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Abstract: One alternative measure to minimise the stormwater runoff volume and its pollutants
and reduce impervious areas is to use permeable pavement. However, due to weak mechanical
performance under heavy-load traffic related to fatigue resistance, porous mixtures and permeable
pavements have restricted applications, i.e., parking lots and low-traffic roads. This work aims to
evaluate the fatigue resistance of a porous asphalt mixture produced with highly modified asphalt
(HiMA) and its potential contribution to reducing stormwater runoff and pollutants. In order
to estimate the capability of runoff pollutants and stormwater flood reduction, a case study was
performed on an urban road. A permeable pavement was designed using the porous mixture as a
surface layer. The mixture volumetric parameters and asphalt content were established using the
Marshall method, considering the void content, interconnected voids, permeability, Cantabro test, and
moisture damage test evaluation. The resilient modulus and fatigue resistance tests were performed
on a diametral compression device. The mixture design resulted in an asphalt content of 5.1% and
a void content of 21.5%. The resilient modulus was 2764 MPa, and the porous mixture obtained
excellent fatigue performance, allowing its application in diverse traffic conditions. The porous
mixture efficiency infiltration capacity was 90%, and some runoff pollutants could be reduced after
being filtered by the pavement surface, contributing to minimizing environmental contamination.
This work filled part of a gap in predicting porous mixtures’ fatigue performance, collaborating to
popularise and expand its use for various purposes.
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1. Introduction

The surface waterproofing, resulting from cities’ disorganised urban occupation,
causes impacts on the environment, mainly related to changes in the hydrological cy-
cle, and leads to flooding during heavy rainfall [1]. As for infrastructure, in urban centres,
impermeable surfaces used for the road system and parking can represent up to 30% of the
drainage basin area [2]. This study adopted the terms “permeable” to refer to pavement
and “porous” to refer to the surface pavement layer.

Some water management strategies have been applied to minimise urbanisation’s
effects on the hydrological cycle. Retention reservoirs are employed in Brazilian (São
Paulo and Rio de Janeiro) and French (Paris) cities to mitigate this problem. However, this
alternative requires large areas, which are often unavailable and expensive [3,4]. Another
viable option is the use of permeable pavements to reduce stormwater runoff volume,
which is considered an unconventional alternative [5]. The stormwater infiltrates over the
permeable pavements, crosses the draining layers, and can be stored for reuse or percolate
into the soil to feed groundwater systems [6,7].

On a Nanjing (China) road, Zhu et al. [8] simulated different pavement structures
under different rainfall conditions to evaluate the reduction of surface runoff and urban
stormwater. They concluded that the permeable pavement could reduce surface runoff by
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more than 50%, and the percentage of flood peaks decreased as the surface layer thickness
increased. Suripin et al. [9] measured the capacity of permeable pavement to reduce
stormwater runoff in a parking lot. They proved that permeable pavements could decrease
surface runoff volume by 33.42% to 46.05%.

Shafique et al. [10] monitored a permeable interlocking concrete pavement system
to evaluate its effectiveness in controlling rainfall runoff in the field. They performed
measurements on the stretch for four months. In conclusion, the authors observed that the
permeable interlocking concrete pavement could decrease the runoff volume by 30% to 65%
during storm events and reduce the increase in concentration time, which is an essential
factor in lowering flash flooding in urban areas.

Infante et al. [11] measured the retention capacity of three porous mixtures, varying
the composition, aggregates, and asphalt content. The void content of the mixtures was
28% (mixture A), 25% (mixture B), and 12% (mixture C). A rainfall simulator was used to
reproduce different rainfall intensities (5, 10, 20, and 30 mm/h) and evaluate the runoff
reduction. The authors concluded that the retention capacity of the porous mixtures arose
between 85% and 20% and stated that higher values were observed for low-intensity rain.
The mixtures with higher void content (A and B) had similar behaviour, and mixture C
had less performance, proving that the low void content negatively affects the retention
capacity.

Kuruppu et al. [12] stated that the practise of managing permeable pavement systems
still needs to be improved due to a lack of in-depth scientific knowledge and economic
uncertainties, and further studies are needed. One of the gaps in knowledge to be filled is
related to surface layer mechanical resistance.

During in-service life, flexible pavements are subjected to repeated traffic loading
and weather conditions variations, such as temperature, rain, and freezing, resulting in
distress. Fatigue cracking is one of the most common pavement distress types and remains
a significant challenge for pavement design [13]. Yang et al. [14] added that the cracking of
flexible pavement is accelerated by precipitation-led moisture penetration associated with
traffic loads.

In the fatigue failure process, the cracking initiates at the bottom of the surface layer,
where the tensile stress or strain is highest, and then propagates to the top of the surface
layer. Initially, as one or more longitudinal cracks propagate and after repeated traffic
loading, the cracks connect and form many-sided structures, similar to the skin of an
alligator, which is the final stage of fatigue distress [15,16].

Fatigue resistance can be defined as the asphalt mixture’s ability to resist repeated
traffic loading without significant cracking. The asphalt mixture’s fatigue resistance is
measured through tests like simple flexure, direct uniaxial, and diametral load tests [17].

For several years, a consensus was that only asphalt mixtures with low void volume
and that were considered impermeable performed adequately in the field as pavement
surfaces. Fatigue resistance is critical when a porous mixture is the pavement surface
layer, reducing its durability [18]. Due to the large and interconnected air voids, this
mixture is fragile in supporting the repeated traffic loading and thus more subject to fatigue
cracking [19].

The high void volume allows the water to percolate and infiltrate inside the surface
layer; the water reduces the adhesion between the asphalt and the aggregates, leading to
moisture damage and reducing the layer’s lifespan [20]. Other researchers corroborated
that as porous mixtures are constantly exposed to oxygen and moisture due to their open
structure, the ageing process contributes to cracking by fatigue [21–23].

Due to the high voids content (18% to 25%) and the consequent lower mechanical resis-
tance to traffic stress, porous asphalt mixture applied as a surface layer is most commonly
used in parking lots, patios, sidewalks, bike lanes and light traffic lanes [24].

The porous mixture’s durability enhancement and fatigue resistance improvements
can be achieved using modified asphalts [23]. Some authors have confirmed the porous
asphalt mixtures’ mechanical performance improvements through the introduction of
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fibres [25–27] or fatty acid amides [28] and by using modified asphalts, such as epoxy [29],
polyurethane [30], rubber from waste tires [31], and styrene butadiene styrene—SBS [32–34].

Asphalts modified by SBS have been widely used in producing porous mixtures whose
contents vary from 2% to 3%. On the other hand, to provide a network of polymer chains
and improve the mixture’s mechanical performance, especially subject to heavy traffic and
higher temperature conditions, an asphalt with the introduction of higher levels of SBS (7%
to 8%), called Highly Modified Asphalt (HiMA), was developed [35].

Zhang et al. [36] evaluated the mechanical performance of porous asphalt mixtures and
tested four SBS polymer contents in asphalt modification (4.5%, 6.0%, 7.5%, and 9.0%). The
authors concluded that increasing the SBS content improved resistance to disintegration,
moisture damage, fatigue, and permanent deformation of the mixture. However, it was
noticed that the increase in fatigue life was more significant from 6.0% to 7.5% than between
7.5% and 9.0% of SBS content, indicating that the continuous increase of SBS content would
produce a limited improvement in the fatigue performance of the porous mixtures.

The design requirements for porous asphalt mixtures differ from those commonly
established for conventional mixtures. Hamzah et al. [37] proposed a design method to
select the asphalt content based on four control parameters: permeability coefficient (K),
void content, abrasion loss, and binder draindown. In Brazil, Kolodziej [38] established
the asphalt content of porous mixtures by considering void content, interconnected voids,
and the Cantabro test results. Ji et al. [39] asserted that the permeability coefficient of the
porous mixture was a parameter that influenced the pavement drainage performance.

There are some differences among standards-settled requirements for porous asphalt
mixtures. A brief comparison between the North American ASTM D7064 [40] and the
Brazilian standard DNER-ES 386 [41] is presented. The ASTM standard [40] establishes, for
porous mixtures, a minimum of 18% void content, while the DNER [41] standard sets a
range between 18% and 25%. In the Cantabro test, the DNER [41] limits mass loss to 25%
and the ASTM [40] to 20%. As for mechanical performance, in Brazil, a minimum tensile
strength of 0.55 MPa is required by a diametral compression test (temperature of 25 ◦C). The
North American specification requires that the tensile strength ratio be at least 80% and the
maximum draindown be 0.3%. The Brazilian standard also recommends that the asphalt
content fit between 4.0% and 6.0%; however, the mixture design must be accomplished.

Dan et al. [19] stated that, generally, the research on porous asphalt mixtures primarily
focuses on the mixture design and mechanical behaviour; usually, permanent deformation
resistance is evaluated. However, the authors confirmed that the porous mixture’s fatigue
performance must be measured, especially considering that such mixtures’ performance is
severely affected by moisture damage.

The stormwater runoff contains several pollutants that are directly carried to drainage
systems during rain events. Consequently, urban runoff is one of the ways to transfer
pollutants to the aquatic and marine environment [42]. The primary contaminants of
urban runoff are heavy metals, solids, organic micropollutants, pathogenic microorganisms,
nutrients, and microplastics [43,44].

Several studies have proved that porous surface layers and permeable pavement can
reduce the concentration of some stormwater runoff pollutants [45–49]. Research demon-
strated that total suspended solids, ammonia, nitrate, total phosphorous, and chemical
oxygen demand were removed only by the porous surface pavement layer before the
stormwater was passed through other pervious layers [50]. Liu et al. [51] confirmed that
adding alternative fillers (diatomite, quartz sand, and straw biochar) in the porous asphalt
mixture can enhance the removal effect of dissolved pollutants, especially heavy metals.
They also found that the total removal of suspended solids increased by 60% to 80%.

This work proposes to produce a porous asphalt mixture with highly modified as-
phalt (HiMA) to improve fatigue resistance. The mixtures were designed using Marshall
methodology with four asphalt contents (4.5%, 5.0%, 5.5%, and 6.0%). In order to define the
asphalt content, the samples were submitted to tests such as void content, interconnecting
voids, permeability, Cantabro, and moisture-induced damage. Then, the porous mixture
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mechanical tests were performed through the indirect tensile test to evaluate the resilient
modulus and fatigue resistance. A pavement structure was designed to evaluate the poten-
tial use of the porous mixture under high-traffic conditions related to fatigue resistance.
Moreover, the porous mixture’s filtering capacity was measured using models exposed to
rain events. The porous mixture’s ability to reduce runoff pollutants was also assessed.

The ability to filter stormwater pollutants can contribute to environmental protection
and runoff reduction in urban areas. In addition, the fatigue performance investigation
represents an advancement in porous mixture study and enhances its application in high-
load traffic conditions. This work’s novelty was to design a porous asphalt mixture with
outstanding fatigue resistance using highly modified asphalt.

2. Materials and Method

The method encompassed the asphalt porous mixture design to obtain the asphalt
content. After that, the porous mixture samples were produced and submitted to mechani-
cal tests (resilient modulus and fatigue). The porous asphalt mixture’s infiltration capacity
was evaluated using models to estimate the runoff reduction. The water from runoff was
collected on an urban road after rain events, and the pollutants in the water were measured
(before and after filtering through the models). Considering the urban road case study, a
pavement structure was designed to establish the life span related to fatigue performance
and runoff and pollutants reduction.

2.1. Materials and Mixture Design

The granitic aggregates were obtained from Santa Catarina State, Southern Brazil,
and consist of the following nominal sizes: (i) grade 1: 4.8 mm to 9.5 mm; (ii) grade
2: inferior to 4.8 mm (stone powder). The aggregates were characterised according to
the Brazilian specification tests [41] and were adequate for producing asphalt mixtures
(Table S1—Supplementary Data). The mixture gradation curve adopted was the same one
used by Lu et al. [52], as shown in Figure 1.
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Figure 1. Mixture gradation curve.

A Highly Modified Asphalt (HiMA) supplied by a Brazilian distributor was used to
produce the porous mixture. HiMA was made with the base asphalt PEN 50/70 (classified
by penetration grade) and styrene-butadiene-styrene (SBS), whose amount of polymer SBS
added is more significant than 7% (both the modification process and the exact percentage of
SBS are protected by industrial confidentiality). As HiMA still has no standard specification
in Brazil, the tests commonly used for modified asphalt characterisation were performed.
As a result, HiMA fits into the Brazilian requirements for modified asphalts [53], as shown
in Table 1.
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Table 1. HiMA characterisation tests results.

Test Unit Result Reference

Penetration, 100 g, 5 s, 25 ◦C 0.1 mm 36 [54]
Softening point 1 ◦C 90.8 [55]

Elastic recovery, 20 cm; 25 ◦C % 95 [56]
Apparent viscosity 2

135 ◦C, spindle 21, 20 rpm cP 2989
[57]150 ◦C, spindle 21, 50 rpm cP 1408

175 ◦C, spindle 21, 100 rpm cP 405
Storage stability, ∆Sp 3 ◦C 2.1 [58]

RTFO 4

Mass loss % 0.333 [59]
Change in softening point ◦C 4.3 [55]
Change in elastic recovery % 97.8 [56]

Retained penetration % 68 [54]

Note(s): 1 Ring-and-ball method; 2 Brookfield viscometer; 3 Softening point difference; 4 Rolling Thin Film Oven.

The porous mixture samples production followed the Brazilian standard [41] to eval-
uate the asphalt content. Marshall samples (three for each content) were prepared with
four asphalt contents (4.5%, 5.0%, 5.5%, and 6.0%), resulting in twelve compacted samples
(Figure S1—Supplementary Data). Before compaction, the mixtures were maintained in an
oven at 150 ◦C for two hours to simulate the short-term ageing representing the production,
transport, and compaction at the construction site. Samples with a diameter of 100 mm
and a height of 65 mm were moulded by applying 50 blows per side. From the viscosity-
temperature curve, the following temperature ranges were established: (i) asphalt heating:
160 ◦C to 165 ◦C; (ii) aggregate heating: 175 ◦C; (iii) mixture compaction: 150 ◦C. After
that, all samples were submitted to the following tests: (i) void content; (ii) interconnecting
voids; (iii) permeability; and (iv) Cantabro. The asphalt content was defined based on such
tests and resulted in two contents; then, one was chosen based on the moisture-induced
damage test result.

The void content was calculated using Equation (1), following the ASTM D3203
standard [60]. According to the Brazilian specification [41], the range of void content
must be between 18% and 25%. The interconnected voids were estimated according to
Equation (2) (AFNOR NF P98-254-2 standard [61]). The test measures the amount of the
film of water kept constant for ten minutes on the upper face of the sample while the other
faces are maintained waterproofed. Raimbault et al. [62] considered that the interconnected
voids should be at least 12% and not greater than 20%, and such limits were adopted in
this study as a selection criterion.

Vc = [(Gmm − Gmb)/(Gmm)] × 100 (1)

where Vc is the void content (%), Gmm is the theoretical maximum specific gravity of the
mixture (g/cm3), and Gmb is the bulk specific gravity of the mixture (g/cm3).

Iv = [(Mab)/(Af × hred)] × 100 (2)

where Iv is the interconnected void content (%); Mab is the mass of absorbed water (g); Af
is the upper face area (cm2), and hred is the reduced height (cm), which is calculated using
Equation (3).

hred = hm − (dmax/20) (3)

where hred is the reduced height (cm), hm is the average of three measurements of the
sample height (cm), and dmax is the maximum aggregate size (cm).

The permeability coefficient (K) was measured by a falling head permeameter LCS,
according to the standard NLT-327 [63] and Equation (4). The time required for a column
of water with standardised height to infiltrate the sample is measured in the test. Due to
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the sample form and dimensions, the standard test was adapted to direct the water flow
through the sample (Figure 2).
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The permeability coefficient of each sample was calculated from the average of three
measurements.

lnK = 7.624 − 1.348 × lnT (4)

where K is the permeability coefficient (cm/s) and T is the water flow time (cm).
The Cantabro test measures the breakdown of compacted samples, expressed by

the loss of mass percentage, after the abrasion test in the Los Angeles machine (LAM).
Initially, the samples were compacted at the design asphalt content, gradation, and air
voids. Before the Cantabro test, the samples were conditioned in an oven at 25 ◦C for
six hours, and the mass of each sample was measured (the initial mass). The test was
performed using one sample at a time. The sample was placed into the LAM drum without
the steel balls and subjected to 300 revolutions at 30 to 33 rpm. After 300 revolutions,
the loose material, broken off from the sample during the test, was discarded, and the
mass was measured (the final mass). The Cantabro test was performed according to the
Tex-245F [64] standard, and the Cantabro Loss was calculated using Equation (5). The
resistance to moisture-induced damage was evaluated in compacted samples and followed
the AASHTO T 283 standard [65]. The tensile strength was calculated using Equation (6)
and the tensile strength ratio using Equation (7).

CL = [(A − B)/A] × 100 (5)

where CL is the Cantabro Loss (%), A is the initial mass of sample (g), and B is the final
mass of the sample (g).

TS = 2000 × P/(π × t × D) (6)

where TS is the tensile strength (kPa); P is the maximum load (N); t is the sample thickness
(mm); and D is the sample diameter (mm).

TSR = (S2/S1) × 100 (7)

where TSR is the Tensile Strength Ratio (%); S1 is the average tensile strength of the dry
subset (kPa); and S2 is the average tensile strength of the conditioned subset (kPa).

2.2. Mechanical Tests

After selecting the asphalt content, samples were produced for mechanical tests
(resilient modulus and fatigue resistance). The resilient modulus test followed the DNIT
135 standard [66], an indirect tensile test in controlled force mode at 25 ◦C, in which the
samples were submitted to 0.1 s loading and 0.9 s rest periods. The resilient modulus was
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calculated using Equation (8). The fatigue resistance was evaluated through a repeated
load-controlled force indirect tensile test (standard DNIT 183 [67]), the most commonly
used in Brazil. The tests were performed on the same equipment to obtain the resilient
modulus. The test conditions were a haversine loading wave, a frequency of 1 Hz, and
a temperature of 25 ◦C. Four tension levels (20, 25, 30, and 35% of tensile strength) were
applied, and three samples were tested at each level. The fatigue curve is represented by
Equation (9).

RM = [P/(∆H × t)] × (0.2692 + 0.997ν) (8)

where RM is the Resilient Modulus (MPa); P is the cyclic load (N); ∆H is the horizontal
displacement (elastic or resilient) (mm); t is the sample height (mm); and ν is the Poisson’s
coefficient (taken as 0.30).

N = k1 × σ−k
2 (9)

where N is the cycle number; σ is the tensile strain (microstrain); and k1 and k2 are the
experimental coefficients.

2.3. Porous Mixture Infiltration Capacity

The infiltration capacity of the porous mixture was measured using models exposed
to rain events. Three acrylic boxes were constructed with the following dimensions:
50 cm × 18 cm internal base and 53 cm height. Two compacted porous mixture slabs
(50 cm × 18 cm) were assembled in two acrylic boxes, supported by metal grids, while an
empty box was the control. All models were exposed to the same rain events. After each
rain event, the water infiltrated and stored in the boxes was measured using a graduated
rule. The water stored in the empty box was also measured to evaluate the total rainwater
volume. The infiltration capacity for each slab was obtained by comparing the water
infiltrated after passing by the slabs with the accumulated water in the empty box. The
porous mixture infiltration capacity was obtained using Equation (10), calculated by the
average of models.

E = (hi/hs) × 100 (10)

where E is the infiltration capacity (%), hi is the height of rainwater infiltrated in the models
(mm), and hs is the height of rainwater stored in the empty box (mm).

2.4. Evaluation of Runoff Pollutant Reduction

At the first hour of rain events (four), stormwater runoff samples were collected in
the gutters of the urban road (case study), and the water pollutants were measured. Part
of the collected water was spilt over the models to evaluate the filtering capacity and
retain pollutants. Then, the water quality, filtered by the models, was also measured.
The chosen water quality parameters followed the National Water Agency’s (ANA) [68]
recommendations for non-potable purposes (Table S2—Supplementary Data).

2.5. Pavement Structure Design

A case study was conducted on an urban road for the porous asphalt mixture ap-
plication. A pavement structure was designed using the Brazilian mechanistic-empirical
pavement software, MeDiNa [69] (version 1.1.5.0), and the potential use of the porous
mixture under high traffic conditions related to fatigue resistance was evaluated. In the
pavement structure, it was considered that only the surface layer is porous and the others
are non-pervious layers.

3. Case Study

Florianópolis (27.5948◦ S, 48.5569◦ W) is the Santa Catarina State capital (Figure 3),
with most of the municipality located on an island. The climate zone is humid subtropical,
with an average temperature of 21.1 ◦C [70]. The average monthly rainfall measured
between 1991 and 2020 [71] is 147 mm, resulting in an accumulated annual precipitation of
1766 mm (Figure 4).
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Figure 4. Monthly annual average rainfall in Florianópolis (Based on [71]).

One of the main arterial roads is located in the city’s central region, whose layout
follows the sea and a permanent preservation area, a mangrove (Figure 5, highlighted
in blue). The road was built on an embankment in the 1960s and expanded in the 1980s.
This essential road called Beira Mar Norte Avenue, provides access to the bridges to the
mainland and connects the central neighbourhoods and the northern beaches. Beira Mar
Avenue is 7000 m long (4700 m edges the sea and 2100 m edges the mangrove), composed
of six lanes (three by traffic direction), each with a 3.50 m width. The pavement structure
has a surface layer with a dense-graded hot mix (asphalt rubber) and a granular base.

In December 2022, the accumulated rainfall in Florianópolis was 460 mm, and on
two consecutive days, there was rainfall of 123 mm and 137 mm [72]. Due to the heavy
rains, several floods were observed on this road, as shown in Figure 6. However, there
is a superficial drainage system along the road (kerb and gutter), which is sometimes
insufficient depending on the intensity of the rain.
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Figure 6. Floods on Beira Mar Avenue [73].

4. Results
4.1. Mixture Design

Due to the four asphalt contents (4.5%, 5.0%, 5.5%, and 6.0%), the samples were
tested for void content, interconnected voids, permeability coefficient, and Cantabro Loss.
Figure 7a shows that the minimum limit of 18% void content (dotted red line) was met
for all asphalt contents tested. It was also observed that the void content decreased
with the increase in asphalt content. However, between 5.5% and 6.0%, the void content
remained almost constant, with a variation of less than 0.1%, changing from 20.6% to 20.5%,
respectively. On the other hand, the interconnected voids, shown in Figure 7b, reduced due
to the increasing asphalt content, more between 4.5% and 5.0%. All asphalt contents met
the criteria adopted (between 12% and 20%, dotted red lines in Figure 7b).
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Figure 7. Voids as a function of asphalt content.

Higher K values were obtained for 4.5% (Figure 8a), and the trend observed was a
reduction in the average permeability due to the asphalt content increase. The minimum K
value (dotted red line in Figure 8a) of 0.12 cm/s was not met for the 5.5% and 6.0% asphalt
contents. As for the Cantabro test, the mass loss was less than the maximum limit of 20%
(dotted red line in Figure 8b) for all asphalt contents. On the other hand, the mass loss was
greater between the contents of 4.5% and 5.0%, i.e., 13.1% and 8.8%, respectively. Only 4.5%
and 5.0% of asphalt contents met the permeability coefficient criterion. The 5.0% content
resulted in a lower mass loss in the Cantabro test (an average of 8.8%) and was adopted to
conduct the moisture-induced damage test. However, for 5.0%, the results did not meet the
standard’s requirements, and it was necessary to perform the test for the asphalt content of
5.1%.



Water 2023, 15, 2962 10 of 21

Water 2023, 15, x FOR PEER REVIEW 10 of 21 
 

 

Only 4.5% and 5.0% of asphalt contents met the permeability coefficient criterion. The 
5.0% content resulted in a lower mass loss in the Cantabro test (an average of 8.8%) and 
was adopted to conduct the moisture-induced damage test. However, for 5.0%, the results 
did not meet the standard’s requirements, and it was necessary to perform the test for the 
asphalt content of 5.1%. 

  
(a) Permeability (K) (b) Cantabro Loss (CL) 

Figure 8. Parameters K and CL as a function of asphalt content. 

Figure 9 shows the average tensile strength results for 5.0% and 5.1% (the dotted red 
line shows the minimum limit of 0.55 MPa [41]); both met the requirement (unconditioned 
samples). Figure 10 presents the average tensile strength results from the comparison ob-
tained for conditioned and unconditioned samples. 

 
Figure 9. Tensile strength results. 

 
Figure 10. Tensile strength results for unconditioned and conditioned samples. 

In addition, the tensile strength ratio of conditioned samples with an asphalt con-
tent of 5.0% was 78.8% (Figure 11), lower than the minimum required value of 80% [40]. 

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

4.5 5.0 5.5 6.0

Pe
rm

ea
bi

lit
y c

oe
ff

ic
ie

nt
 (c

m
/s

)

Asphalt content (%)

Limit
0

5

10

15

20

25

4.5 5.0 5.5 6.0

C
an

ta
br

o 
lo

ss
 (%

)

Asphalt content (%)

Limit

0.0

0.2

0.4

0.6

0.8

1.0

5.0 5.1

Te
ns

ile
 s

tr
en

gt
h 

(M
Pa

)

Asphalt content (%)

Limit

0.0

0.2

0.4

0.6

0.8

1.0

5.0 5.1

Te
ns

ile
 s

tr
en

gt
h 

(M
Pa

)

Asphalt content (%)

Unconditioned Conditioned

Figure 8. Parameters K and CL as a function of asphalt content.

Figure 9 shows the average tensile strength results for 5.0% and 5.1% (the dotted red
line shows the minimum limit of 0.55 MPa [41]); both met the requirement (unconditioned
samples). Figure 10 presents the average tensile strength results from the comparison
obtained for conditioned and unconditioned samples.
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Figure 9. Tensile strength results.
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Figure 10. Tensile strength results for unconditioned and conditioned samples.

In addition, the tensile strength ratio of conditioned samples with an asphalt content
of 5.0% was 78.8% (Figure 11), lower than the minimum required value of 80% [40]. The
results of samples with 5.1% met the requirements, with a tensile strength of 0.64 MPa and
a retained tensile strength of 80.8%. In this sense, the samples were produced with 5.1%
asphalt content to perform the mechanical tests, for which the void content resulted in
21.5% and K, obtained by means of regression, in 0.13 cm/s.



Water 2023, 15, 2962 11 of 21

Water 2023, 15, x FOR PEER REVIEW 11 of 21 
 

 

The results of samples with 5.1% met the requirements, with a tensile strength of 0.64 
MPa and a retained tensile strength of 80.8%. In this sense, the samples were produced 
with 5.1% asphalt content to perform the mechanical tests, for which the void content 
resulted in 21.5% and K, obtained by means of regression, in 0.13 cm/s. 

 
Figure 11. Tensile strength ratio results. 

4.2. Mechanical Test Results 
The resilient modulus (asphalt content of 5.1%) was obtained from the three samples’ 

average, resulting in 2764 MPa (Table 2). Figure 12 shows a sample placed on the loading 
device during the test. The fatigue curve is presented in Figure 13, and the parameters 
obtained are shown in Table 3, related to Equation (9). Despite the high void content, the 
porous asphalt mixture’s fatigue performance can be attributed to the HiMA asphalt. 

Table 2. Resilient modulus results. 

Parameters 
Sample 

1 2 3 
Modulus (MPa) 2717 2797 2779 

Mean (MPa) 2764 
Standard deviation (MPa) 42 
Coefficient of variation (%) 1.5 

 
Figure 12. Porous mixture sample positioned on the loading device in the fatigue test. 

60

70

80

90

100

5.0 5.1

Te
ns

ile
 s

tr
en

gt
h 

ra
ti

o 
(%

)

Asphalt content (%)

Limit

Figure 11. Tensile strength ratio results.

4.2. Mechanical Test Results

The resilient modulus (asphalt content of 5.1%) was obtained from the three samples’
average, resulting in 2764 MPa (Table 2). Figure 12 shows a sample placed on the loading
device during the test. The fatigue curve is presented in Figure 13, and the parameters
obtained are shown in Table 3, related to Equation (9). Despite the high void content, the
porous asphalt mixture’s fatigue performance can be attributed to the HiMA asphalt.

Table 2. Resilient modulus results.

Parameters
Sample

1 2 3

Modulus (MPa) 2717 2797 2779
Mean (MPa) 2764

Standard deviation (MPa) 42
Coefficient of variation (%) 1.5
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Parameters Results

k1 4.0 × 10−6

k2 2.391
R2 0.93

4.3. Porous Mixture Infiltration Capacity

The porous mixture infiltration capacity results, measured through the models, are
presented in Table S3 (Supplementary data). Even though the slabs presented the same
granulometry, asphalt content, and void content, the aggregate arrangement during the
compaction process can have a slight position variation that influences the interconnected
voids. Thus, the water infiltration results can differ despite the slabs being subjected to the
same rain events. For slab 1, the efficiency capacity resulted in 89.9% (a standard deviation
of 5.2%), while for slab 2, it was 90.2% (a standard deviation of 4.5%). The results proved
that the porous mixture presented a great infiltration capacity, and the result adopted was
90%.

4.4. Pollutants Reduction

The results of the evaluation of water quality collected from stormwater runoff (road)
and filtered through the porous mixture slab are presented in Table S4 (Supplementary data),
indicating that the porous mixture was relatively efficient in removing runoff pollutants.

On average, the porous mixture significantly reduced concentrations of total phos-
phorus (more than 400%), total suspended solids (975%), and faecal coliforms (more than
200%). Also, the water turbidity and colour decreased by 61.8% and 4.6%, respectively.
The pH slightly varied (2.5%) and remained 6.8 to 7.5. The concentrations of ammoniacal
nitrogen increased by 23.0% after being filtered by the porous mixtures. The retention
capacity was imprecise for the concentrations of chemical oxygen demand, nitrate, and
nitrite.

4.5. Pavement Design

The pavement structure (without infiltration) was designed for the urban road (case
study) with porous asphalt as the surface layer using the software MeDiNa [69]. The
pavement layer’s properties (Table 4) were evaluated by Simm Júnior [74] and Custódio
et al. [75]. The input MeDiNa parameters of the subgrade are presented in Table S5
(Supplementary Data).
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Table 4. Pavement layer’s properties.

Property
Layers

Surface Waterproofing Base Subgrade

Material Porous mixture Asphalt mixture Granular 2 Soil 3

Thickness (cm) Design 1 2.0 16.0 -
Modulus (MPa) 2764 1987 268 220

Poisson coefficient 0.30 0.30 0.35 0.45

Note(s): 1 Thickness is evaluated by the pavement design; 2 [74], 3 [75].

The required thickness of the porous mixture (surface layer) considering the pavement
layers (Table 4) is presented in Figure 14, according to the equivalent single axle loads
(ESALs). The life design was ten years, and the traffic was estimated at the standard ESAL
of 80 kN.

Figure 14 shows that the designed porous mixture could be applied in more adverse
traffic-load conditions due to its high fatigue resistance with thickness increases. It is
important to emphasise that the pavement design did not consider the waterproofing
layer’s contribution in terms of resistance. The minimum surface layer thickness allowed
by MeDiNa is 5.0 cm, which for this structure (Figure 15) results in an ESAL of 9.4 × 106.
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5. Discussion

Impermeable urban road pavement surfaces contribute to runoff volume increases
and flooding potential in cities during storm events [76]. Zanoletti and Bontempi [42]
added that floods are increasing due to climate change effects associated with waterproof
surfaces in cities. Moreover, impervious surfaces assigned to urbanisation decrease the
potential for groundwater recharge and promote flooding and drought cycles [77]. Previous
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studies showed that as impervious surfaces increased, infiltration rates decreased by 4–19%,
evaporation rates rose by 0.2% to 1%, and stormwater runoff increased by 4% to 18% [78].

The efficiency of the drainage system depends on each region’s regime, intensity, and
duration of rainfall. This work evaluated a case study on an urban road in Florianópolis
(Brazil), with higher rainfall in the summer (Figure 4). Due to frequent heavy rains in the
city and impervious pavement surfaces associated with insufficient drainage, floods harm
urban transport mobility, especially once the city is an island (Figure 6).

One of the best management practises for mitigating environmental impacts associated
with floods, drainage controls, and urban stormwater runoff is permeable pavement
use [79]. Permeable pavements are well suited for high-density urban areas with limited
space. When properly designed, many benefits are associated, such as reducing runoff
quantity and reducing pollutants in receiving water bodies. Infante et al. [11] corroborated
that porous mixtures are effective in reducing surface runoff and can be an alternative to
facing and managing urban flooding.

A challenge associated with permeable pavement use is related to the mechanical
behaviour of porous mixtures (the surface layer). Although permeable pavements can
withstand truckloads, they are generally unsuitable for applications in areas exposed
to high-load traffic [80], and they are commonly used in parking lots, low-traffic roads,
sidewalks, and driveways [81].

On the other hand, using modified asphalt contributed to the porous mixture’s me-
chanical resistance improvements [25–34]. The high void content of the porous mixtures
contributes to their weak fatigue performance, and the study to achieve better improve-
ments remains a gap to be filled related to such mixtures.

In this scenario, the present work focused on the fatigue resistance evaluation of a
porous asphalt mixture to provide a related reference for its potential performance under
adverse load traffic. An asphalt highly modified by SBS (HiMA) was used to produce
the porous mixture. The mixture design for asphalt content establishment comprised
volumetric parameter measurements, such as void content and interconnected voids,
associated with permeability, Cantabro, and moisture-induced damage test results.

The Cantabro tests were performed in porous mixtures with SBS and showed that
mass loss was more significant than 20% after 100 revolutions in the Los Angeles machine
for mixtures with a void content of 20%. For the porous mixture designed in this work,
with 21.5% void content, after 300 revolutions, the mass loss was lower than 10.0%, which
can be attributed to HiMA’s capability to maintain adhered aggregates and provide mixture
stability [82].

The mechanical tests were employed to measure the resilient modulus and fatigue
curve parameters. The resilient modulus of the porous mixture, at 2764 MPa, can be
considered high, as usually found for asphalt porous mixtures, suggesting that it was due
to HiMA’s contribution. Comparatively, for porous mixtures with similar void content and
the tests conducted at the same temperature, the resilient modulus obtained was 1875 MPa
for a mixture using asphalt modified by SBS [83] and 1483 MPa for a mixture with a cement
additive [84].

Li et al. [29] conducted fatigue tests using a four-point bending beam device. They
found that porous mixtures produced with asphalt modified by epoxy obtained fatigue
resistance 2.0 to 4.5 times greater than a conventional mixture. However, porous mixtures
were relatively sensitive to high strain levels. Fatigue tests with an indirect tensile device
were performed in porous mixtures, proving that moisture damage significantly affects
fatigue resistance. It was concluded that the material exhibited higher fatigue dependence
on moisture damage at higher stress levels [19].

The asphalt mixture’s fatigue resistance is one of the main factors indicative of pave-
ment durability, but it is not frequently evaluated when the porous mixture is applied
as a surface layer. The fatigue performance evaluation of the designed porous mixture
represented the main contribution of this work. The porous mixture fatigue curve obtained
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(Figure 13) proved that a highly modified asphalt such as HiMA can result in porous
mixtures with outstanding performance.

Zhang et al. [36] evaluated the fatigue resistance of porous mixtures with SBS. They
concluded that the modified asphalt contributed to increased stiffness, with 4.5% of asphalt
content resulting in a modulus of 3097 MPa, 6.0% of 3227 MPa, and 7.5% of 3279 MPa. The
increase in SBS content also enhanced the fatigue life, which was attributed to the fact that
SBS made the mixtures more elastic, and the fatigue performance was improved. However,
for 7.5% SBS asphalt, the SBS content increment of 1.5% only resulted in a roughly 20%
increment in fatigue life. Kim et al. [85] produced porous asphalt mixtures with carbon
fibre reinforcement polymer grids and obtained a fatigue life that increased by 23% to 27%.
Wu et al. [18] compared the durability of porous asphalt mixtures with epoxy-modified
and SBS-produced. The authors found that epoxy porous mixtures were more durable than
SBS ones regarding Cantabro loss and fatigue life.

Concerning dense mixtures, research suggested that the 40 mm thickness of the porous
mixture surface layer is equivalent to the structural capability of 20 mm dense mixtures [86].
For an urban road case study, the Porous asphalt mixture thickness required as a function
of ESALs was estimated (Figure 14), and a pavement structure was designed (Figure 15). It
can be affirmed that the porous mixture as a surface layer could be applied under elevated
load traffic conditions and tends to perform similarly to dense mixtures.

In order to demonstrate the fatigue resistance achieved by the porous mixture, a
comparison was made with a dense mixture produced using SBS [69], in which the test
conditions were the same. Figure 16 shows the curves, and the superior fatigue performance
of the porous mixture compared to the dense-graded one can be noted. Even though the
dense mixture presented fewer voids (4.5%) and a higher resilient modulus (3184 MPa),
preferable for fatigue resistance, the porous mixture performed better, indicating that HiMA
contributed to improving the ability of the porous mixture to be damaged by fatigue. On
the other hand, despite the significant improvements associated with HiMA, the high costs
of this asphalt must be considered according to the project type, local conditions, and traffic.
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Despite the fatigue resistance improvements, the results were obtained in the lab-
oratory, and the field evaluation is necessary to validate the performance under heavy
truck traffic. On the other hand, urban roads appear to be a suitable place for permeable
pavement (without infiltration) application.

Thus, a case study was conducted on an urban road, which was chosen for the
following reasons: (i) it borders the sea and a mangrove; (ii) it represents an adequate place
for urban pervious area enlargement; and (iii) the stormwater runoff is directly released
into the environment without any pollutants measurement or control.
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The urban road paved area corresponds to 147,000 m2 (extension 7000 m, six lanes
with a width of 3.50 m). This study did not consider paved bike paths and sidewalks
(adjacent to the road) as permeable areas. The traffic mainly comprises passenger vehicles,
but heavy trucks and buses travel daily, resulting in medium traffic (estimated ESAL of
2 × 106). For this case study, a pavement structure using the porous mixture as a surface
layer was designed, for which the benefits related to resistance (fatigue) and heavier traffic
conditions were demonstrated.

The infiltration efficiency result (90%) corroborates that the porous mixture’s absorp-
tive capacity could promote less stormwater surface accumulation and decrease runoff
pollutants concentrations. It is important to emphasise that for this case study, the stormwa-
ter is directed to the gutter and released into the sea and the mangrove. Replacing the
impermeable surface with a porous mixture could be a friendly alternative for reducing
contamination in such places. This urban road with a porous mixture surface layer can
also minimise stormwater discharge, relieve the drainage elements’ charge, and reduce
frequent flood events (Figure 5). Permeable pavements will not solve all problems related
to urban drainage management, but they can be considered a good alternative.

James [87] affirmed that, due to highway traffic, pavement surfaces represent one of
the largest sources of pollutants. During precipitation, the runoff pollutants are charged
into lakes, rivers, streams, and seas, negatively affecting the environment. This work also
assessed the porous mixture’s ability to reduce runoff pollutants. As for stormwater runoff
pollutants, on average, the porous mixture could reduce total phosphorus concentrations,
suspended solids, and faecal coliforms. On the other hand, a negative performance was
observed for ammoniacal nitrogen, which increased. Variations between increase and
reduction were noted for nitrate, nitrite, and chemical oxygen demand concentrations
(Table S4—Supplementary Data).

Previous studies have demonstrated the benefits of permeable pavements in filtering
stormwater pollutants [88–92]. Permeable pavements were effective in pollutant reduction
for suspended solids (59%), lead (84%), cadmium (77%), and zinc (73%) [93]. It is important
to emphasise that all permeable pavement layers contributed to stormwater filtering in the
related studies. In this work, the porous mixture, isolated, showed a potential ability to
reduce stormwater pollutants in runoff.

The porous asphalt mixture surface was designed to obtain the required fatigue
resistance for high urban road traffic. The benefits of runoff reduction and associated
pollutants by replacing impervious pavement with a porous mixture were also evaluated.
However, the limitations of this work were listed. This study presented results obtained
from laboratory tests and models. Experimental sections in the field must be performed
for data validation and calibration. In addition, the complete analysis also comprises
rutting resistance, ageing and moisture actions, and clogging. The simulations related to
rain intensity to evaluate the runoff reduction have to be performed to prove the porous
mixture’s efficiency.

6. Conclusions

Porous asphalt mixtures can be used for multiple purposes, but sometimes their use
is restricted due to a lack of mechanical behaviour evaluation, such as fatigue resistance.
Thus, mechanical resistance improvement can contribute to disseminating the use, and one
of the benefits is to enlarge permeable surface areas. In this work, the fatigue resistance of a
porous mixture was evaluated, and the main conclusions from the study were as follows.

For porous mixtures, in asphalt content selection, beyond the usual test achievements,
such as void content, interconnected voids, permeability coefficient, and Cantabro, it is
important to consider the moisture-induced damage test results. Using a highly modified
asphalt with SBS (HiMA) influenced the porous mixture’s resilient modulus increase
and contributed to better fatigue performance. According to the fatigue test results, by
increasing the surface layer thickness, the designed porous mixture could be applied under
heavier traffic conditions.
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The infiltration efficiency result (90%) shows that the porous mixture’s infiltration
capacity could promote less stormwater surface accumulation and relieve the drainage
elements’ charge, reducing floods.

As for stormwater runoff pollutants, on average, the porous mixture contributed to
total phosphorus concentrations, suspended solids, and faecal coliform reductions, except
for ammoniacal nitrogen, which increased. Concentration variations were observed for
chemical oxygen demand, nitrate, and nitrite.

The paving of traffic lanes with porous mixtures and the consequent increase in
permeable areas can significantly contribute to the balance of the hydrological cycle and
urban drainage management. However, porous mixtures as pavement surface layers
represent only an alternative, and urban drainage systems must be adequate and efficient.

This work was meant to fill part of a gap in predicting porous mixtures’ fatigue
performance. However, studies in the field must be performed to validate the laboratory
results. More investigations on other parameters affecting porous mixtures, such as rutting,
clogging, and ageing, must be conducted to comprehend these mixtures’ behaviour better.
In addition, this work showed the possibility of rising mechanical resistance in the porous
mixture produced with modified asphalt, which can help popularise and expand its use for
various purposes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w15162962/s1, Figure S1: Compacted samples; Table S1: Crush
aggregate (9.5 mm) characterization tests results [94]; Table S2: Water quality limits for non-potable
purposes (Based on [68]); Table S3. Measurements to evaluate the porous mixture infiltration ef-
ficiency; Table S4. Water quality evaluation collected from stormwater runoff (road) and filtered
through the porous mixture slab; Table S5. Soil (subgrade layer) characteristics [75].
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