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Abstract: Typhoon intensity forecast is an important issue. The objective of this study is to construct
a 5-day 12-hourly typhoon intensity forecast model based on the adaptive neuro-fuzzy inference
systems (ANFIS) to improve the typhoon intensity forecast in the Northwest Pacific. It analyzed
the improvement of the ANFIS typhoon intensity forecast model by comparing it with the MLR
model when only the atmospheric factor or both atmospheric and oceanic factors are considered.
This study collected the SHIPS (Statistical Hurricane Intensity Prediction Scheme) developmental
data of typhoons in the Northwest Pacific before landing from 2000 to 2012. The input factors of the
ANFIS model were simplified by the stepwise regression procedure (SRP). Subtractive clustering (SC)
was used to determine the number of ANFIS rules and to reduce model complexity. Model Index
(MI) was taken as the clustering standard of SC to determine the network architecture of the ANFIS
typhoon intensity forecast model. The simulated results show that the MI could effectively determine
the radius of influence of SC. The typhoon intensity forecast was significantly improved after oceanic
environmental factors were added. The improvement of RMSE of ANFIS was the highest at 84 h; the
improvement of ANFIS on the underestimated ratio was primarily positive. The Typhoon Songda
case study shows that the maximum bias of ANFIS is greatly improved, at 60 h of the lead time, and
the improvement percentage of maximum bias is the highest (39%). Overall, the ANFIS model could
effectively improve the MLR model in typhoon intensity forecast.

Keywords: typhoon intensity forecast; adaptive neuro-fuzzy inference system; stepwise regression
procedure; SHIPS; subtractive clustering

1. Introduction

Taiwan, located in the Northwest Pacific and at the boundary of temperate and
subtropical zones, is often hit by typhoons. The terrain of Taiwan is mostly hillsides with
short and fast-flowing rivers. Typhoons cause economic losses in agriculture, fishery, and
animal husbandry and cause casualties yearly. This type of loss is mostly caused by the
heavy rainfall that occurs with a typhoon. If a high-intensity typhoon hits, the disaster will
be more serious. The quality of typhoon forecasting plays an important role in preventing
and reducing major disasters.

Typhoon intensity prediction is one of the important items of typhoon forecast as
stronger typhoons can cause more severe disasters. However, an accurate forecast is
difficult due to complex thermal and dynamical conditions (namely, environmental factors,
such as atmosphere and ocean) for typhoon development [1,2]. The US Navy’s Joint
Typhoon Warning Center (JTWC) uses an ST5D statistical model as the baseline to evaluate
the intensity forecast technology. The ST5D model applies the concepts of climate and
CLIPER to estimate the 5-day typhoon intensity without considering the possible track in
the future. It will significantly underestimate the effects of typhoon intensity over time.
DeMaria et al. [2] pointed out that though the typhoon intensity forecast technology is
steadily improved, it still lags the typhoon track forecast technology.
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Statistical and dynamical models are commonly used for typhoon intensity forecasts
worldwide. Common statistical models based on CLIPER include SHIFOR (Statistical
Hurricane Intensity Forecast Model) [3] and SHF5 (namely, 5-day 6-hourly SHIFOR) [4–9].
Dynamical models include GFDI, GHMI, and HWFI (coupled atmosphere-ocean model) [2].
Due to complex changes in typhoon intensity, statistical models based on CLIPER often
struggle to accurately describe the interaction between atmospheric and oceanic environ-
mental factors and typhoon intensity. In contrast, numerical weather models (namely,
dynamical models) can describe the interaction between atmospheric and oceanic envi-
ronmental factors and typhoon intensity. However, as typhoons are mesoscale weather
systems, there is still room for improvement in dynamical models’ ability to simulate
detailed typhoon structures. Besides statistical and dynamical models, there is a statis-
tical dynamical approach that combines statistical methods with environmental factors
output by the numerical weather forecast. SHIPS (Statistical Hurricane Intensity Prediction
Scheme) [1] is used in the North Atlantic and Eastern Pacific. The results show that the error
of SHIPS is smaller than that of models based on climate and persistency. STIPS (Statistical
Typhoon Intensity Prediction Scheme), proposed by Knaff et al. [10], is a multiple linear
regression (MLR) model developed for the Northwest Pacific and takes the synoptic-scale
environmental variable of global models as forecast factors [10].

The statistical dynamical approach (such as SHIPS and STIPS) mainly uses atmospheric
and oceanic environmental factors output by dynamical models as predictors of MLR
to forecast changes in typhoon intensity. The interaction of atmospheric and oceanic
environmental factors with changes in typhoon intensity is a highly nonlinear system. MLR
cannot effectively analyze the nonlinear relationship [11]. Machine learning (ML) can learn
and simulate nonlinear systems more effectively than MLR [12]. Common ML methods are
an artificial neural network (ANN) [13–16] and a fuzzy inference system (FIS). A study has
shown that ANN is superior to MLR in estimating the depth of the oceanic mixing layer [17].
By combining genetic algorithms and artificial neural networks, Jin et al. obtained a more
efficient method in intensity forecasting than climate and persistency [18]. Sharma et al.
employed ANN to develop a soft-computing cyclone intensity prediction scheme (SCIPS)
which, as with STIPS, is a model to forecast typhoon intensity in the Northwest Pacific [11].
They used ANN to improve the typhoon intensity forecasting in the Northwest Pacific
and attempted to take the ocean heat content (OHC) as a predictor. SCIPS improves the
previously widely used MLR intensity forecast model. Its performance is improved with
increasing intensity and lead time when compared with MLR.

FIS is widely applied in studies on a hydrometeorological forecast to simulate the
nonlinear relationship [13,19,20]. Jang developed adaptive neuro-fuzzy inference systems
(ANFIS) with the combination of artificial neural networks, which optimizes parameters
through self-learning and organizational abilities of artificial neural networks [21]. In recent
years, ANFIS has been widely used in hydrometeorology. The research results show that
ANFIS can provide reliable and stable hydrological forecasts [22–25].

As mentioned above, the main objective of this paper is that a typhoon intensity
forecasting model proposed to utilize the typhoon dataset, SHIPS, from the statistical and
dynamical models to improve the method by Knaff et al. However, this study does not
specifically analyze the prediction of rapid intensification (RI) of typhoons. The ANFIS
is employed to construct a typhoon intensity forecast model, including both the thermal
and dynamical conditions, for predicting every 12 h for the next five days to improve the
accuracy and quality of typhoon intensity forecast. The stepwise regression procedure (SRP)
was employed to simplify model input data and reduce model complexity. A benchmark
model was built based on the Knaff’s MLR approach in order to analyze and compare the
performance of the ANFIS typhoon intensity forecast, which gives predictions every 12 h
for the coming five days.
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2. Methodology
2.1. Subtractive Clustering

An important step in ANFIS is to determine the number of fuzzy rules. If rules
increase, parameters will increase, and models will become more complex and take longer
to build. Clustering can effectively distinguish the correlation with each cluster with a
small number of rules, such as fuzzy C-means and subtractive clustering (SC) [26]. Studies
on ANFIS demonstrate that good performances can be achieved if SC is used to determine
the number of rules [27,28]. Therefore, SC was used in this study to determine the fuzzy
rules of ANFIS.

In SC, each data point is considered a potential clustering center. The center of the
place with the densest data is selected as the most representative clustering center. This
center point and its surrounding data points are eliminated to correct the density of the
data point. Afterwards, the next clustering center is selected and eliminated until all
conditions are met. The calculated amount of subtraction clustering does not change with
the complexity of systems but is proportional to the number of data groups [29].

Assuming that there are n groups of data Xi (i = 1, 2, . . ., n) in M-dimensional space,
the density measure Di is defined as shown in Equation (1):

Di =
n

∑
j=1

exp

(
−
∥∥Xi − Xj

∥∥2

(ra/2)2

)
(1)

where ra is the radius of influence. The density measure of each point (Xi) is calculated, and
the point with the highest density measure is selected as the first clustering center point
(Xc1). The correction is continued until Xck is Clustering Center k. The equation of Dck is
shown in Equation (2):

Di = Di − Dckexp

(
−‖Xi − Xck‖2

(rb/2)2

)
(2)

where rb is the correction radius, which is set to avoid the next clustering center being
too close to the previous center point. Generally, the recommended value of rb is 1.5ra.
After selecting the second clustering center point, the calculation equation is corrected to
calculate the next clustering center point until the stop condition is met.

2.2. Adaptive Neuro-Fuzzy Inference Systems

ANFIS combines FIS with neural network architecture to ensure FIS has self-organizing
and learning abilities to adjust model parameters [29]. The if-then rule is mainly set in
first-order Sugeno fuzzy models (functional fuzzy). Its architecture is shown in Figure 1
and explained as follows.

1. Input layer:

Artificial neurons map input variables to fuzzy sets by calculating compatibility
between input data and fuzzy sets, as shown in Equation (3):

O1,ji = µj(xi) = exp

(
−
∥∥xi − cji

∥∥2

2σ2
ji

)
f or i = 1, 2, . . . , N; j = 1, 2, . . . , Mi (3)

where O1,ji is the output from the input layer to the rules layer and µj(xi) is the membership
function of Set j of Input Variable i. A Gaussian membership function was used in this
study, in which cji and σji are premise parameters.
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Figure 1. ANFIS architecture (with N-dimensional input and one dimension output).

2. Rules layer:

Artificial neurons, labeled Π, calculate the fuzzy rule AND, as shown in Equation (4):

O2,p = wp =
N

∏
i=1

µpi(xi) f or p = 1, . . . , P (4)

where O2,p is the output from the rules layer to the normalization layer. wp is the weight,
and P is the total number of rules. SC was adopted in this study to determine P.

3. Normalization layer:

Artificial neurons, labeled N, calculate the normalization, as shown in Equation (5):

O3,p = wp =
wp

∑
p
p=1 wp

(5)

where O3,p is the output from the normalization layer to the inference layer.

4. Defuzzification layer:

The normalized results obtained from the previous layer are multiplied by Sugeno
fuzzy model, as shown in Equation (6):

O4,p = wp fp = wp

(
N

∑
i=0

rpixi

)
(6)

where O4,p is the output from the inference layer to the output layer and rpi is the
conclusion parameter.
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5. Output layer:

There is only a single neuron, labeled Σ. The total output of neurons in the previous
layer was calculated as the final output of the network, as shown in Equation (7):

O5,1 =
P

∑
p=1

wp fp =
∑P

p=1 wp fp

∑P
p=1 wp

(7)

where O5,1 is the final output.
Setting fuzzy rules and membership is an important step in ANFIS. This study used

SC to determine fuzzy rules and their membership. SC is based on its clustering center, and
its results mainly affect radius (ra).

3. Data and Assessment Indicators
3.1. Typhoon Best Track Data

The US JTWC issues warnings for tropical cyclones in the Pacific Ocean, Indian Ocean,
and other sea areas. In this study, tropical cyclone best track data on the JTWC website
were selected, including the latitude and longitude of typhoon centers and the maximum
wind speed of typhoons.

3.2. SHIPS Development Data

SHIPS uses environmental predictors, such as vertical wind shear and ocean heat
content, to forecast changes in typhoon intensity (DELV) with MLR. SHIPS has been
proven effective for the forecast in the North Atlantic and Eastern Pacific [2]. It provides
information about predictors affecting the change of typhoon intensity.

The SHIPS developmental data comprises meteorological factors that may be used
in STIPS. These data are summarized according to typhoon events, including data from
the first 12 h before and the next 120 h after each observation. The data also include
the typhoon intensity and center location provided by the NHC (National Hurricane
Center), JTWC, National Centers for Environmental Prediction (NCEP) reanalysis data,
and environmental factors of the typhoon vicinity for the global forecast system. SHIPS
development data also include oceanic environmental factors such as ocean heat content
and surface sea temperature. Detailed STIPS developmental data are available on the
Regional and Mesoscale Meteorology Branch’s website (https://rammb2.cira.colostate.
edu/research/tropical-cyclones/ships/, accessed on 31 July 2023). The primary data of
this study were sourced from the typhoon data in the Northwest Pacific, which were added
to SHIPS developmental data (2000–2012).

3.3. STIPS

STIPS, developed by [10] for typhoon intensity forecast in the Northwest Pacific, is
closely related to SHIPS, proposed by DeMaria and Kaplan [30]. STIPS is an MLR model,
and the dependent variable (forecast value) is the change of 12-hourly typhoon intensity
at the initial forecast time (DELV) before typhoon landfall. STIPS selects the important
factors at each forecast time by a stepwise procedure. The selected factors include DVMAX
(12-h intensity change), SPD (typhoon speed), VMAX (initial typhoon intensity), VMAX2

(squared initial typhoon intensity), MPI (maximum potential typhoon intensity), MPI2

(squared maximum potential typhoon intensity), MPI × VMAX, SHRD (vertical wind
shear at 200–850 hPa), USHRD (vertical shear of zonal wind at 200–850 hPa), T200 (the
temperature at 200 hPa), and RHHI (average relative humidity at 500–300 hPa). In this
study, STIPS was taken as the benchmark model, and the factors used in STIPS were
adopted. USHRD could not be obtained in STIPS developmental data and thus was not
included in this study.

https://rammb2.cira.colostate.edu/research/tropical-cyclones/ships/
https://rammb2.cira.colostate.edu/research/tropical-cyclones/ships/
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3.4. Research Data Grouping

This study selected typhoon data in the Northwest Pacific before landfall from 2000
to 2012 as case study. The data were divided into ten groups with 12 to 120 h of lead time
at 12-h intervals. Typhoon data were sourced from observed values of JTWC and STIPS
developmental data in the Northwest Pacific. Typhoon data were selected from 335 events,
and their tracks are shown in Figure 2. In ANFIS, data from 2000 to 2005 was the training
data, from 2006 to 2008 was the validation data, and from 2009 to 2012 was the testing data.
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Figure 2. Selected typhoon path map.

Input variables/factors of the ANFIS model in this study were based on the factors
of STIPS, and the factor of the statistical forecasts model that Lin [31] proposed has been
considered in this study. Atmospheric and oceanic factors of SHIPS developmental data
were also included. The data were grouped into SHIPSa and SHIPSb. SHIPSa only
contained atmospheric factors, and SHIPSb was based on SHIPSa with oceanic factors
added. Detailed predictors are shown in Table 1. The model’s output value is the change of
typhoon intensity at the initial forecast time (DELV).

Table 1. Input factor candidate list.

Factor Description SHIPSa SHIPSb

VMAX Maximum surface wind (kt) O O
VMAX2 Maximum surface wind square (kt) O O
DVMAX 12 h change in intensity O O

LON Storm longitude (deg W × 10) vs. time O O
LAT Storm latitude (deg W × 10) vs. time O O
SPD Storm center moving speed O O
MPI Maximum potential intensity from Kerry Emanuel equation (kt) O O

MPI2 Maximum potential intensity square from Kerry Emanuel equation (kt) O O
MPI × VMAX MPI times the initial intensity O O

POT MPI and VMAX difference O O
SHRD 850–200 hPa shear magnitude (kt × 10) vs. time (r = 200–800 km) O O
SHRS 850–500 hPa shear magnitude (kt × 10) vs. time O O
T200 Same as above for 200 hPa temperature (deg C × 10) O O
U200 200 hPa zonal wind (kt × 10) vs. time (r = 200–800 km) O O

RHLO 850–700 hPa relative humidity (%) vs. time (r = 200–800 km) O O
RHHI Same as RHLO for 500–300 hPa O O
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Table 1. Cont.

Factor Description SHIPSa SHIPSb

RSST Reynolds SST (deg C × 10) vs. time. Number after SST label is the age in days
of the SST analysis used to estimate RSST. O

SSTA Sea surface temperature anomaly of storm center O
RSSTd12 12 h change in RSST O
RSSTd24 24 h change in RSST O
SSTAd24 12 h change in SSTA O
RHCN Ocean heat content (KJ/cm2) from satellite altimetry data O

RHCNd12 12 h change in RHCN O
RHCNd24 24 h change in RHCN O

OHCA Ocean heat content anomaly of storm center O
OHCAd24 24 h change in OHCA O

ATCHP Accumulated tropical cyclone heat potential O
TOHC 24 h RHCN cumulative value O
TOHA 24 h RHCN cumulative value and climatic cumulative value difference O

3.5. Model Performance Indicators

The model performance indicators used in this study are as follows.

1. Root Mean Square Error (RMSE)

RMSE =

[
∑n

i=1(Yi − FYi)
2

n

] 1
2

(8)

where n is the number of data groups, Yi is the observed typhoon intensity, and FYi is the
forecast typhoon intensity. A small RMSE leads to a small error between the observed and
the forecast values.

2. Improvement Percentage of RMSE (IPRMSE)

IPRMSE =
FYMLR − FYANFIS

FYMLR
× 100% (9)

where FYANFIS is the typhoon intensity forecasted by ANFIS and FYMLR is the typhoon
intensity forecasted by the MLR model.

3. Underestimated Ratio (UR)

The underestimated ratio is the percentage of the observed value of the evaluation
model to the forecast value. The equation is shown as follows:

UR =
Numbers of data smaller than the predictand

Total number of data
× 100% (10)

The forecast value is underestimated if the underestimated ratio is close to 100. Other-
wise, if the underestimated ratio is close to 0, the forecast value is less underestimated.

4. Improvement Percentage of UR (IPUR)

IPUR =
FYMLR − FYANFIS

FYMLR
× 100% (11)

where FYANFIS is the typhoon intensity forecasted by ANFIS, and FYMLR is the typhoon
intensity forecasted by the MLR model.

5. Maximum Absolute Error (MAE) and best Model Index (MI)

MAE = max(|FY− Y|) (12)
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where Y is the observed typhoon intensity, and FY is the forecasted typhoon intensity.

MI =|TrnMAE−ValMAE| (13)

To avoid overfitting or underfitting, MI is an indicator to select the optimal ANFIS.
TrnMAE is the maximum absolute error of training data, and ValMAE is the maximum
absolute error of validation data. MI can determine the hyperparameter combination of the
optimal ANFIS.

6. Bias (B)

B = FY− Y (14)

where Y is the observed typhoon intensity, and FY is the forecast typhoon intensity. The
bias can show the difference between the forecast and the observed values.

7. Improvement Percentage of Bias (IPB)

IPB =
FYMLR − FYANFIS

FYMLR
× 100% (15)

where FYANFIS is the typhoon intensity forecast by ANFIS, and FYMLR is the typhoon
intensity forecast by the MLR model.

4. Typhoon Intensity Forecast Model Construction
4.1. Selection of Input Factors for Typhoon Intensity Forecast Models

In this study, input factors of ANFIS were selected by SRP. SRP can be divided into
forward selection, backward selection, and stepwise selection according to selection meth-
ods. Stepwise selection, combining forward and backward selection, first selects predictors
by forward selection and then conducts tests by backward selection.

SRP is used to select a variable combination with maximum explanatory power. It
selects input variables according to the regression analysis of input and output variables
and the performance of the linear regression test on the variable combination. It selects
variables that pass the F-test by forward selection and removes variables that fail to pass
the F-test by backward selection. After SRP’s F-test of the input variable combination, the
t-test of a causal relationship between independent and dependent variables is conducted.

The input variables selected by SRP for the SHIPSa 12-h forecast model are shown
in Table 2, including VMAX (initial typhoon intensity), VMAX2 (squared initial typhoon
intensity), DVMAX (intensity difference 12 h before typhoon), LON (longitude of typhoon
center at the current moment), MPI2 (squared maximum potential typhoon intensity),
MPI × VMAX (maximum potential typhoon intensity times initial typhoon intensity), POT
(difference between maximum potential typhoon intensity times initial intensity), SHRD
(vertical wind shear at 850–200 mb), T200 (the average temperature at 200 mb), and RHLO
(relative humidity at 850–700 mb). Based on the input variables selected by SRP for SHIPSa
12 to 120-h forecast models, Table 3 shows the order of factors selected for SHIPSa in all
forecast periods. The numbers at the top of the table indicate the selection order by SRP, and
the numbers at the left of the table indicate the 12 to 120-h forecast models. According to
the selection results, POT has an important influence on various forecast models. VMAX2
and LON enhance their influences over the lead time, and DVMAX and SHRD lose their
influences with an increase in the lead time.

The input variables selected by SRP for the SHIPSb 12-h forecast model are shown
in Table 4, including VMAX (initial typhoon intensity), VMAX2 (squared initial typhoon
intensity), DVMAX (intensity difference 12 h before typhoon), LON (longitude of typhoon
center at the current moment), MPI × VMAX (maximum potential typhoon intensity times
initial typhoon intensity), POT (difference between maximum potential typhoon intensity
times initial intensity), SHRD (vertical wind shear at 850–200 mb), T200 (the average
temperature at 200 mb), RHLO (relative humidity at 850–700 mb), and RHCN (ocean heat
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content). The words in bold are oceanic environmental factors. Based on the input variables
selected by SRP for the SHIPSa forecast models for 12 to 120 h, Table 5 shows the order
of factors selected for SHIPSb in all forecast periods. In the table, the words in bold are
oceanic environmental factors. Except for the 96-h forecast model with the same selection
results as SHIPSa, oceanic factors of other forecast models were added to the model input
variables. RHCN had a great influence when the lead time was close to the forecast time.
Similarly, RSST (surface sea temperature) had a great influence when the forecast was made
in advance.

Table 2. Results of SHIPSa with SRP (lead time = 12 h).

SHIPSa (Lead Time = 12 h)

Variable
Selected t-Test p-Value F-Test p-Value

VMAX −5.7833 7.89 × 10−9

328.747221 <0.05

VMAX2 −16.5477 1.56 × 10−59

DVMAX 25.1782 6.26 × 10−130

LON 5.6361 1.86 × 10−8

MPI2 3.5526 3.86 × 10−4

MPI × VMAX 10.4321 3.73 × 10−25

POT −4.0242 5.82 × 10−5

SHRD −13.4377 2.71 × 10−40

T200 −7.8727 4.44 × 10−15

RHLO 5.2101 1.98 × 10−7

Table 3. The factor selected by SRP in each lead time for SHIPSa.

Variable Sequence of SRP

Lead
Time (h) 1 2 3 4 5 6 7 8 9 10

12 DVMAX POT SHRD LON MPI × VMAX VMAX2 T200 RHLO VMAX MPI2

24 POT DVMAX SHRD LON VMAX2 MPI × VMAX T200 RHLO MPI MPI2

36 POT DVMAX SHRD LON MPI × VMAX VMAX2 T200 RHLO SHRS LAT
48 POT DVMAX SHRD LON VMAX2 MPI × VMAX T200 RHLO SHRS LAT
60 POT DVMAX LON SHRD VMAX2 MPI × VMAX T200 RHLO RHHI
72 POT LON DVMAX VMAX2 MPI2 SHRD T200 RHLO RHHI
84 POT LON DVMAX VMAX2 MPI2 RHHI T200 SHRD SHRS
96 POT LON VMAX2 RHHI SHRD T200 MPI2 MPI × VMAX SHRS DVMAX
108 POT LON VMAX2 RHHI T200 SHRD MPI2 MPI × VMAX SHRS SPD
120 POT LON VMAX2 RHHI SHRD T200 SHRS SPD RHLO DVMAX

Table 4. Results of SHIPSb with SRP (lead time = 12 h).

SHIPSb (Lead time = 12 h)

Variable
Selected t-Test p-Value F-Test p-Value

VMAX −4.9259 8.74 × 10−7

329.0337491 <0.05

VMAX2 −16.7533 6.27 × 10−61

DVMAX 24.7237 1.15 × 10−125

LON 5.3472 9.43 × 10−8

MPI × VMAX 10.9866 1.10 × 10−27

POT −3.1612 1.58 × 10−3

SHRD −13.1414 1.20 × 10−38

T200 −7.3629 2.18 × 10−13

RHLO 5.2744 1.40 × 10−7

RHCN 3.7676 1.67 × 10−4
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Table 5. The factor selected by SRP in each lead time for SHIPSb.

Variable Sequence of SRP

Lead
Time (h) 1 2 3 4 5 6 7 8 9 10

12 DVMAX POT SHRD LON MPI × VMAX VMAX2 T200 RHLO VMAX RHCN
24 POT DVMAX SHRD LON VMAX2 MPI × VMAX T200 RHLO MPI RHCN
36 POT DVMAX SHRD LON MPI × VMAX VMAX2 T200 RHLO RHCN OHCA
48 POT DVMAX SHRD LON VMAX2 MPI × VMAX T200 RHLO RHCN OHCA
60 POT DVMAX LON SHRD VMAX2 MPI × VMAX T200 RHLO RSSTd12 RHCN
72 POT LON DVMAX VMAX2 MPI2 SHRD T200 RHLO RSSTd12 RHHI
84 POT LON DVMAX VMAX2 MPI2 RHHI T200 SHRD RSSTd12 TOHC
96 POT LON VMAX2 RHHI SHRD T200 MPI2 MPI × VMAX SHRS DVMAX
108 POT LON VMAX2 RHHI T200 SHRD SSTA SHRS SPD DVMAX

120 POT LON VMAX2 RHHI SHRD T200 SHRS RSST SPD MPI ×
VMAX

4.2. ANFIS Typhoon Intensity Forecast Model Construction

In ANFIS architecture, the main optimized parameters are nonlinear premise parame-
ters (cji, σji) as presented in Equation (3), and the linear conclusion parameter is presented
in Equation (6). The hybrid learning rule [21] used in this study optimized linear and
nonlinear parameters separately. The least-square estimator optimized parameters in the
linear parameter set, and the steepest gradient descent method optimized the nonlinear
parameter set. This compound structure can effectively search for model parameters and
improve the speed of model convergence. In the ANFIS model construction process, the
radius of influence of SC was first determined. An initial FIS architecture was built after
obtaining clustering results. Then, the training data were input into the FIS architecture
to solve the linear and nonlinear parameter sets. Finally, the model was trained until
the convergence.

This study used MI as the basis for ANFIS model selection to avoid overfitting and
underfitting. The ANFIS data used were divided into ANFIS_SHIPSa and ANFIS_SHIPSb.
The process of selecting the optimal ANFIS is shown in Figure 3. A different radius of influence
was tested in order to build multiple ANFIS sets to finally obtain the model with the lowest
MI as the ANFIS typhoon intensity forecast model network. Table 6 shows MI, radius of
influence, and the number of rules of ANFIS typhoon intensity forecast models for 12 to 120 h.

Table 6. Influence radius and rule number for establishing ANFIS models.

ANFIS_SHIPSa ANFIS_SHIPSb

Lead Time
(h) MI (kts) Range of

Influence Rule No. MI (kts) Range of
Influence Rule No.

12 0.98 0.87 2 1.00 0.74 4
24 1.00 0.67 2 2.01 0.62 5
36 2.95 0.95 3 2.73 0.93 5
48 3.37 0.79 4 3.18 0.73 7
60 2.08 0.80 2 2.52 0.91 2
72 1.96 0.68 2 1.86 0.66 3
84 1.33 0.80 2 0.96 0.78 3
96 0.90 0.78 3 0.90 0.78 4
108 1.77 0.95 3 2.32 0.85 4
120 0.61 0.82 3 1.24 0.93 3
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4.3. MLR Typhoon Intensity Forecast Baseline Model Construction

To evaluate the improvement of the ANFIS on the typhoon intensity forecast by the
MLR method, two additional MLR models were built in this study as baseline models for
comparison. In the baseline models, all predictors of ANFIS were used, and MLR was
used to forecast DELV. Unlike ANFIS, which uses three sets of data (training, validation,
and testing data), MLR requires only two sets of data, one for training and one for testing.
In the MLR baseline model, data from 2000 to 2005 were used as training data (same as
ANFIS), and data from 2009 to 2012 were used as testing data.

In this study, the multiple regression coefficients of MLR were obtained from training
data. Then predictive variables of testing data from 2009 to 2012 were used to obtain the
multiple regression coefficients of training data to forecast DELV. Finally, two MLR baseline
models, MLR_SHIPSa and MLR_SHIPSb, were built.

5. Results
5.1. Model Error and Underestimated Ratio

This study used improvement percentages of RMSE and underestimated ratios as
evaluation indicators. Figure 4 shows the improvement percentage of RMSE when compar-
ing the ANFIS typhoon forecast model with the MLR model. The improvement showed
a decreasing trend from 96 h onwards. The difference in the improvement percentage of
RMSE between models built with SHIPSa and SHIPSb was about 1%. The performance
of models built for 84 h before the lead time with ANFIS and SHIPSb was improved. The
performance of models built for 96 h after the lead time with ANFIS and SHIPSb was
also improved.
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Figure 4. Improvement percentage of RMSE of ANFIS compared to MLR.

JTWC Northwest Pacific typhoon intensity grade division standard was used in
this study. The grade standard categorizes wind speeds greater than 130 kts as super
typhoons and wind speeds between 63 kts and 129 kts as standard typhoons. The observed
values of testing data and predicted values of various models were classified to evaluate
the improvement percentage of the underestimated ratio of ANFIS. Figure 5 shows the
improvement percentage of the underestimated ratio of ANFIS under different JTWC
typhoon intensity standards. Figure 5a shows that in the case of standard typhoons,
the underestimated ratio of ANFIS_SHIPSb was improved but was insignificant when
compared with that of ANFIS_SHIPSa. Figure 5b shows the improvement percentage of
the underestimated ratio of ANFIS under super typhoon intensity. It can be seen from
the figure that the two models slightly increased the underestimated ratios for the super
typhoon forecast.

5.2. Case Forecast Performance Evaluation

In this study, 2011’s Typhoon Songda was taken as an example for performance
comparison. The number JTWC given Typhoon Songda was WP042011, and the warning
time was from 12 p.m. on 20 May 2011 to 12 p.m. on 29 May 2011. Due to the utilization
of the SHIPS dataset from 2000 to 2012, Typhoon Songda exhibited significant intensity
variations and experienced RI multiple times. This study did not specifically investigate the
features of RI; it only discussed the performance of the ANFIS typhoon intensity forecast
model tested on the Typhoon Songda. The track and intensity of Typhoon Songda are
shown in Figure 6.

Based on ANFIS_SHIPSa and ANFIS_SHIPSb, the bias, average bias, and maximum
bias between the predicted and observed values of Typhoon Songda were calculated.
Then, the improvement of the two models over the performance of the MLR model was
analyzed. Figure 7 shows the improvement percentage of average bias and maximum bias
of ANFIS_SHIPSa and ANFIS_SHIPSb (the corresponding mean and maximum bias of
MLR are shown in Table 7) in the intensity forecast of Typhoon Songda, compared with
the MLR model. In the figure, the circle shows the improvement of ANFIS_SHIPSa on
MLR_SHIPSa. The cross shows the improvement of ANFIS_SHIPSb on MLR_SHIPSb. The
dotted and solid lines are the improvement percentage of average bias and maximum
bias, respectively. The figure also shows that the improvement of average bias gradually
increased 60 h before the lead time. The improvement percentage of average bias was the
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largest at 48 h lead time. The improvement of average bias decreased 60 h after the lead
time but was still positive. For the improvement of maximum bias of the two models, the
improvement at 84 h lead time was the highest, at about 40%.
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Table 7. Improvement percentage of mean bias and maximal bias in ANFIS model for
Typhoon Songda.

Lead Time (h)

MLR_SHIPSa MLR_SHIPSb

Mean Bias (kt) Maximum Bias
(kt) Mean Bias (kt) Maximum Bias

(kt)

12 −1.57 9.9 −1.31 9.79
24 −3.07 13.38 −2.55 13.52
36 −2.99 15.18 −3.74 15.49
48 −4.66 23.9 −5.42 24.34
60 −7.52 37.27 −8.48 32.03
72 −11.07 37.2 −11.01 38.18
84 −15.09 49.8 −15.55 49.05
96 −22.51 44.34 −22.51 44.34

108 −29.67 33.06 −30.53 29.32
120 −35.78 33.38 −34.47 34.17

6. Conclusions

This section is not mandatory but can be added to the manuscript if the discussion is
unusually long or complex.

1. The radius of influence in various forecast models were determined by the MI indicator
selection method and could effectively obtain small MAE difference between training
and validation data. The MI indicator selection method could successfully select the
ranges of influence and improve the testing performance of models.

2. With the inclusion of the oceanic factors selected by SRP, except that the result of
the 96-h lead time forecast model, was the same as that of the model only using
atmospheric combinations, the oceanic factors were all added to the input vari-
ables in other forecast models. RHCN (ocean heat content) was selected in the
12~60 h forecast, and RSST (surface sea temperature) had the greatest influence in the
60~120 h forecast.

3. In terms of RMSE improvement, both ANFIS_SHIPSa and ANFIS_SHIPSb demon-
strate similar improvement trends compared to the MLR forecasts, with improvements
ranging from approximately 1% to 8%. Among them, the ANFIS model at a lead time
of 84 h exhibits the best improvement performance.

4. ANFIS_SHIPSa and ANFIS_SHIPSb positively improved the average bias of the MLR
model in the intensity forecast of Typhoon Songda. The improvement percentage
of average bias of ANFIS_SHIPSa was the highest (125%) at 48 h lead time. The
improvement percentage of average bias of ANFIS_SHIPSb was the highest (108%) at
36 h lead time. The maximum bias of ANFIS_SHIPSa was greatly improved at 60 h
of the lead time, and the improvement percentage of maximum bias was the highest
(39%) at 84 h of lead time. The maximum bias of ANFIS_SHIPSb was improved the
most at 84 h lead time, with an improvement percentage of 43%.

5. Overall, ANFIS could effectively improve the performance of MLR in typhoon inten-
sity forecast. The model considering both atmospheric and oceanic environmental
factors outperformed the models only considering the atmospheric environmental
factor in typhoon intensity forecast.

7. Limitations and Future Work

The methods proposed in this study did not consider the characteristics of RI of
typhoons. Future development will focus on further developing in this direction.
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