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Abstract: Various approaches have been applied to red tide monitoring in Korea since reliable infor-
mation on phytoplankton communities is crucial. In this study, we employed a high-performance
liquid chromatography (HPLC) method to analyze two types of red tide, Mesodinium rubrum and
Margalefidinium polykrikoides (also known as Cochlodinium polykrikoides), along the southern coasts
of Korea. During the M. rubrum red tide on 8 August 2022, an unusual dominance of cryptophytes
was observed, being the most dominant phytoplankton group. A significant positive correlation was
found between alloxanthin concentrations, a marker pigment of cryptophytes, and M. rubrum cell
numbers (p < 0.01, r = 0.830), indicating that HPLC-derived alloxanthin concentrations can serve
as a valuable indicator for identifying red tides caused by M. rubrum and estimating cell numbers.
However, it is crucial to consider the temporal dynamics of the prey–predator relationship between
cryptophytes and M. rubrum. Further investigation is required to understand the environmental
conditions that promote cryptophyte predominance and their role in M. rubrum red tide development.
In the second field campaign on 29 August 2022, we observed a significant correlation between the
concentration of peridinin, a marker pigment for dinoflagellates, and M. polykrikoides cell numbers
(p < 0.01, r = 0.663), suggesting that peridinin can serve as a reliable indicator of M. polykrikoides
red tides. In conclusion, HPLC-derived pigments, namely alloxanthin and peridinin, can be used
to effectively monitor red tides caused by M. rubrum and M. polykrikoides, respectively. However,
to overcome certain methodological limitations of HPLC, future studies should explore additional
markers or analytical techniques capable of differentiating M. polykrikoides from other coexisting
dinoflagellate species. Furthermore, the broad applicability of our method requires thorough investi-
gation in diverse ecosystems to fully comprehend its scope and limitations. Future research should
focus on evaluating the method’s efficacy in different contexts, accounting for the distinct traits of the
ecosystems under consideration.
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1. Introduction

Red tides in Korea have been a recurring issue along the south coast, often leading
to significant damage to aquaculture industries [1–3]. These events predominantly occur
during the summer period (June to September), with warm water temperatures accounting
for approximately 80% of red tide occurrences in Korea between 1981 and 2020 [4–6]. Since
the establishment of the first governmental monitoring programs in 1972, a nationwide
monitoring network has been in place to monitor red tides in Korea [4]. Over the last
five decades, there has been a significant shift in the prevalence of red tide causative
species in Korean coastal waters [3,4,7–9]. In the 1970s–1980s, the diatom Skeletonema
costatum was prominent, while in the 1990s–2010s, the mixotrophic dinoflagellate Mar-
galefidinium polykrikoides (also known as Cochlodinium polykrikoides) became dominant [4,7].
M. polykrikoides has emerged as the most frequently observed red tide species, accounting
for up to 38% of all red tide events during the period from 2011 to 2018 since its initial
detection in the Narodo–Yeosu area in 1995 [3,4,8,9]. Consistently, its global occurrence
and intensity have been increasing in recent years [10,11]. The most intense M. polykrikoides
blooms in the southern coastal waters adjacent to the cities of Geoje and Yeosu in Korea,
where M. polykrikoides has been introduced, have caused large-scale damage to aquaculture,
resulting in annual economic losses ranging from USD 4 to 18.6 million in the Korean aqua-
culture industry since the 2000s [12–14]. Previous studies have indicated that the formation
and extinction of thermohaline fronts, typhoon activity, the intrusion of outer seawater,
the transport of favorable seawater by the Tsushima Warm Current, and factors such as
water temperature, insolation, and precipitation play important roles in the outbreaks of M.
polykrikoides blooms near the Narodo Islands ([15] and references therein).

Among the various red tide species in Korean coastal areas, Mesodinium rubrum
Lohmann 1908, a species of Ciliophora, was first identified on the Myungji coast of the
Nakdong River estuary in 1982 [4,16]. According to the Red Tide Monitoring Dataset of
NFRDI in Korea, M. rubrum accounted for only 3% of all red tide events, with approximately
40 occurrences in Korean coastal waters over the last four decades from 1972 to 2011 [4,16].
More recently, from 2011 to 2018, the occurrences of M. rubrum increased slightly, accounting
for approximately 7% of all red tide events, with around 17 recorded occurrences [3].
M. rubrum is a cosmopolitan and non-toxic red tide ciliate found in various estuaries
and coastal upwelling regions, and its massive blooms can potentially pose a threat to
aquaculture industries [16]. Previous studies highlighted M. rubrum’s recurrent bloom
occurrences along the Korean coast and historical events with high cell concentrations,
such as the extreme hypoxia and subsequent mass mortality of metazoan plankton and
shellfish; the importance of M. rubrum as a linking ciliate in marine ecosystems due to
its diverse trophic modes and ability to sequester prey plastids; and the ecophysiological
characteristics of M. rubrum, including its oral apparatus, life cycle, primary productivity,
and potential as a live feed for culturable marine animals ([16] and references therein).

Traditional microscopic identification methods for phytoplankton species composi-
tions require a high level of taxonomic expertise and considerable time and may have
limited sensitivity, particularly for detecting species in low abundance [14,17,18], although
they can provide specific information. In recent years, modern approaches, such as molecu-
lar methods and high-performance liquid chromatography (HPLC), have been utilized for
red tide detection in Korea [14,19,20]. The authors of [14,20] utilized qPCR and metabarcod-
ing analysis to detect M. polykrikoides blooms in southern Korean waters, confirming their
early warning potential and identifying taxa associated with the blooms while observing
consistent microbial community functions in all southern Korean coastal waters during
harmful M. polykrikoides algal blooms. Furthermore, the algorithm developed by [19] for
the geostationary ocean color imager (GOCI) successfully estimated the hourly chlorophyll
a (chl-a) concentration of M. polykrikoides and demonstrated a strong performance in the
East Sea areas with low total suspended particle concentrations, but further modifications
are needed to account for the optical environments and shallow water depths influenced by
high suspended particle concentrations, particularly in the coastal areas of southern Korea.
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HPLC allows for precise quantification of various photosynthetic pigments and phyto-
plankton species compositions [18,19,21], offering advantages over traditional microscopic
methods by enabling the detection and quantification of small and fragile phytoplankton
species in a single operation, including prymnesiophytes and cryptomonads [17,18,21,22].

In this study, we applied HPLC and microscopic approaches to detect red tide causative
species and other phytoplankton species during two different types of red tide, aiming to
investigate the potential of HPLC application in red tide studies.

2. Materials and Methods
2.1. Study Site and Water Sampling

This study was conducted on two occasions in the east of Geumodo and south
of Nangdo in Yeosu, Jeollanam-do, Korea, where red tides occurred on 8 August and
29 August 2022 (Figure 1). Surface seawater samples were collected for pigment com-
positions and enumeration of phytoplankton from 16 and 20 stations on 8 August and
29 August 2022, respectively (Table 1). Seawater samples (500–1000 mL) were immediately
fixed with Lugol’s iodine to preserve phytoplankton for microscopic identification. For
pigment analysis, water samples (60–300 mL) were filtered through a 47 mm glass fiber filter
(0.7 µm GF/F), immediately frozen in liquid nitrogen, and transported to the laboratory
for analysis.
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Table 1. Description of the sampling sites in the southern coastal waters of Korea for each sampling
period in 2022. (-) indicates no data.

Day Station Latitude Longitude Depth Temperature
(◦C)

SPM
(g/m3)

chl-a
(µg/L) Dominant Species (%)

8 August
2022

A1-1 34.5335 127.8825 25.5 26.8 8.416 15.413 L. danicus (79.6)
A1-2 34.5335 127.8835 25.5 26.8 4.078 9.114 L. danicus (92.8)
A2-1 34.5274 127.8802 - - 19.522 29.925 M. rubrum (99.2)
A3-1 34.5241 127.8789 26.8 27.0 10.016 17.944 M. rubrum (96.6)
A3-2 34.5241 127.8782 26.8 27.0 22.770 54.802 M. rubrum (97.2)
A4-1 34.5181 127.8748 26.5 27.0 6.716 17.302 L. danicus (73.0)
A4-2 34.5140 127.8742 26.5 27.0 35.772 35.189 L. danicus (49.7)
A4-3 34.5141 127.8743 28.0 27.0 33.588 52.021 L. danicus (58.5)
A5-1 34.5125 127.8734 28.5 27.0 36.012 77.447 M. rubrum (82.9)
A5-2 34.5125 127.8737 28.5 27.0 26.264 130.540 M. rubrum (57.8)
A6-1 34.5107 127.8729 29.0 27.2 30.864 70.024 M. rubrum (89.1)
A6-2 34.5101 127.8724 29.0 27.2 23.864 47.033 M. rubrum (91.6)
A6-3 34.5094 127.8696 29.0 27.2 10.240 17.845 M. rubrum (45.8)
A6-4 34.5092 127.8695 29.0 27.2 8.174 16.672 M. rubrum (75.6)
A7-1 34.5078 127.8705 29.0 27.0 22.640 63.398 M. rubrum (99.0)
A7-2 34.5070 127.8701 30.0 27.0 23.916 50.484 M. rubrum (94.9)

29 August
2022

Y01 34.5934 127.5499 13.0 23.1 5.993 13.368 M. polykrikoides (97.7)
Y02 34.5876 127.5499 16.0 23.5 9.133 4.200 M. polykrikoides (100.0)
Y03 34.5854 127.5509 16.0 23.5 6.100 23.836 M. polykrikoides (100.0)
Y04 34.5817 127.5572 16.0 23.6 6.567 30.934 M. polykrikoides (100.0)
Y05 34.5802 127.5581 16.0 23.7 6.067 15.601 M. polykrikoides (98.7)
Y06 34.5793 127.5583 - - 7.100 4.755 M. polykrikoides (70.0)
Y07 34.5792 127.5607 15.0 23.7 15.533 57.675 M. polykrikoides (99.8)
Y08 34.5789 127.5630 14.5 23.8 4.167 6.760 M. polykrikoides (96.2)
Y09 34.5765 127.5648 14.2 23.8 8.467 55.109 M. polykrikoides (99.8)
Y10 34.5374 127.5662 12.3 24.1 6.733 52.662 M. polykrikoides (100.0)
Y11 34.5350 127.5658 12.2 24.1 11.400 19.618 M. polykrikoides (95.7)
Y12 34.5122 127.5688 - - 11.467 144.047 M. polykrikoides (99.9)
Y13 34.5112 127.5692 12.0 24 9.067 53.884 M. polykrikoides (96.7)
Y14 34.5086 127.5713 - - 14.267 197.619 M. polykrikoides (99.5)
Y15 34.4779 127.5716 12.0 24 14.733 161.699 M. polykrikoides (100.0)
Y16 34.4767 127.5711 - - 7.333 50.790 M. polykrikoides (100.0)
Y17 34.4695 127.5652 11.7 24.1 6.200 67.441 M. polykrikoides (99.7)
Y18 34.4692 127.5642 - - 4.867 19.871 M. polykrikoides (98.3)
Y19 34.4844 127.5725 11.8 24 22.467 8.795 M. polykrikoides (95.1)
Y20 34.4832 127.5683 11.8 23.8 25.933 8.764 M. polykrikoides (88.7)

Notes: SPM, suspended particulate matter; chl-a, chlorophyll a.

2.2. HPLC Pigment and CHEMTAX Analysis

The pigments of phytoplankton in the filtered samples were extracted using 5 mL
of 100% acetone at 4 ◦C for 24 h to prevent degradation. To correct for any sample loss
during extraction, 100 µL of canthaxanthin was added as an internal standard (IS) [23,24].
The samples were sonicated for 1 min before analysis, and suspended particles were
removed using a syringe filter with a pore size of 0.2 µm (Polytetrafluoroethylene; PTFE,
Hydrophobic, Advantec, Tokyo, Japan). The filtered samples were then centrifuged at
3500 rpm for 10 min. Aliquots (1 mL) of the extract were mixed with 0.3 mL of distilled water
and analyzed using an HPLC system (Agilent 1260 HPLC system, Agilent Technologies,
Santa Carla, CA, USA) within 48 h of extraction to minimize pigment losses [23,25]. The
HPLC analysis followed a well-established method, with minor modifications based on
the study of [26]. Pigment separations were carried out using a Zobrax Eclipse XDB C8
column (250 × 4.6 mm, 5 µm). The mobile phase consisted of two eluents: eluent A,
which was a mixture of methanol, acetonitrile, and an aqueous pyridine solution (0.25 M
pyridine) in a ratio of 50:25:25 v:v:v, and eluent B, which was a mixture of methanol,
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acetonitrile, and acetone in a ratio of 20:60:20 v:v:v. The separation was performed using
a binary linear gradient, initiated with 100% eluent A, followed by a gradient of 60%
eluent A and 40% eluent B for 20 min. This was subsequently followed by a step-wise
gradient of 5% eluent A and 95% eluent B for 25 min, with another step of 5% eluent
A and 95% eluent B for 37 min, before finally returning to 100% eluent A at 45 min.
Throughout the analysis, the flow rate was consistently maintained at 1.0 mL/min, except
during the 25- and 37-min intervals, where it was adjusted to 0.8 mL/min. Analysis
was performed by injecting 100 µL of the sample. Qualitative and quantitative analyses
were performed using standards from DHI Inc. (Hørsholm, Denmark), which included
chlorophyll c2, peridinin, 19′-butanoyloxy-fucoxanthin, fucoxanthin, 19′-hexanoyloxy-
fucoxanthin, neoxanthin, prasinoxanthin, violaxanthin, alloxanthin, lutein, zeaxanthin,
chlorophyll b, diatoxanthin, diadinoxanthin, β-carotene, and chlorophyll a (chl-a). The
pigment concentrations in the samples were determined using the following equation. The
standard response factor (Rf) was calculated by dividing the concentration of the standard
pigment by the measured peak area [27].

Concentration = Area × Rf × (Ve/Vs) [ngL−1] (1)

Area = area of the peak in the sample [area];
Rf = standard response factor [ngL−1 area−1];
Ve = AIS/(peak area of IS added to sample) × (volume of IS added to sample) [L];
Vs = volume of filtered water sample [L];
AIS = peak area of IS when 1 mL IS is mixed with 300 µL of H2O;
IS = internal standard.

To estimate the phytoplankton composition, we employed the CHEMTAX pro-
gram based on the method developed by [28–30]. The initial pigment-to-chl-a ratio
was determined based on [27], which used various algae groups collected around the
Korean Peninsula.

2.3. Phytoplankton Identification and Enumeration

To identify and enumerate phytoplankton, the fixed sample was allowed to settle for
24 h, after which it was initially concentrated down to 200 mL using the siphon principle.
Subsequently, an additional 24 h sedimentation period was employed, and the sample was
further concentrated down to a final volume of 20 mL using the same siphon principle.
The concentrated samples were then carefully stored in a dark environment to prevent
degradation before being analyzed under a microscope to determine the abundance and
composition of the phytoplankton. The identification and counting methodology followed
the method outlined by [31].

2.4. Suspended Particulate Matter

Suspended particulate matter (SPM) was measured following the method of [32].
Subsamples (150–300 mL) of seawater were filtered through pre-combusted and weighed
GF/F filters (pore size 0.7 µm). The filters were then dried at 75 ◦C for 24 h to remove the
water content. The amount of SPM was calculated by dividing the difference in weight
before and after filtration by the volume of the filtered water sample.

3. Results
3.1. Environmental Conditions

The water depths in this study were shallow, ranging from approximately 25 to 30 m
on 8 August 2022 and from approximately 12 to 16 m on 29 August 2022 (Table 1). The
surface water temperature ranged from 26.7 to 27.2 ◦C on 8 August 2022 and from 23.1
to 24.1 ◦C on 29 August 2022, with very low spatial variation observed within each field
campaign. In contrast, the spatial variation in the SPM concentration was relatively larger.
The SPM concentrations ranged from approximately 4.1 to 36.0 g m−3 on 8 August 2022
and from approximately 4.2 to 25.9 g m−3 on 29 August 2022.
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3.2. Plankton Assemblage by Microscopic Observation

A total of nine species were microscopically identified during the study period
(Figure 2a). These species belonged to two phytoplankton groups (diatoms and dinoflag-
ellates) and ciliates. On 8 August 2022, the phytoplankton community mainly consisted
of M. rubrum, with concentrations ranging from 1.90 × 102 to 4.69 × 103 cells mL−1. The
highest abundance of M. rubrum was found at station A5-2, and its distribution appeared
in patches. The second most abundant species was Leptocylindrus danicus, with an average
concentration of 1.35 × 103 cells mL−1, accounting for approximately 31.1% of the total ob-
served plankton. On 29 August 2022, the red tide was caused by a bloom of M. polykrikoides,
which dominated all the stations (Table 1; Figure 2b). The density of M. polykrikoides ranged
from 3.60 × 101 cells mL−1 to 3.21 × 103 cells mL−1, with the highest abundances observed
at station Y12. Diatoms (Chaetoceros sp., Coscinodiscus sp., and Stephanopyxis sp.) were also
present but at much lower abundances (5.3, 2.0, and 1.3 cells mL−1, respectively).
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Figure 2. Cell abundances of major phytoplankton species in the southern coastal waters of Korea
during the study periods on (a) 8 August 2022 and (b) 29 August 2022. L. danicus: Leptocylin-
drus danicus.

3.3. HPLC Pigment and CHEMTAX Results

The average chl-a concentrations during the study periods on 8 August and 29 August
2022 were 44.1± 31.7 and 49.9± 55.4 µg L−1, respectively. The highest chl-a concentrations
of 130.54 and 197.6 µg L−1 were observed at stations A5-2 and Y14, respectively (Figure 3).
Alloxanthin (a marker pigment of cryptophytes) and peridinin (a marker pigment of
dinoflagellates) concentrations were significantly higher (11.4 ± 7.9 and 30.8 ± 32.4 µg L−1,
respectively) compared to the concentrations of other pigments in each investigation. The
highest alloxanthin and peridinin concentrations (31.95 and 108.7 µg L−1) were observed
at stations A5-2 and Y14, respectively.

The relative contribution of different phytoplankton groups to chl-a, as calculated
using CHEMTAX, is displayed in Figure 3. On 8 August 2022, cryptophytes were the domi-
nant group, accounting for 76.7–95.3% of total chl-a. Diatoms also contributed an average
of 6.8%, appearing as a subdominant community. On 29 August 2022, dinoflagellates were
the most dominant community at all stations, with an average contribution of 90.7 ± 7.8%
of the total phytoplankton community. Cryptophytes and diatoms were also present but
with much lower contributions (3.1 ± 3.5% and 3.0 ± 2.5%, respectively).

Based on the total chl-a concentrations derived from HPLC analysis, several chl-a
peaks were observed on 8 August and 29 August 2022 (Figure 3). Phytoplankton species
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compositions were classified into two groups, peak and non-peak groups, based on the total
chl-a concentrations. The peak group was identified based on its distinctive characteristic
of having chlorophyll concentrations significantly higher than the adjacent values by at
least 130%. This determination was made by considering the distribution pattern of the
chlorophyll concentration, as illustrated in Figure 3. On 8 August 2022, stations A3-2, A5-2,
and A7-1 belonged to the peak group, while stations A1-2, A3-1, A4-1, A6-3, and A6-4
were included in the non-peak group. Cryptophyte concentrations were statistically
higher in the peak group, whereas the concentrations of the second dominant diatoms
were statistically lower (t-test, p < 0.01; Figure 4). Similarly, on 29 August 2022, stations
Y03, Y04, Y07, Y09, Y10, Y12, Y14, and Y17 belonged to the peak group, while stations
Y02, Y06, Y08, Y11, Y19, and Y20 were part of the non-peak group. The dinoflagellate
concentrations were significantly higher in the peak group, whereas non-dinoflagellate
concentrations (mostly diatoms, cryptophytes, and cyanobacteria) were statistically
lower (t-test, p < 0.01; Figure 5).
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field campaign on 29 August 2022.

3.4. Relationship between Microscopic Observation and CHEMTAX Estimates

A simple regression analysis was used to evaluate the relationship between the
microscopically derived cell abundance of M. rubrum and HPLC-derived alloxanthin
concentration, as well as CHEMTAX-derived cryptophyte concentration (Figure 6). On
8 August 2022, significant correlations (p < 0.01) were found between the alloxanthin con-
centration and cell numbers of M. rubrum (r = 0.830), and between the cryptophyte concen-
tration and cell numbers of M. rubrum (r = 0.757) (Figure 6). Similarly, on 29 August 2022,
significant correlations (p < 0.01) were found between the HPLC-derived peridinin
concentration and the cell density of M. polykrikoides (r = 0.663), and between the
CHEMTAX-derived dinoflagellate concentration and the density of M. polykrikoides
(r = 0.645) (Figure 7).
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4. Discussion

Various monitoring approaches have been employed in Korea and globally to study
red tides [3,11,21,33–36]. The HPLC approach for investigating red tide causative dinoflag-
ellates using their corresponding marker pigments, such as peridinin, has been successfully
applied in Tolo Harbor, Hong Kong [21]. In [19], the HPLC method was applied to de-
termine M. polykrikoides biomass changes during a massive bloom period in the East Sea
of Korea in 2013. It was proven that HPLC application could be an effective alternative
approach to red tide monitoring and the study of phytoplankton dynamics during red
tides. In this study, HPLC was applied to two different types of red tides caused by M.
rubrum and the dinoflagellate M. polykrikoides on the southern coasts of Korea, where red
tides have recurred over the last four decades.

Normally, spatial patchiness in red tide distributions is a common phenomenon,
as observed in previous studies [19,34,37]. In this study, the patterns of the total chl-a
concentrations displayed spatially patchy distributions during the two field campaigns
on 8 August and 29 August 2022 (Figure 3). The concentrations and compositions of
phytoplankton communities significantly differed between stations experiencing peak and
non-peak red tide conditions (Figures 4 and 5). Based on the results from HPLC and
microscopic analysis in this study, the peak stations exhibited a significantly higher cell
abundance of cryptophytes, which are the major prey of M. rubrum [16,34,35], and the
dinoflagellate M. polykrikoides on 8 August and 29 August 2022, respectively.

M. rubrum is well known for forming recurrent massive blooms in coastal regions,
particularly in river estuaries [38,39]. While M. rubrum demonstrates a remarkable toler-
ance to sudden changes in salinity [40], its populations can be influenced by freshwater
discharge conditions [16]. Unfortunately, no data on salinity were measured in this study
for comparison due to the malfunctioning of the salinometer during the observations. The
average water temperature at the surface on 8 August 2022 was 27.0 ◦C, which is close to
the maximum temperature (27.1 ◦C) observed at the red tide sites caused by M. rubrum on
the southern coasts of Korea [16].

Detecting M. rubrum red tides can be challenging in Korea due to their small spatial
extent and short duration (unpublished data). However, in our study, we observed signifi-
cant positive relationships between alloxanthin concentrations, a marker pigment derived
from cryptophytes, and the density of M. rubrum (r = 0.830, p < 0.01) (Figure 6). These
results indicate that HPLC-derived alloxanthin concentrations can serve as an indicator of
the presence of M. rubrum red tides. Furthermore, based on the relationship between the
alloxanthin concentration and the observed cell density (r = 0.757, p < 0.01), it is possible
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to estimate the approximate cell density of M. rubrum using HPLC analysis. Therefore,
HPLC analysis could be useful for determining the occurrence of M. rubrum red tides and
assessing their intensity. However, it should be noted that M. rubrum does not exclusively
consume cryptophytes, and the relationship between prey and predator may not always
be positively correlated, especially as the bloom progresses and the abundance of prey
decreases [34,38]. M. rubrum has been reported to feed on other prey sources, such as the
cyanobacterium Synechococcus sp. and heterotrophic bacteria [41–43]. Nevertheless, previ-
ous studies have demonstrated that M. rubrum does exhibit a preference for cryptophytes
as a major prey source [44–47]. Genetic analysis has revealed that the primary prey of
M. rubrum in coastal regions of the Americas is the free-living Geminigera cryophila and its
closest relative [44], while on the Japanese coast, Teleauulax amphioxeia is identified as a
significant prey source [46]. Both Geminigera cryophila and Teleaulax amphioxeia belong to
the cryptophyte group. Moreover, studies by [45,47] have demonstrated that M. rubrum
fed on cryptophyte prey species when offered various algal prey species. As such, while
alloxanthin can be a useful indicator for monitoring M. rubrum when cryptophytes are the
predominant prey source in seawater, its reliability may be limited in situations where other
prey sources are available. It is crucial to consider this limitation when interpreting the re-
sults of our study. Future investigations should explore the influence of different prey types
and their availability on the validity of using alloxanthin as an indicator of M. rubrum red
tides. Additionally, the temporal limitations of this method should be considered, as it may
be more effective for detecting M. rubrum red tides at their initial stage of growth when the
relationship between prey and predator is more likely to show a positive correlation. The
photosynthetic activities of M. rubrum depend on biotic and abiotic conditions, although the
major environmental trigger for M. rubrum red tides is unclear in Korea ([16] and references
therein). M. rubrum is a mixotrophic ciliate that relies on phototrophs and cryptophyte prey
to sustain its photosynthesis and population growth [16,34,35,48]. In a previous study [49],
a positive relationship between cryptomonads and M. rubrum populations in nature was
observed. M. rubrum is known to ingest various kinds of cryptophytes, as demonstrated in
field and laboratory studies ([16,34] and references therein). Therefore, localized formations
of M. rubrum red tides are closely linked to the availability of suitable cryptophytes in
the estuary and bay environments [38,50,51]. In line with these observations, our study
found significantly higher concentrations and compositions of cryptophytes in chl-a peaks
dominated by M. rubrum compared to non-chl-a peaks dominated by the diatom L. danicus
on 8 August 2022 (Figure 4, Table 1) (t-test, p < 0.01). Cryptophytes accounted for the
majority (>~75% of total chl-a) of the phytoplankton community on that day based on
pigment analysis. Normally, diatoms and dinoflagellates are the primary contributors to
phytoplankton communities, while cryptophytes generally have a low contribution in the
southern coastal areas and bays of Korea, although this composition varies seasonally and
spatially [17,52,53]. In particular, in the southern part of Yeosu, diatoms such as Skeletonema
costatum, Chaetoceros curvisetus, Eucampia zodiacus, Chaetoceros affinis, and Thalassionema nitzs-
chioides are remarkably dominant, ranging from 98.5% to 99.9% throughout all seasons [54].
On 29 July 2022, approximately one week before the red tide event, the main phytoplankton
community consisted of diatoms (45.3%), chlorophytes (28.8%), and dinoflagellates (11.1%)
(unpublished data). However, cryptophytes are generally observed throughout the seasons,
with relatively higher contributions in autumn and winter in the southern coastal waters
of Korea [22]. These cryptophyte-dominant waters are characterized by low salinity and
high nitrate concentrations [22]. In our second field campaign on 29 August 2022, we also
observed lower cryptophyte compositions across all stations (3.1 ± 3.5%). The M. rubrum
red tide observed in this study could be attributed to the unusually high dominance of
cryptophyte prey on 8 August 2022. Typically, cryptophytes are often dominant in estuarine
coastal environments [38,50,51]. However, no obvious drop in surface salinity was detected
at the national monitoring stations near our sampling area on 8 August 2022. The potential
controlling environmental conditions for the predominant cryptophytes should be further
investigated to understand the development of M. rubrum red tides. Furthermore, the
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presence of other prey sources cannot be ruled out, and the role of different prey types in
sustaining M. rubrum populations should be further investigated.

In the second field campaign, we found significant correlations between the peridinin
concentration and the density of M. polykrikoides (p < 0.01, r = 0.663) (Figure 7). Some
deviations in the relationship may be attributed to the microscopic cell counting, as M.
polykrikoides can be easily destroyed during the sampling procedure [19,55]. The strong
relationship indicates that peridinin, the major marker pigment for dinoflagellates, could
serve as an indicator for the density of M. polykrikoides, the causative agent of red tides. A
similar positive correlation between peridinin pigment concentrations and dinoflagellate
cell numbers was observed in Tolo Harbor, Hong Kong [21]. Based on these findings, HPLC
analysis can be an effective approach for red tides caused by dinoflagellates, especially in
Korea, where a significant portion of red tides are attributed to M. polykrikoides [3]. However,
it should be noted that peridinin is not exclusively possessed by M. polykrikoides, as many
other species of dinoflagellates also contain this pigment. Therefore, the use of peridinin
as a specific indicator for detecting red tides caused by M. polykrikoides is applicable only
in situations where no other dinoflagellate species are coexisting. While the observed
correlation between the peridinin concentration and M. polykrikoides density suggests that
peridinin served as an indicator for M. polykrikoides red tides during our observation
period in this study, it is important to consider the presence of other dinoflagellate species
when interpreting the results. The coexistence of multiple dinoflagellate species may
influence the accuracy of using peridinin as a sole indicator for M. polykrikoides density
estimation. To address this limitation and improve the specificity of M. polykrikoides biomass
estimation, future studies should consider additional markers or analytical techniques that
can differentiate M. polykrikoides from other coexisting dinoflagellate species and provide a
more specific estimation of M. polykrikoides density in mixed dinoflagellate communities.
These approaches would provide a more accurate and specific estimation of M. polykrikoides
density in mixed dinoflagellate communities.

M. polykrikoides red tides predominantly occur from late August to September in the
coastal waters of Korea, while most mixotrophic dinoflagellate red tides occur during the
warm-temperature season (June–September) [7,56]. The development of M. polykrikoides
red tides is influenced by various physico-biological and chemical factors ([57] and ref-
erences therein). However, a clear explanation for the development of M. polykrikoides
red tides has not been identified yet, as their occurrence is largely affected by multiple
factors [3,4]. Although the frequency of M. polykrikoides red tides increased to 37.7% in the
2010s, the intensity of recent red tides caused by M. polykrikoides has significantly weak-
ened since 2008 [3]. The maximum cell density observed in our study on 29 August 2022
(3.21 × 103 cells mL−1) is approximately one order lower than that reported in the mid and
late 1990s [47,49]. Generally, M. polykrikoides red tides occur in water temperatures ranging
from 23 to 26 ◦C in the coastal waters of Korea [3,58]. The growth of M. polykrikoides ap-
pears to be constrained in water temperatures above 26.0 ◦C [54]. In our study, the average
surface water temperature on 29 August 2022 was 23.8 ◦C (±0.3 ◦C) (Table 1), which falls
within the reported temperature range. On 8 August 2022, when the M. rubrum red tide
occurred, the water temperature in our study area was above 26.0 ◦C, which could inhibit
the growth of M. polykrikoides [3,58].

Although the sampling areas on 8 August and 29 August 2022 were rather different,
the early M. rubrum red tide on 8 August 2022 was followed by the later M. polykrikoides red
tide, which is a rare occurrence in Korea. M. rubrum is considered to be a prey species of
dinoflagellate Dinophysis spp. and other predators, suggesting that it could play a crucial
linking role between cryptophyte prey and various metazoan consumers [35,41,48]. Our
potential scenario for the sequential red tides on 8 August and 29 August 2022 in our study
area suggests that the formation of the M. rubrum bloom was initially caused by the unusual
dominance of cryptophyte prey on 8 August 2022, with the subsequent bloom formation
of M. polykrikoides being due to their feeding on the M. rubrum prey on 29 August 2022.
However, this scenario should be further validated in future studies.
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5. Summary and Conclusions

In this study, we applied HPLC analysis to investigate red tides caused by M. rubrum
and M. polykrikoides along the southern coasts of Korea, where red tides have recurred over
several decades. Our findings indicate that HPLC-derived alloxanthin concentrations can
serve as an indicator of M. rubrum red tides, while peridinin concentrations can be used as
an indicator of M. polykrikoides red tides.

However, we acknowledge the importance of considering the potential constraints and
challenges of generalizing our findings to different ecosystems. While our study provides
valuable insights into red tides caused by M. rubrum and M. polykrikoides in the specific
coastal regions studied, several limitations should be noted when applying our approach
to other ecosystems:

Ecosystem Variability: Ecosystems can vary significantly in terms of nutrient availabil-
ity, hydrodynamics, and species composition. These differences may affect the performance
and applicability of our method, as the relationships between marker pigments and species
abundance could vary.

Prey–Predator Dynamics: Our study emphasized the importance of cryptophytes as
prey for M. rubrum and M. polykrikoides. However, the availability and composition of prey
species can differ across ecosystems, potentially impacting the reliability of using marker
pigments as indicators.

Species Diversity: While our results demonstrate relationships between marker pig-
ments and species abundance, the presence of multiple coexisting species, including other
dinoflagellates, could complicate the interpretation of marker pigment concentrations.

Spatial and Temporal Variability: Our observations were limited to specific campaigns
and locations. Variability in red tide dynamics across different seasons and geographic
regions should be considered when extrapolating our findings.

In conclusion, while our study contributes valuable insights into red tide dynamics
in the studied coastal areas, we emphasize that the applicability of our method to other
ecosystems with distinct dynamics requires careful consideration of the aforementioned
limitations. Future studies should focus on assessing the suitability of our approach in
different contexts, taking into account the specific characteristics of the target ecosystems.
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