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Abstract: Constructed wetlands (CWs) widely applied for wastewater treatment release significant
greenhouse gases (GHGs), contributing to global warming. It is essential to characterize the compre-
hensive source-sink effects and affecting factors of GHGs in CWs, offering references and guidance for
designing and operating CWs to better control GHG emissions. However, current reviews focus on
individual GHG emission mechanisms. With the aid of the Web of Science Core Collection database,
the relevant literature on carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) emissions
in CWs after 2010 was collected and organized. As highlighted in the review, CWs can produce
and transmit these GHGs into the atmosphere, forming sources of GHGs and sequestration CO2

through plants photosynthesis, forming sinks of GHGs. Their overall performance depends on
many factors. Hybrid CWs, Cyperus papyrus, Cyperus alternifolius, and Iris pseudacorus, adsorption
substrates like Fe-C, low temperatures, and a C/N ratio of five are beneficial for GHG mitigation in
CWs. Future studies should focus on in-depth research into the mechanisms and overall source-sink
benefits of plants and microorganisms in relation to GHGs. This review provided a comprehensive
understanding of the emission mechanisms and affecting factors of the major GHGs in CWs, bridging
the research gap in this field, helping researchers to clarify the context, and providing valuable
in-sights for further scientific investigations.

Keywords: greenhouse gases; constructed wetlands; source and sink; mechanisms; affecting factors

1. Introduction

Global climate change is one of the most critical challenges facing humanity today [1],
largely driven by greenhouse gas (GHG) emissions [2], profoundly impacting both Earth’s
ecosystems and human society’s sustainability [3]. Among the numerous GHGs, carbon
dioxide (CO2), methane (CH4), and nitrous oxide (N2O) are the most extensively studied
due to their significant emissions and potent greenhouse effects, with a 70%, 23%, and
7% contribution to the greenhouse effects, respectively [4–6]. CO2, mainly from burning
fossil fuels [7], has the most serious and significant global warming effect due to its huge
and far greater total emissions than other GHGs. CH4 is the second most abundant GHG
after CO2, and its warming potential is 25 times larger than CO2 over a 100-year time
horizon [8]. A 1-fold increase in atmospheric CH4 concentration was reported to result
in 0.2–0.3 degrees of surface warming in the tropospheric, posing serious risks to human
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and environmental health [9]. However, the lifetime of CH4 is only about 10 years, so
its emission reduction can realize the purpose of restraining rapid global warming in a
short time [10]. Although N2O is emitted less in CWs, the greenhouse effect of N2O is
296 times larger relative to CO2 over a 100-year time horizon, and its remaining time in
the atmosphere is 120 years [11]. Even a small increase in N2O emissions may make a
non-negligible contribution to global warming. Since industrialization, human activities
have significantly increased the emissions of GHGs [12]. The Intergovernmental Panel on
Climate Change (IPCC) (one of the important international organizations established to
address climate change) has highlighted that the levels of GHGs in the air continue to rise,
and the world is warming faster than ever in at least the last two thousand years [13–16].

For years, efforts to mitigate GHG emissions have been ongoing worldwide. Within
China, research efforts have focused on measuring and monitoring GHG emissions in
various industries, leading to the establishment of national GHG inventories and emission
baselines [17–19]. Chinese government policies have promoted clean energy development,
energy conservation, and the establishment of a carbon trading market, incentivizing
emission reduction [20–27]. Internationally, considerable progress has been made in the
development and application of carbon capture and storage (CCS) technologies [28–30].
Advanced models and methodologies have been developed to estimate GHG emissions and
their potential impacts [31–34]. Additionally, studies on the carbon cycles of ecosystems,
such as forests, wetlands, and oceans, have been conducted to understand their roles in
GHG balance [35–38]. Global cooperation has fostered data sharing and collaborative
transnational projects [39–41].

Unexpectedly, in these efforts, constructed wetlands (CWs), seemingly beneficial for
various wastewater treatment [42–48], cost-effectively, have emerged as an unsuspected
source of GHG emissions, warranting attention [49–53]. A literature analysis of 158 papers
from 1994 to 2013 showed that the median values of CO2, CH4, and N2O emission flux
in CWs are 95.8~137.0 mg·m−2·h−1, 3.0~6.4 mg·m−2·h−1, and 0.09~0.13 mg·m−2·h−1,
respectively [54]. Lishan Tan et al. [55] proposed that CWs significantly increased the
CH4 emissions compared to those of natural wetlands. In addition, several studies in-
dicated that in terms of unit sewage, the total GHG emissions of surface flow CWs and
horizontal subsurface flow CWs are significantly higher than that of most activated sludge
processes [56–58].

In order to mitigate the consequences of global warming, controlling GHG emissions
has become one of the urgent tasks of mankind. The Paris Climate Agreement proposed
to pursue efforts to limit global warming to less than 1.5 degrees C above pre-industrial
levels by the end of this century [59]. Considering the rapid spread of CWs worldwide,
evaluating the source-sink effects of GHGs presented by the system is essential. However,
there is still a research gap in the comprehensive review of the source-sink effects, emission
mechanisms, and affecting factors of the three major GHGs in CWs. This paper aims to
fill this gap by collecting and reviewing relevant literature on GHG emissions in CWs
over the past decade. Based on the literature review, the paper systematically provided an
overview of the types, structures, and water purification mechanisms of CWs, organized
and summarized the source-sink effects, emission mechanisms, and affecting factors of
CO2, CH4, and N2O in CWs, and presented future research prospects.

2. CWs and Their Source-Sink Effects on GHGs
2.1. Overview of CWs

CWs are nature-like systems that combine vegetation (emergent, floating, or sub-
merged), substrates (rocks, soils, synthetic materials, among others), and microbial commu-
nities [60,61], achieving water purification using the joint action of plant uptake, microbial
activity, and substrate adsorption under controlled environment [62]. According to design
structures and flow direction, CWs are divided into three major groups, as represented in
Figure 1. Free water surface flow constructed wetlands (FWS CWs); horizontal subsurface
flow constructed wetlands (HSSF CWs); vertical subsurface flow constructed wetlands
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(VSSF CWs) [63]. Hybrid-constructed wetlands (HCWs) systems combine these three kinds
of CWs differently, aiming to achieve a higher treatment [64].
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Figure 1. Constructed wetland configurations: (a) A free water surface flow constructed wetland
with three types of plants; (b) Planted horizontal subsurface flow constructed wetland with Typha
orientalis; (c) Planted vertical subsurface flow constructed wetland with Typha orientalis.

2.1.1. Free Water Surface Flow Constructed Wetlands (FWS CWs)

FWS CWs are shallow water-filled basins typically containing 20–30 cm of rooting
soil. They feature open water areas with a 20–40 cm depth, often with over 50% of the
surface covered by floating, submerged, and/or emergent plants [63]. The FWS CWs
operate most similarly to a natural wetland [65], where water flows in a push stream
with a low reoxygenation rate, making most of the area in the filler anaerobic [66]. In this
type of CW, plants are not usually harvested, and their litter can provide essential organic
carbon for denitrification [67]. Suspended solids are efficiently eliminated through the
combined processes of settling and filtration facilitated using the dense vegetation [68].
Nitrogen is primarily eliminated through nitrification (in the water column) and subsequent
denitrification (in the litter layer), along with ammonia volatilization triggered by algal
photosynthesis, particularly under higher pH levels [63].
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2.1.2. Horizontal Subsurface Flow Constructed Wetlands (HSSF CWs)

HSSF CWs are composed of gravel or rock beds, typically with a depth of 0.6–0.8 m,
to facilitate plant root growth. These beds are planted with emergent macrophytes such
as Phragmites australis, Calamus, Cattails, Scallions, etc. [69], and sealed with an imperme-
able layer to prevent seepage and ensure regulated outflow [70]. The wastewater enters
through the inlet and moves slowly through the porous medium beneath the bed’s surface,
following a horizontal path to the outlet. It is collected at the outlet and controlled before
being discharged through a water level control structure [71]. In these systems, plants
and rhizosphere microorganisms form a symbiotic relationship. Plants provide organic
matter and oxygen to microorganisms through root exudations and oxygen release [72].
In return, rhizosphere microorganisms expand the absorption range of plant roots by
establishing connections with plants, providing them with water and minerals that are
challenging to obtain, and protecting plants against weed space competition and certain
diseases [73]. Anoxic/anaerobic processes play a crucial role in HSSF CWs due to the per-
manent saturation of the bed [74]. Suspended solids are retained mainly by filtration and
sedimentation [75]. Organic compounds are primarily removed via microbial degradation
under anoxic/anaerobic conditions [76]. Denitrification is the main pathway for nitrogen
removal, while ammonia removal is limited by oxygen availability in the filtration bed [63].

2.1.3. Vertical Subsurface Flow Constructed Wetlands (VSSF CWs)

VSSF CWs typically comprise a graded gravel bed (Ø approximately 30–60 mm)
overlaid with sand (Ø approximately 6 mm) and are planted with the same species of
emergent macrophytes as HSSF CWs [77]. In contrast to HSSF CWs, this type of CW is
intermittently fed with a substantial volume of wastewater, resulting in surface flooding.
The water then slowly infiltrates the bed and is gathered using a drainage network at
the bottom until the bed is completely emptied, facilitating air replenishment [78]. This
feeding method increases the oxygen transfer rate and has a strong reoxygenation capacity,
leaving the bed mostly aerobic and, therefore, providing suitable conditions for nitrification
but not for denitrification, resulting in high nitrate effluent [79]. VSSF CWs are also very
effective in removing organics and suspended solids [80]. Regarding sewage treatment per
population equivalent (PE), VSSF CWs require less land than HSSF CWs [54]. Moreover,
both VSSF and HSSF CWs equipped with bed insulation capacity can function in colder
climates compared to FWS CWs [54].

2.2. CWs’ Source-Sink Effects on GHGs

The role of CWs in global climate change is complex due to their potential to act as
both a source and sink of GHGs. In the CW system, plants convert atmospheric CO2 into
organic matter through photosynthesis and fix it in the sediment [81]. Although some of
this can be quickly recycled into the atmosphere via respiration, much is also incorporated
into the organic carbon of the sediment via microbial assimilation, filler absorption, and
plant action like plant litter accumulation [54]. The anaerobic environment in the sediment
makes the organic matter lack oxidation conditions and slows the decomposition rate [82].
This organic carbon accretion in sediment makes CWs a greenhouse gas sink [83]. The
combination of elevated water tables, high productivity, and lower decomposition has led
to significant carbon storage in sediment, especially in high-latitude wetlands [84]. CWs
are a source of GHGs via releasing CH4 and N2O from wastewater and sediment into the
atmosphere [55]. The predominantly anaerobic and N-rich environment is particularly
favorable for the methanogens (specialized anaerobic archaea) and nitrogen-cycling bacteria
production of these two gases [49]. There is no consensus on whether CWs are the source
or sink of GHGs. Some studies have shown that most CWs are sinks of CO2 equivalents
(CO2 (eq)) [77]. In this case, the CO2 (eq) plant biomass immobilization overcomes the
GHG emissions, showing a sink effect [77,85]. On the contrary, some studies have shown
that most CWs are sinks of CO2 and sources of CH4 and N2O [38,55], but they show a
source effect of GHGs in general since the warming potential of CH4 and N2O are much
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greater than that of CO2 [86]. Brix et al. [87] proved that because of the different infrared
absorption characteristics and atmospheric longevity of CH4 and CO2, Phragmites australis
wetlands may be regarded as a source for GHGs on a short time scale (<60 years), but
as a sink for GHGs if evaluated over longer time scales (>100 years) [88]. Whether CWs
are a source or sink of GHGs is affected by several factors, including CW type and age,
plant presence and species, substrate type, environmental conditions, feeding strategy,
etc. [77,84]. For example, Wu et al. [89] found that the planted CW was a net CO2 sink,
while the unplanted CW was a net CO2 source. These factors indirectly affect carbon
sequestration and GHG emissions by influencing microbial activities [90]. Multiple factors
work together in the complex system of CWs to determine their impact on GHG emissions
and carbon sequestration. Therefore, understanding the mechanisms and affecting factors
of GHG emissions in CWs is vital for increasing CWs’ role as sinks and decreasing their
role as sources of GHGs.

3. GHG emissions Mechanisms of CWs
3.1. Emission of CH4 and CO2 in CWs

Both CO2 and CH4 are carbon-based GHGs, which are produced by the metabolism
and transformation of organic matter mainly from wastewater, substrate (soil), plant
biomass, litter, dead wood, and root exudates formed via plant fixation of CO2 in CWs
systems [91,92]. CO2, the most critical GHG, is influenced by the combined functions of
plants and soils in controlling their atmospheric concentration. During photosynthesis,
plants assimilate atmospheric CO2 and convert it into sugars and other carbon compounds.
These carbon compounds are subsequently transferred to the soil through root exudates,
litter, etc. Later, through the respiration of plants, microorganisms, and soil animals, as well
as the chemical oxidation of carbon-containing substances, CO2 is generated and released
back into the atmosphere [93]. The CO2 emitted in the process of biological cycling from
the carbon absorbed by plants of CWs during photosynthesis is of biogenic origin; this part
was generally not included in national total emissions [94,95]. The net emission of CH4 is
determined by its production, transport, and oxidation processes [96], as shown in Figure 2.
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3.1.1. Production of CH4 in CWs

The emission of CH4 from CWs to the atmosphere depends on the balance of activi-
ties of methanogen and methanotrophs [97]. Recently, different mechanisms of methane
production and oxidation have been discovered.

According to the classical methane-producing mechanism, under anaerobic conditions,
anaerobic hydrolytic microbes, fermentative microbes, and hydrogen-producing acetogens
can decompose organic matter into simple inorganic (e.g., CO2 and H2) and organic
compounds (e.g., acetate) that are subsequently converted to CH4 via methanogens [98].
Methanogenic archaea are the earliest prokaryotic microorganisms of life on Earth and
the major contributors to global atmospheric methane emissions [99]. The methanogens
found so far belong to Euryarchaeota, which consists of 7 orders, namely Methanopyrales,
Methanococcales, Methanobacteriales, Methanomicrobiales, Methanosarcinales, Methanocellales
and Methanoplasmatales/Methanomassiliicoccales [100–102]. Methanogens have a narrow
trophic range, primarily utilizing a small set of simple substrates, including H2 + CO2,
acetate, formate, methylated compounds (such as methanol, methylamines, and dimethyl-
sulfur), as well as primary and secondary alcohols [103]. As a result, these archaea often
work with bacteria, which degrade complex organic matter into small molecules in an
anaerobic environment that are then used by methanogenic archaea to produce CH4.
Based on the type of small molecule substrate utilized, archaeal methanogenesis can be
categorized into three well-known metabolic pathways: H2/CO2 reduction, acetic acid
fermentation, and methyl compound cracking [104]. Studies have indicated that the hy-
drogenotrophic pathway is energetically more advantageous for methanogenesis compared
to the acetoclastic pathway [105]. In contrast, the dominance of the acetoclastic pathway
has been observed in freshwater wetland ecosystems, contributing to over 67% of CH4
emissions [106]. Additionally, a new study published in Nature suggested that the archaeon
‘Candidatus Methanoliparum’ alone can combine the degradation of long-chain alkanes with
methanogenesis without the help of bacteria, and this alkylotrophic methanogen may have
a crucial role in the transformation of hydrocarbons into methane [107].

Well into the 21st century, people have realized biogenic methane formation is far
more complicated than this story. Methanogenic archaea are not the only ones that can
produce methane, and the reaction conditions are not limited to anaerobic environments.
In a new study in Nature journal, a team led by the University of Heidelberg in Germany
has developed a subversive idea. All living cells possess a common mechanism of CH4
formation that is based on interactions among reactive oxygen species (ROS), iron, and
methyl donors, opening new perspectives for understanding biochemical CH4 formation
and cycling. This reaction does not require enzymes, and the process is not complicated, as
shown in Figure 3. First, ROS reacts with ferric ions to produce highly reductive hydroxyl
radicals (·OH), which then react with a methyl donor to form a methyl radical (·CH3), and
finally, the methyl radical combines with the hydrogen radical (·H) to produce methane
molecules. The contribution of this reaction to CH4 emissions remains uncertain. Factors
such as heightened metabolism, elevated temperatures, introduction of external reactive
oxygen species, and inflammatory responses can amplify the production of CH4 through
this mechanism [108]. Certain terrestrial plants that produce CH4 have been utilized
in CW applications, including Phragmites australis and Thalia dealbata. Plants have been
reported to produce CH4 to defense against environmental stress factors, including cutting
damage, elevated temperatures, UV radiation, and disruption of cytochrome c oxidase
activity [109]. When plants initiate stress responses, excessive production of ROS, such as
H2O2, can occur within plant cells, intensifying the breakdown of cellular components and
ultimately resulting in CH4 production [110]. Nevertheless, investigating CH4 emissions
from hydrophytic plants in CWs under aerobic conditions remains unexplored, indicating
a critical knowledge gap that necessitates further research [104].
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3.1.2. Transport of CH4 in CWs

Methane produced in CWs is transported in three main ways: molecular diffusion
from the water and substrate column, ebullition flux process from the substrate column,
and plant-mediated CH4 transport from the substrate column via plant aerenchyma [111],
among which the third is the primary way of CH4 release, accounting for about 70%
of the total-CH4 emissions [112]. Ebullition produces three-fold more CH4 fluxes than
molecular diffusion [113]. Plant-mediated CH4 transport mechanisms can be categorized
into molecular diffusion or convective transport processes, where oxygen is transported
to the roots. At the same time, gaseous microbial by-products are released from the plant
roots into the atmosphere [114]. Generally, convective transport processes exhibit incredible
speed than molecular diffusion processes [115].

3.1.3. Oxidation of CH4 in CWs

During the CH4 transport process, it can be oxidized through aerobic or anaerobic
pathways, an important factor affecting the CH4 flux in CWs.

The aerobic oxidation of CH4 conducted by bacteria called methanotrophs primarily
occurs at micro interfaces where CH4 and O2 coexist, such as substrate-air interface, water-
air interface, the rhizosphere, and internal tissues of plants [113], with rapid reaction
rates, depending on the concentration of O2 [116]. The aerobic oxidation of CH4 is widely
recognized as the primary CH4 sink within the wetland system, effectively oxidizing over
50% of the CH4 generated in CWs [117].

Anaerobic oxidation of methane (AOM) is a process for anaerobic oxidation of methane
via microbes using electron acceptors other than oxygen, such as sulfate (sulfate-reduction-
dependent anaerobic methane oxidation, SAMO), NO2

−/NO3
− (nitrite-dependent anaero-

bic methane oxidation), metal oxides (e.g., Fe3
+ and Mn4

+ anaerobic methane oxidation,
metal-AOM), and direct interspecies electron transfer [118,119]. The above AOM reaction
can be expressed by the following chemical Equations (1)–(5). In addition, Valenzuela et al.
used isotope experiments to show that CH4 anaerobic oxidizing bacteria can also couple
the reduction in natural organic humus in 2017 [120]. Some studies believe that AOM is a
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neglected CH4 sink. Guerrero-Cruz et al. found that AOM can reduce CH4 emission by
more than 50% in a study on freshwater wetlands [119].

CH4 + SO4
2− + H+ → CO2 + HS− + 2H2O (1)

3CH4 + 8NO2
− + 8H+ → 3CO2 + 4N2 + 10H2O (2)

5CH4 + 8NO3
− + 8H+ → 5CO2 + 4N2 + 14H2O (3)

CH4 + 4MnO2 + 7H+ → HCO3
− + 4Mn2+ +5H2O (4)

CH4 + 8Fe(OH)3 + 15H+ → HCO3
− + 8Fe2+ +21H2O (5)

Most of the CH4 produced in CWs is oxidized to CO2. Brix et al. investigated the an-
nual carbon flux of Phragmites-dominated wetlands in Denmark and found that the annual
fixed CO2 of the CW was 98 mol/m2. Of this, 17 mol/m2 is converted to CH4, while 76% of
them is oxidized to CO2, and only 4 mol/m2 is finally discharged from the CW system [87],
as shown in Figure 4. The abundance, composition, and activity of methanogens and
methanotrophs are essential determinants of methane emissions [121]. Options to reduce
CH4 emissions mainly rely on reducing CH4 production and promoting CH4 oxidation [54].
It is affected by CW type, plant species, substrate type, O2 supply, available carbon source,
salinity, etc. Methyl coenzyme M reductase (mcrA) and particulate methane monooxyge-
nase (pmoA) are critical enzymes in CH4 production and oxidation, resulting in their use
as phylogenetic biomarkers for methanogens and methanotrophs [122].
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3.2. Emission of N2O in CWs

Most studies have suggested that N2O in the CW system is formed in the process of ni-
trifying and denitrification via microorganisms, as shown in Figure 5. Inorganic autotrophic
microorganisms perform the complete nitrification process and consist of two processes.
The first process is the oxidation of ammonia nitrogen to nitrite via ammonia-oxidizing
bacteria (AOB). The catalytic enzymes of this process include ammonia monooxygenase
(Amo) and hydroxylamine oxidoreductase (Hao) [123]. The second process is the oxidation
of nitrite to nitrate via nitrite-oxidizing bacteria (NOB). The key enzyme of this process
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is nitrite oxidoreductase enzyme (Nor). In the first process, NH4
+ is oxidized to NH2OH

by Amo, then NH2OH is catalyzed by Hao and generates nitroxyl (HNO) as an inter-
mediate. HNO reacts with another NH2OH molecule, then dimerizes into hyponitrous
acid (H2N2O2), and finally chemically decomposes to form N2O [124]. N2O can also be
generated through a bio-abiotic coupling process involving the interaction of HNO2 and
NH2OH [125]. Hence, the N2O generated from AOB nitrification becomes particularly
significant during the shift from aerobic to anaerobic conditions and should not be disre-
garded [126]. Denitrification is a continuous process (NO3

− → NO2
− → NO→ N2O→

N2) in which denitrifiers reduce NO3
− to N2 under low oxygen or anaerobic conditions,

and N2O is produced as a conventional intermediate product [127]. The catalytic enzymes
of this process include nitrate reductase (Nar), nitrite reductase (Nir), nitric oxide reductase
(Nor), and nitrous oxide reductase (Nos). The production of N2O in the denitrification
process can be attributed to two possible reasons. Firstly, the activity of Nos is influenced
by factors such as dissolved oxygen, pH, carbon source, and toxic substances, leading to the
accumulation of N2O [128–130]. Secondly, certain denitrifiers like Pseudomonas fluorescens
lack Nos, causing N2O to be the final product of their denitrification reaction [131].
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CWs are a chimera of aerobic, anaerobic, and anoxic microbial sites. In addition to the
traditional nitrification and denitrification, a variety of advanced N-removal processes also
occur here, including dissimilatory nitrate reduction to ammonium (DNRA), simultaneous
nitrification-denitrification (SND), denitrification by nitrifiers, denitrification by aerobic
denitrifiers, etc. In recent years, more and more studies have focused on the production
of N2O in these advanced N-removal processes. DNRA involves the transformation of
nitrate into bioavailable ammonium salts in anaerobic environments, accompanied by the
production of N2O. This process typically occurs in a low redox potential environment.
The unique structure of CWs results in extensive anaerobic zones within their interior,
providing favorable conditions for DNRA [132]. The amount of N2O produced by SND
is less than that produced by sequential nitrification and denitrification, and the amount
of N2O is also influenced by the concentration of dissolved oxygen and the amount of
carbon source [133]. Denitrification by nitrifiers is incomplete nitrification; that is, nitrifiers
oxidize ammonia to nitrite and then use nitrite as an electron acceptor to generate N2O,
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NO, and N2 (NH4
+ → NO2

− → NO→ N2O→ N2). Studies have shown that this reaction
tends to occur in high nitrogen, low carbon, low oxygen, and low pH environments [134].
In the nitrification system, in addition to nitrifier denitrification, aerobic denitrifiers may
also be another reason for the reduction in nitrite under aerobic conditions to produce
N2O. The end product of some aerobic denitrifiers was reported only as N2O [135]. The
amount of N2O produced by denitrifiers in aerobic conditions exceeds that generated in
anoxic conditions, likely due to oxygen’s inhibition of N2O reductase. The extent of aerobic
denitrifiers’ contribution to N2O production remains uncertain.

The main pathway of N2O production still needs to be clarified. Some studies suggest
that the process of N2O produced by NH2OH oxidation is minimal, whether it is a chemical
or biological reaction [136]. Li et al. further reported that denitrification is the main reason
for stimulating N2O emission [137]. In comparison, Chen et al. indicated that the aerobic
stage in most wastewater treatment systems is the primary source of N2O production [138].

Nitrous oxide produced in CWs is transmitted to the atmosphere through diffusion,
ebullition, and plant ventilation. Plants can also fix nitrogen in the air through nitrogen-
fixing bacteria, thus providing a source of N2O [139].

4. Affecting Factors of GHG Emissions in CWs
4.1. Type and Age of CWs

The differences in GHG emissions among different types of CWs can be attributed to
variations in their internal dissolved oxygen (DO) levels and redox potential, which are
determined by their structure (water table position) and feeding strategy. Most studies
have indicated that the CH4 emissions from subsurface flow CWs are significantly lower
than those from FWS CWs, and within subsurface flow CWs, the emissions are lower in
VSSF CWs compared to HSSF CWs [140,141]. This is because VSSF CWs have a suitable
aerobic/anaerobic interface due to intermittent flooding, which is beneficial for both aerobic
methane oxidation and AOM processes [142]. FWS CWs are mainly in an anoxic state,
and HSSF CWs have anoxic-anaerobic conditions, showing negative Eh level (−100 mV to
500 mV) and low dissolved oxygen (DO) concentration (<2 mg/L) [143], which facilitates
the anaerobic production of CH4 [77]. Furthermore, in subsurface flow CWs, where the
water table is below the substrate surface, CH4 emissions are reduced as the produced
CH4 undergoes oxidation during its movement through the water layer via diffusion and
ebullition [113]. In surface flow CWs with a high water table, CH4 emissions are increased
as they enter plant root systems in the deeper anaerobic layer and are transported to the
atmosphere through the aerenchyma [144]. However, the aerobic/anaerobic interface in-
tensified the activity of N2O during nitrification and the activity of nitrous oxide reductase
during denitrification, which intensified the production of N2O and inhibited the further
reduction of N2O to N2, resulting in the accumulation of N2O. Thus, the N2O emission
of VSSF was generally higher than that of FWS CWs [145]. According to Liu et al., the
FWS CW exhibited the highest CH4 emission rate (36.6 mg·m−2·d−1) and the lowest N2O
flux (0.1 mg·m−2·d−1). In contrast, the VSSF CW showed the lowest CH4 emissions but
the highest N2O flux (2.2 mg·m−2·d−1). The combined VF-SF-FWS constructed wetlands
demonstrated relatively efficient nitrogen and phosphorus removal and had a lower global
warming potential than any single wetland type [146,147]. Several reports have high-
lighted hybrid CWs’ advantages in terms of both water purification and reduction in GHG
emissions [54,148]. There are few long-term research papers on the effect of CW age on
GHG emissions. A study showed that CO2 and CH4 increase with the age of operation
of CWs within 10 years, probably due to the accumulation of organic matter, while N2O
emissions remain unchanged, and the average temperature increases by 3 ◦C after 10 years
of operation [149]. At the same time, most studies suggest that over longer timescales
(>100 years), CWs act as a sink of GHGs [87,88].
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4.2. Plant

Plants play many vital roles in CWs, not only influencing microbial processes and their
by-products via the release of oxygen and available carbon from plant roots to the soil but
also acting as a significant transport channel for GHG emissions into the atmosphere. In
addition, plants fix CO2 from the atmosphere into sediments via photosynthesis. Therefore,
the effect of plants on GHG emissions in CWs is complex, which can either increase or
decrease GHG release [54], depending on the presence, species, richness, growth situation,
harvest of plants, etc.

The effects of plant presence on GHG emissions from CWs could be more consistent.
Some studies have shown that the low molecular weight organic matter exudated via plant
roots provides substrate and energy for microbial activities and promotes the production of
GHGs [54,150]. It is suggested that CO2 fluxes are higher in planted CWs than unplanted
CWs. The number of AOB bacteria around the roots of planted CWs is greater than
that of unplanted CWs, thus increasing the release of N2O, and N2O emissions increase
with plant species richness [151]. The presence of vascular plants was reported to lead to
significantly higher total respiration rates than un-vegetated control plots [152]. However,
some studies indicated that the organic matter exudated by plants provides sufficient
carbon sources for the denitrification process, which reduces the release of N2O [153].
The plant rhizosphere’s aerobic environment stimulates methanotroph growth, which is
conducive to the oxidation of CH4 [154]. Planted CWs mainly acted as the carbon sink
(about 13,000 mg·m−2·d−1 net CO2 absorption flux) and could cover the emission of N2O
and CH4 (maximum 12.24 mg·m−2·d−1 and 2.52 mg·m−2·d−1, respectively) [155].

The impact of plant diversity on GHG emissions is also controversial. Several studies
have observed a positive correlation between CH4 emissions and plant species diver-
sity [156], as high species diversity increases carbon source availability and promotes CH4
emissions [109]. In contrast, some studies have also found that plant species diversity has
no significant influence on CH4 emissions [157]. Additionally, research indicates that plant
diversity can enhance carbon sequestration within the substrate, effectively offsetting the
global warming potential associated with CH4 and N2O emissions. This phenomenon also
promotes the transformation of CWs from carbon sources to carbon sinks [156].

In conclusion, this variation is potentially due to plant species variation. Different plant
species show different GHG productivity. Some plants provide aerenchyma to transport O2
to the plant rhizosphere, promoting methane oxidation in the micro-oxygen environment,
such as Cyperus papyrus and Cyperus alternifolius [53,140]. In contrast, certain plant species,
such as Juncus effusus, possess remarkable abilities to transport GHGs. They can directly
transport CH4, generated within anaerobic environments, to the atmosphere, bypassing
the aerobic soil layer and increasing methane emission [144,158]. In addition, some plants
have a strong carbon sequestration ability and could cover the emission of nitrous oxide
and methane, acting as the carbon sink, such as Iris pseudacorus [155].

During the growing season, microorganisms preferentially utilize the small molecular
organic matter secreted by the plant roots, while the plant’s lignified rhizome biomass
is deposited in the substrate as refractory carbon during other times of the year [159]. It
has been observed that plants tend to promote the release of CH4 and N2O during the
growing period, and the release of CH4 and N2O decreases after stem wilt [143], while
studies have also shown that the CH4 produced by plant litter entering wetland systems
accounts for 40% of the total release, which is an important reason for the increase in GHG
emissions [160]. Upon harvesting the plant, the CH4 stored in the plant root system is
rapidly released, and the plant stems are directly exposed to the air, leading to an immediate
increase in CH4 release [161].

4.3. Substrate

The role of traditional substrates in CWs is mainly to adsorb pollutants and support
microbes and plants [97], including soil, sand, gravel, ceramsite, etc. Among them, soil
and fine sand exhibit a higher water retention capacity, limiting oxygen transmission
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to the system and resulting in an anaerobic environment, which increases the amount
of CH4 released [162]. Recently, some novel substrate amendment schemes have been
applied in CWs to improve the treatment efficiency of CWs. Carbon-rich substrates like
biochar [53,94] promote CH4 production, but they also stimulate plant roots to secrete
more oxygen, enhancing methane oxidation [163]. The overall impact of biochar on CH4
emissions is still uncertain, emphasizing the necessity for additional research to elucidate
the role of biochar in regulating CH4 emissions [164]. Electron-exchange substrates, such as
Mn ore and iron ore substrates, can directly inhibit the activity of methanogens and promote
the AOM process under the influence of dissimilated metal-reducing bacteria, resulting
in a reduction in CH4 emissions [165,166]. Moreover, the toxicity of Fe3+ affects the N2O
reductase activity so that N2O cannot be converted to N2, increasing N2O release [167].
Adsorption substrate types, such as Fe-C [168], can not only increase methane and oxygen
adsorption via activated carbon [169,170] but also compete with methanogens for substrate
in the presence of iron-reducing bacteria, ultimately reducing CH4 emissions [171]. Zhang
et al. reported that the presence of biochar and hematite mitigated CH4 and N2O emissions
by modifying microbial communities with higher ratios of pmoA/mcrA and nosZ genes
abundances, as well as increasing the abundance of denitrifying bacteria (Dechloromona,
Thauera, and Azospira) [172]. The research of Huo et al. suggested that the biochar-CWs
and pyrite-CWs provided carbon source and electron donor, respectively, which directly
intensified the heterotrophic denitrification process in CWs and then reduced the emission
of N2O. In pyrite-CWs, adding Fe (II) as an electron donor might directly mediate the
occurrence of autotrophic denitrification and reduce the emission of N2O [173].

4.4. Temperature

Temperature affects GHG emissions in CWs by influencing microbial activity and
the succession of dominant bacteria. Methanogens are very sensitive to temperature
changes [174], with the optimal temperature for methanogenesis usually 35 ◦C–40 ◦C [175],
and the diversity and abundance of methanogens will increase with the rise of tempera-
ture [176], resulting in a significant increase in the rate of CH4 production. Higher summer
temperatures can improve methanogens’ activity and increase CH4 emissions because
rapid oxygen consumption affects the activity capacity of methanotrophs [177]. Low tem-
perature will reduce the rate of organic matter degradation, thus weakening the activity
of methanogens and fermenting bacteria [38], thus reducing the substrate utilization of
methanogenesis. Methanotrophs are not sensitive to temperature, and the optimal tempera-
ture is 25 ◦C. CH4 can be oxidized either at low to −2 ◦C or at high to 30 ◦C [178]. Research
generally indicates that CWs release higher amounts of CH4 during the warm seasons
than cold seasons [98,179,180]. According to Lu et al., methanogens were dominated by
Methanosarcinaceae (utilizing acetate and H2/CO2 substrates), while as temperature lower,
Methanosaetaceae (using acetate for CH4 production) dominated the methanogens [181].
Significantly higher N2O emission during the summer than during winter due to a slow-
down of the denitrification and nitrification processes at lower temperatures was found by
Ström et al. [182]. There are also some findings showing that temperature is not positively
correlated with GHGs because other factors besides temperature collectively affect the total
emissions of GHGs [183–185].

4.5. Influent Characteristics

Influent characteristics also affect GHG emissions, including influent organic carbon
load, NH4

+, NO2
−, NO3

−, TN load, and C/N. A high C load will increase the supply of
organic substrates for methanogens, and a high influent organic load will lead to rapid
oxygen consumption and reduce the oxidation of CH4, thus increasing CH4 emissions.
When nitrifiers oxidize NH4

+, they compete with methanotrophs oxidizing CH4 for the
active site on methane monooxygenase (MMO), and CH4 oxidation could not begin until
NH4

+ was consumed [186]. Higher concentrations of NH4
+ can inhibit the growth and

activity of methanotrophs by increasing the number of nitrifiers, thus inhibiting CH4 oxi-



Water 2023, 15, 2871 13 of 22

dation [186]. Furthermore, the presence of NO2
−, NO3

−, and cations in conjunction with
NO3

− resulting from NH4
+ oxidation can directly hinder the activity of methanotrophs,

leading to the inhibition of CH4 oxidation [187,188]. In contrast, increasing NO3
− concen-

trations stimulate organic matter decomposition, resulting in elevated CO2 emissions and
reduced CH4 emissions via anaerobic CH4 oxidation [189–191]. A high TN load reduces
DO during nitrification, causing NO2

− accumulation. This, coupled with the faster reac-
tion rate of AOB compared to NOB, triggers N2O production via NH4OH oxidation and
nitrifier denitrification [192]. Several studies reported an optimal C/N ratio of around 5 for
simultaneously best biological nutrient removal and lowest CO2 and CH4 fluxes [193,194].
Wu et al. [195] found that when C/N = 5, the nitrogen removal effect of sewage is the best,
and the release of N2O is the least, while when C/N < 4~5, the denitrification reaction
is incomplete, resulting in the accumulation of NO2

−. Accumulated NO2
− will inhibit

N2O reductase activity, increasing N2O release [193]. In addition, due to the weak electron
competition ability of N2O reductase, N2O accumulation is easy to occur when the carbon
source is insufficient [169]. However, higher C/N is sometimes better; High C/N may also
increase N2O release. For example, studies have shown that when the C/N ratio is 20, the
release of N2O is 10 times that when the C/N ratio is 5. This may be due to the excessive
influent organic load leading to the system pH being too low (<5), thus inhibiting the N2O
reductase [195].

In conclusion, the GHG emissions in CWs are influenced by multiple factors. Crucial
influencers encompass CWs type and age, plant presence, diversity, species, growth stages,
substrate types, temperature, and influent characteristics. CW type significantly impacts
GHG emissions due to variations in DO levels and redox environments. The presence and
diversity of plants can either stimulate or suppress GHG release, with specific plant species
and growth stages showing stronger connections to GHG emissions. Novel substrate types
like biochar, electron-exchange substrates, and adsorption substrates play a pivotal role in
GHG emissions by inhibiting methanogens’ activity and altering nitrogen transformation
pathways. Temperature affects GHG emissions by directly influencing the activity of
methanogens, nitrifiers, and denitrifiers. Furthermore, influent characteristics, such as
organic carbon load, NH4

+, NO2
−, NO3

−, TN load, and C/N, can influence GHG emissions
by promoting or inhibiting their production and oxidation. CWs are complex systems with
various influencing factors, and comprehensively understanding the interactions of these
factors is crucial for optimizing CW systems and minimizing their GHG footprint.

5. Conclusions and Prospects

Constructed wetland is an efficient and economical surface water treatment technology
that uses the natural processes of plants, substrates, and microbes to treat wastewater.
According to design structures and flow direction, CWs are divided into FWS CWs, HSSF
CWs, VSSF CWs, and the combination of these, HCWs. However, CWs produce a lot of
GHGs in the process of wastewater treatment, which significantly impacts global warming.

The impact of CWs on GHGs is complicated because they can produce a large amount
of CO2, CH4, and N2O as by-products or intermediate products in the process of animal
and plant respiration, anaerobic fermentation of organic matter, oxidative stress response,
nitrification and denitrification, DNRA, SND, denitrification by nitrifiers, denitrification
by aerobic denitrifiers, etc., and transmit them into the atmosphere mostly through plants,
forming sources of GHGs, resulting in the greenhouse effect. In contrast, they can also fix
CO2 from the atmosphere into sediments via plant photosynthesis, forming sinks of GHGs,
and oxidize most of the CH4 produced in CWs to CO2 by aerobic and anaerobic oxidation,
thus reducing CH4 emissions.

CWs’ overall performance depends on many factors, such as the type and age of CWs,
plant, substrate, temperature, and influent characteristics. HCWs have higher nitrogen
removal efficiency and fewer GHG emissions than single-type CWs. In the short term,
CWs act as a source of GHGs, and with the growth of wetland age, GHG emissions are
increasing, while over longer timescales (>100 years), CWs act as a sink of GHGs. Plant
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presence and abundance have controversial consequences for GHG emissions, which may
depend on plant specificity; Cyperus papyrus and Cyperus alternifolius provide aerenchyma to
transport O2 to the plant rhizosphere, promoting the oxidation of CH4 in the micro-oxygen
environment. Iris pseudacorus has a strong carbon sequestration ability and could cover
the emission of nitrous oxide and methane, acting as the carbon sink. Plant roots secrete
small molecular organic matter in the growing season, promoting GHG emissions, and
many GHGs are released when plants are harvested. Adsorption substrate types, such as
Fe-C, can increase methane and oxygen adsorption via activated carbon and compete with
methanogens for substrate in the presence of iron-reducing bacteria, ultimately reducing
CH4 emissions. Temperature affects GHG emissions in CWs by influencing microbial
activity and the succession of dominant bacteria. Low temperatures will reduce the CH4
and N2O emissions. High NH4

+, NO2
−, and NO3

− loads can inhibit the aerobic oxidation
of CH4 and increase CH4 emissions, but high NO3

− loads can also promote the anaerobic
oxidation of CH4, thereby reducing methane emissions and increasing CO2 emissions.
When the influent C/N is 5, the nitrogen removal efficiency is the highest, and the GHG
emissions are the least.

The above factors affect the production, transport, and oxidation process of GHGs
via various physical, chemical, and biological processes. Many studies have conflicting
results on a single influencing factor because the single-factor relationship in the complex
natural environment is insufficient to explain the differences in GHG emissions. However,
most current studies focus on the influence of a single influencing factor on a single GHG.
The source-sink effects and mechanisms of various comprehensive factors on GHGs in
CWs are still unclear, and further research is needed. In addition, carbon fixation and
GHG emissions of CWs jointly determine the impact of this technology on global warming.
However, the current research seems to focus only on studying GHG emissions. It needs
more measurement and research on the carbon balance of the whole system and the
comprehensive greenhouse effect. According to the analysis, carbon sequestration by
plant photosynthesis is the main way of carbon sequestration in CWs, which has both
direct and indirect effects on the biogeochemical cycle of carbon, and these processes are
closely related. There needs to be more research methods to ensure the differentiation and
quantification of these processes, especially the microbial community-plant interactions
involved in carbon sequestration and GHG emissions.
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