the number of feature variables corresponding
to the subset was 63, mainly distributed over the ranges 932–993, 1118–1146, 1269–1278,
and 1453–1791 nm (Figure 6).

The Rfrog method was used for the secondary screening of the feature extraction re-
sults by CARS. The data were processed in a centralized manner. The number of simulation
iterations and the initial model variables of Rfrog were set to 10,000 and 6, respectively. The
results of each wavelength selection probability are shown in Figure 7a,c.
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Figure 7. Rfrog run results. (a) Wavelength selection probability of sub-θf samples, (b) determination
of threshold of wavelength for the sub-θf samples, (c) wavelength selection probability of super-θf

samples, (d) determination of threshold of wavelength for the super-θf samples.

To extract the feature variables, all the wavelengths were arranged in descending order
according to their selection probabilities; the wavelengths were then added one by one to
the PLSR model in turn, based on the criterion that a larger selection probability indicated
a more important wavelength. The curve representing the RMSE of prediction dataset
(RMSEp) of PLSR with the number of selected wavelengths was established (Figure 7b,d).

Through the number of feature wavelengths and the RMSEp value of PLSR, the num-
ber of feature variables was determined. For the sub-θf samples, the first 25 wavelengths
were selected as feature variables, and the RMSEp reached the minimum value of 1.31
(Figure 7b, red triangle position) and corresponded to a wavelength selection probability
threshold of 0.33 (Figure 7a, red dashed-line position). The feature wavelengths were
mainly distributed over 366–370 nm, 1159–1161 nm, 1454–1479 nm, and 1598–1797 nm
(Figure 8). For the super-θf samples, the first 18 wavelengths were selected as feature
variables, and the RMSEp reached the minimum value of 1.96 (Figure 7d, red triangle posi-
tion) and corresponded to a wavelength selection probability threshold of 0.21 (Figure 7c,
red dashed-line position). The feature wavelengths were mainly distributed over 932 nm,
990 nm, 1274–1278 nm, 1484 nm, 1485 nm, 1525 nm, 1526 nm, and 1678–1768 nm (Figure 8).
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Figure 8. CARS–Rfrog secondary feature extraction wavelength distribution.

3.4. Model Establishment and Evaluation

The feature variables extracted by the CARS–Rfrog method in Section 3.3 were used
as independent variables. The ELM, BPANN, and SVM methods were utilized to establish
regression models. In the sub-θf sample data, all the machine learning models had high
accuracy, with R2c and R2p > 0.9, RMSEp < 1.6%, and RRMSE < 10% (Table 4). Specifically,
the BPANN model had an R2c of 0.953, R2p of 0.941, and RRMSE of 6.685%, which was the
best model among the three machine learning models. In the super-θf sample data (Table 5),
the accuracy of all the machine learning models was significantly lower than that of the
sub-θf sample, and the R2c and R2p of all three models were lower than 0.8. The RRMSE
of all three models was less than 10%, which could indicate a greater ability to predict the
SWC, with the BPANN model having the best results with an R2c, R2p, and RRMSE of
0.785, 0.764, and 4.205%.

Table 4. The modeling results of the SWC of sub-θf samples according to different models.

Modeling
Calibration Dataset Prediction Dataset

Parameters
R2c RMSEc/% RRMSE/% R2p RMSEp/% RRMSE/%

ELM 0.931 1.213 5.087 0.924 1.552 6.610 Number of HLNs: 9
BPANN 0.953 1.007 4.225 0.941 1.570 6.685 Number of HLNs: 4

SVM 0.942 1.117 4.688 0.934 1.370 5.837 C = 32, g = 0.0625

Note: HLNs represent the hidden-layer nodes. The same applies subsequently.

Table 5. The modeling results of the SWC of super-θf samples according to different models.

Modeling
Calibration Dataset Prediction Dataset

Parameters
R2c RMSEc/% RRMSE/% R2p RMSEp/% RRMSE/%

ELM 0.751 1.790 4.943 0.748 1.830 5.202 Number of HLNs: 9
BPANN 0.785 1.724 4.759 0.764 1.479 4.205 Number of HLNs: 4

SVM 0.684 2.149 5.933 0.556 1.930 5.485 C = 22.630, g = 0.125

The prediction of SWC by BPANN was optimal for both the sub-θf samples and the
super-θf samples. Considering the evaluation indicators (R2, RMSE, and RRMSE), the
prediction accuracy of the models was BPANN > SVM > ELM for the sub-θf samples and
BPANN > SVM > ELM for the super-θf samples. Figures 9 and 10 show the predicted and
measured values of the sub-θf samples and super-θf samples. The closer the sample points
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were to the 1:1 line, the better the model prediction ability was. In the sub-θf samples
for the prediction dataset, the slope of the ELM, BPANN, and SVM fitting line was 1.121,
1.224, and 1.093, respectively. Therefore, the model did not significantly overestimate
or underestimate. For the scatter plot of the super-θf samples, the points were all more
scattered (with a larger RMSE), which also indicated that the prediction accuracy of SWC
for the super-θf samples needed to be improved.
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Figure 9. The results of sub-θf samples according to different models. (a) Calibration dataset,
ELM; (b) prediction dataset, ELM; (c) calibration dataset, BPANN; (d) prediction dataset, BPANN;
(e) calibration dataset, SVM; (f) prediction dataset, SVM.
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Figure 10. The results of super-θf samples according to different models. (a) Calibration dataset,
ELM; (b) prediction dataset, ELM; (c) calibration dataset, BPANN; (d) prediction dataset, BPANN;
(e) calibration dataset, SVM; (f) prediction dataset, SVM.

4. Discussion

Initially, it was believed that the soil spectral reflectance declined with increasing
SWC due to the absorption effect of water on the spectrum [12,35]. However, subsequent
studies [14] have shown that when the SWC exceeds θf, a water film forms on the surface
of soil particles, resulting in specular reflection and causing the soil spectral reflectance to
increase with increasing SWC. Previous studies tended to control the measured sample SWC
to remain below θf when establishing a prediction model of SWC based on hyperspectral
reflectance or possibly did not distinguish whether the SWC was higher or lower than the
θf. Nonetheless, considering that the soil reflectance changing process decreased and then
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increased with θf as the threshold and the full-spectrum modeling of samples by PLSR in
this paper, it was found that the model performed poorly in the super-θf samples, with the
accuracy being much lower than that of the sub-θf sample part of the model. Therefore, this
paper modeled samples with water content below θf and above θf separately to improve
the accuracy of the SWC prediction model based on the hyperspectral data.

The feature variables extracted by CARS–Rfrog in this paper were mainly concentrated
in the near-infrared (NIR) region, with almost none in the visible band (except for the
366–370 nm range). This is consistent with the findings of previous studies [36,37]. The NIR
spectrum is generated due to the vibrational energy level jumps and rotational energy level
jumps in molecules. When the vibration and rotation of a molecule jump from the ground
state or low-energy level to a higher-energy state, they absorb a certain amount of infrared
energy from the external incident electromagnetic radiation. In the mid-infrared region,
fundamental frequency absorption occurs, while in the NIR region, combined frequency
and doubled frequency absorption occur. There are three fundamental frequencies of water
molecules in the near-infrared band [38]. Therefore, the NIR region of the band can reflect
changes in soil moisture.

In this study, secondary extraction (CARS–Rfrog) was applied to extract variables of
hyperspectral reflectance. Firstly, CARS was used for the initial screening of the feature
variables. However, the CARS extraction results were random [20], and the feature variables
extracted by only one method are numerous, making the model too complex to model.

Therefore, the feature variables extracted by CARS were subjected to a second extrac-
tion using the Rfrog method to obtain the variables with the least redundant information.
By retaining bands with high correlation and downscaling and re-extracting the feature
variables, we simplify the model. The Rfrog method applied the partial least squares linear
discriminant analysis to construct the classifier and combined the strong ability of synergy
interval partial least squares (SiPLS) to handle highly correlated data [32].

The Rfrog method combines the ideas of the memetic algorithm and the particle swarm
optimization algorithm, so it has the characteristics of survival of the fittest and random
search. It also takes advantage of CARS to simplify the complexity of wavelength selection.
Through secondary feature extraction, the number of bands in the modeled data was
greatly reduced. Rfrog reduced the number of variables of the super-θf and sub-θf samples
extracted using CARS from 83 and 63 to 25 and 18, respectively. CARS–Rfrog minimized
the redundant information and achieved the effect of data dimensionality reduction.

Among the three machine learning models, the BPANN model had the highest accu-
racy (Tables 3 and 4), which could deliver a better prediction of SWC. This might mean that
the SVM is more suitable for fewer-sample modeling, while the ELM tends to have low
and unstable prediction accuracy when dealing with the quantitative analysis of complex
samples [39]. However, the ELM is fast learning and has a strong generalization ability,
so it is frequently used in scenarios that require real-time computing. The BPANN is
expressive and simple, and the theory also demonstrated that a three-layer neural network
could approximate a nonlinear continuous function with arbitrary accuracy, which makes
it possible to solve complex nonlinear problems with internal mechanisms. However, its
generalization ability is slightly inferior, and it easily falls into locally optimal solutions [40],
and subsequent studies have attempted to apply optimization algorithms to optimize
BPANN and obtain a model with better performance. Therefore, CARS–Rfrog–BPANN is
recommended as a prediction model for the SWC of red soil.

5. Conclusions

In this study, soil samples were prepared in the laboratory, and the hyperspectral
reflectance was acquired outdoors. The samples were divided into two parts (sub-θf and
super-θf) with θf as a threshold to obtain a more accurate SWC prediction model. The
outliers were detected using MCCV; the spectral feature variables were extracted using
a secondary extraction method (CARS–Rfrog), and the prediction model of SWC was
established using the machine learning method. We draw the following conclusions:
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(1) The poor performance of the model in the fraction of water content above the θf when
the model was built with full-spectrum PLSR, indicated that using the same model for the
simultaneous inversion of SWC under both conditions of water content above or below θf
led to poor inversion accuracy of samples above the θf. (2) By combining CARS and Rfrog
for the extraction of the feature variables of soil reflectance, the feature wavelengths of
the sub-θf and super-θf samples extracted by CARS–Rfrog were 25 and 18, and they were
widely distributed in the NIR range, which is a significant reduction in comparison to the
full spectrum. (3) Among the machine learning methods, the BPANN achieved optimal
prediction results, the R2p, RMSEP, and RRMSE of the sub-θf samples were 0.941, 1.570%,
and 6.685%, respectively, and the R2p, RMSEp, and RRMSE of the super-θf samples were
0.764, 1.479%, and 4.205%, respectively.
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