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Abstract: Modeling of irrigation and agricultural drainage requires knowledge of the soil hydraulic
properties. However, uncertainty in the direct measurement of the saturation moisture content (θs) has
been generated in several methodologies for its estimation, such as Pedotransfer Functions (PTFs) and
Artificial Neuronal Networks (ANNs). In this work, eight different PTFs were developed for the (θs)
estimation, which relate to the proportion of sand and clay, bulk density (BD) as well as the saturated
hydraulic conductivity (Ks). In addition, ANNs were developed with different combinations of input
and hidden layers for the estimation of θs. The results showed R2 values from 0.9046 ≤ R2 ≤ 0.9877
for the eight different PTFs, while with the ANNs, values of R2 > 0.9891 were obtained. Finally, the
root-mean-square error (RMSE) was obtained for each ANN configuration, with results ranging from
0.0245 ≤ RMSE ≤ 0.0262. It was found that with particular soil characteristic parameters (% Clay,
% Silt, % Sand, BD and Ks), accurate estimate of θs is obtained. With the development of these models
(PTFs and ANNs), high R2 values were obtained for 10 of the 12 textural classes.

Keywords: soil hydraulic properties; artificial intelligence; soil water content; deficit irrigation

1. Introduction

The physical soil parameters are essential in different studies related to the prediction
of crop growth and irrigation efficiency, as well as the representation of the soil–water–plant–
atmosphere relationship in the modeling of different irrigation methods and agricultural
drainage [1–3].

The sustainable management of water resources has motivated the constant devel-
opment of increasingly sophisticated models to describe water flow and solute transport
in unsaturated soils [4]. These models are mainly based on the solution of the Richards
equation [5] from the hydraulic conductivity curve K(ψ) and the water retention curve
θ(ψ). Both functions relate K and θ to the soil water potential (ψ). These two soil hydraulic
properties (K and θ) are the key inputs to most models dealing with fitting the water
transfer for different purposes [6,7]. Normally, the retention curve is estimated with the van
Genuchten equation [8], which requires two shape parameters (m and n) estimated from
the granulometric curve, and another three parameters related to soil moisture, characteris-
tic pressure (ψd), residual moisture content (θr) and θs. The first parameter is calculated
through the solution of the inverse problem with infiltration test data, while in most cases
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θr = 0 [9]. The parameter θs is one of the main parameters needed to find. the soil hydraulic
characteristics.

The estimation of θs has been the focus of study by researchers in recent years, who
have used direct and inverse techniques and methods to obtain this value. In general,
the saturation moisture content can be obtained by several methods, including field mea-
surement, land surface modeling, and remote sensing techniques [10]. Figure 1 shows a
representative scheme for the main methods used to estimate the θs.

Saturation moisture content estimation

Direct methods

Porosity
relationship

Water retention
curve

Indirect methods

Pedotransfer 
functions

Artificial Neural 
Networks

Photogrammetry
Reflectometry

(TDR)
Tensiometers

Figure 1. Main methods used in the saturation moisture content calculation.

The spatial information of saturation soil moisture data is obtained by active or passive
remote sensing (photography and radar, respectively), which is a moisture estimation
technique based on the use of geographic information systems and satellite information [11].
This technique requires both field and laboratory work to generate the correct soil moisture
results. With remote sensing techniques, it is possible map the crops and their different
characteristic parameters present in the soil [12–14]; these methods could be applied over
large areas with low costs and with periodic observations [15,16].

Tensiometers are another method used in the field of agriculture to measure soil
moisture and apply the necessary amount of water for the optimal development of the
crops. A tensiometer consists of a porous cup, mainly ceramic with very fine pores, which
is attached to a negative manometer by a plastic tube filled of water [17]. This method is
widely used in drip [18] and sprinkler irrigation [19]. However, due to the fact that the
instrument is outside, environmental and climatic conditions can easily damage it and
generate erroneous measurements [20,21].

Using Time Domain Reflectometry (TDR) sensors is the most useful and non-destructive
method used to determine the moisture content in soils and other porous means. This
sensor measures the transmitted signal time from one end to the other [22,23]. However, in
soils with high salt content, representativeness of the measurement can be lost, in addition
to the fact that it requires a high initial investment [24].

Sensors in the field provide the most accurate estimates of soil moisture at different
depths [25] however, in situ measurements are time-consuming and require specialized
equipment that generates a high cost in the estimation of soil moisture.

The θs is the water volume in porous space, normally assimilated to the volumetric
porosity (φ) by the following inequality 0 ≤ θs ≤ φ; however, in saturated soil it takes
θs = 0.9φ, which is due to the fact that a certain amount of air remains trapped in the
porous medium [26,27]. Further, it is possible to consider θs = φ as a simplification in the
number of variables [28–30].

On the other hand, PTFs have been widely used to estimate soil properties in different
geographic regions in response to the lack of data for soils, as well as the laborious, slow
and expensive determination of the hydraulic properties [31,32]. Moreover, most PTFs
are based on soil texture to predict and evaluate the retention curves [2,33–35]. Table 1
shows some PTFs published in the literature. The main similarity between them is the large
number of necessary parameters in the θs estimation and most of them are either difficult
to obtain in the laboratory or they present a high degree of complexity to calculate.
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Table 1. PTFs for θs estimation.

PTF Formula Source

PTF1 θs = 0.81799 + 9.9 × 10−4 · Cl − 0.3142 · BD + 1.8 × 10−4 · CEC + 0.00451 · pH − 5 × 10−6 · Sa · Cl [2]
PTF2 θs = 0.81 − 0.283 · BD + 0.001 · Cl [36]

PTF3 θs = 0.7019 + 0.001691 · Cl − 0.29619 · BD − 1.491 × 10−6 · Si2 + 8.21 × 10−5 · OM2 + 0.02427 · Cl−1 + 0.01113 ·
Si−1 + 0.01472 ln(Si)− 7.33 × 10−5 · OM · Cl − 6.19 × 10−4 · BD · Cl − 0.001183 · BD · OM − 1.664 × 10−4 · Si · tps

[37]

Notes: Abbreviations are as follows: Cl = Clay (% by weight); Si = Silt (% by weight); Sa = Sand (% by weight);
BD = Bulk Density (Mg/m3); OC = Organic Carbon (% by weight); OM = Organic Matter (% by weight);
CEC = Cation Exchange Capacity (cmol/kg soil); pH (dimensionless); tps is the topsoil and is a qualitative
variable having the value of 1.

Therefore, it is necessary to develop PTFs to estimate moisture by taking into account
the largest amount parameters related to the soil and to obtain models that fit with the
greatest possible precision to the in situ conditions presented in the majority agricultural
crop plots.

In recent years, with the increasing progress in artificial intelligence, another alter-
native to PTFs has been explored: ANNs (e.g., [38] and references therein). ANNs are an
artificial intelligence that simulate the behavior of the human brain, and their structures
consist of a number of interconnected elements called neurons that are logically arranged
in layers, which are denoted as input, output and hidden. Each neuron connects to all the
neurons in the next layer via weighted connections. Erzin et al. [39] presents a detailed
description of structure, functionality and configuration of ANNs.

Tomasella et al. [40] developed PTFs based on specific potential pressure points,
from −4 to −1500 kPa. The advantage in the use of this technique is that it is possible
to determine specific moisture points, such as θs. There are common functions such as
the retention curve as Brooks and Corey [41] and van Genuchten [8], which require the
characteristic soil parameters (θr, θs, ψd and n), where the n parameter represents the shape
of the curve and ψd is a scale parameter. The uncertainty of these models increases with
increasing clay content present in the analyzed soil [42] and, in some cases, the actual
retention curve shape does not resemble the shape of the chosen equation for all available
soil samples. Neural networks have been developed that have as their input parameter
the natural logarithm of ψ; with this, it is possible to calculate the moisture content at the
desired ψ, which varies with time [43]. Sand, silt and clay are the usual input parameters
in the most common neural network models. In addition, it is possible to add the content
of organic matter and bulk density as input parameters. Figure 2 shows a schematic
representation of the three types of ANNs most used in the literature.

                

                 

                 

                

                 

                 

                

                 

                 

Sand SandSandSilt SiltSiltClay ClayClay ln ()

r s d n1 2 3 4 5 6 7  ()

Point Based-Parametric Pseudo-continuous

Figure 2. Schematic representation of principal types ANNs. Recovered from [43].

In surface irrigation modeling, the inflow discharge, the Ks and θs are the main factors
that modify the irrigation depth applied to the crop. This is observed with infiltration
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equations that take into account some soil parameters such as the Richards or the Green
and Ampt equations, both with all their physically based parameters (e.g., [28–30,44]).
The calculation of the optimal discharge necessary to obtain high values of the uniformity
coefficient in surface irrigation is a function of the furrow or border length, hydrodynamic
characteristics and moisture constants (initial and saturation moisture content) [45]. There-
fore, it is important to develop efficient methodologies for the estimation of the θs parameter
in order to make a correct design of surface irrigation and thus increase the water use
efficiency.

The main goals in this work are: (a) to develop PTFs to estimate the θs, (b) to develop
an artificial neural network, and (c) to compare the results of both models between them
and with other works in the literature.

2. Materials and Methods
2.1. Study Area

The database used in this study was developed from samplings in 900 plots in the
Irrigation District 023 located between the municipalities of San Juan del Rio and Pedro
Escobedo in the state of Queretaro, Mexico and has an area of 11,048 ha.

The bulk density was determined by the cylinder method of known volume, the soil
texture by the mesh analysis and the Bouyoucos hydrometer [46], the initial water content
through a TDR 300 soil moisture meter, and field capacity (−33 kPa) and permanent wilting
point (−1500 kPa) were measured in a pressure plate [47], while Ks was obtained by the
variable head permeameter method. The measurement of variables and the hydrodynamic
characterization of soils are widely discussed in [48,49].

2.2. Soil Textures

Soil texture is an indicator of the amount of water that soil can store and, consequently,
the irrigation interval with which crops must be watered. Figure 3 shows the texture
classification obtained from the laboratory and classified according to the triangle of
textures proposed by the USDA using the R package ”soil texture” [50]. This texture is
determined by the proportion of sand, silt and clay and according to the triangle.

Figure 3. Distribution of soil textures for calibration (450 points) and validation (450 points) data.
Abbrevations are as follows: clay (Cl), sand (Sa), silt (Si), loam (Lo), sandy clay (SaCl), silty clay (SiCl),
sandy clay loam (SaClLo), clay loam (ClLo), silty clay loam (SiClLo), sandy loam (SaLo), silty loam
(SiLo) and loamy sand (LoSa).
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2.3. Statistical Analysis

The PTFs’ confiability depends on factors that were not considered as predictors, such
as the soil characteristics, climatic conditions, landscape characteristics and geographical
regions of the soils.

The most used statistic indicators to evaluate the goodness of fit of the PTFs are
the root-mean-square error (RMSE), the mean error (ME) and the correlation coefficient
(R2) [51,52].

RMSE =

√√√√ 1
N

N

∑
i=1

(Ei − Mi)
2 (1)

ME =
1
N

N

∑
i=1

(Ei − Mi) (2)

R2 = 1 − ∑N
i=1(Mi − Ei)

2

∑N
i=1(Mi − M̄)

2 (3)

where Mi is the value measured in the field, Ei is the estimated value, M̄ is the measured
values’ mean, i is the i-th value of the measured or estimated data and N is the total number
of data points for each soil sample .

The small and homogeneous databases tend to produce better error metrics (RMSE,
ME, R2) than bigger databases, which include a significant variability in the soil type,
porosity and texture [53].

2.4. Development of the PTFs and the ANNs

Based on the study of Trejo-Alonso et al. [54], eight new PTFs were developed based
on the results of a Principal Component Analysis (PCA). This decision was made due to
the fact that only the PTF published by Vereecken et al. [36] could be tested and the lack of
PTFs for θs in the literature.

For the new PTFs, we shouldonly consider the next variables from the database: %
Clay, % Sand, BD and Ks. The PTFs and the plots in this work were constructed using R
software [55], and 450 random values are used for calibration and 450 for validation.

For the ANNs, the ”neuralnet” package [56] and the ”caret” package [57], provided
by the R software, were used with 75% of the sample for training and 25% for validation.
Two different ANNs were constructed, the first one with four input data points (% Clay, %
Silt, BD and Ks) and the second one with five input data points (% Clay, % Silt, % Sand, BD
and Ks). Two hidden layers were maintained in both ANNs, and the number of neurons in
each layer varies from 2 to 10. This process led to 81 ANN configurations and, finally, the
two best configurations were selected.

3. Results
3.1. PTFs

The dominating soil texture in this region is SiClLo (18.11%), followed by SiLo (16.11%)
which can be observed in Figure 3. With the determination of this soil property, it is possible
to detect plots where irrigation depths and irrigation times were excessive [28].

Figure 4 shows the new PTFs constructed in this study, and Table 2 shows the mathe-
matical expressions. Models with silt percentage data were tested too, but with worse or
very similar results. This was already indicated by the PCA analysis.
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Figure 4. Cont.
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Figure 4. Comparison between the measured θs and the estimated one by the PTF. The PTF equations
are at the top left, and the values for each constant are below that. In addition, the R2 value and a
residual histogram are available.

Table 2. New pedotransfer functions.

PTF Formula R2

PTF-1 θs = a · Cl2 + b · Cl + c 0.9046
PTF-2 θs = a · Cl2 + b · Cl + c + d · Sa 0.9705
PTF-3 θs = a · K2

s + b · Ks + c + d · Sa 0.9445
PTF-4 θs = a · K2

s + b · Ks + c + d · Sa + e · Cl2 + f · Cl 0.9877
PTF-5 θs = a · exp(b · Cl) 0.9328
PTF-6 θs = a + b · ln(Cl) + c · BD 0.9469
PTF-7 θs = a + b · Cl2 + c · Cl + d · BD 0.9542
PTF-8 θs = a + b · Cl2 + c · Cl + d · BD + e · Sa 0.9783

Notes: Abbreviations are as follows: Cl = Clay (% by weight); Sa = Sand (% by weight); BD = Bulk Density
(g/cm3); Ks (cm/h) and the coefficients from a to f are obtained by fitting the model to the experimental data.

3.2. ANN

The best configuration for the ANN with four input layers was 4-9-10-1, which means
four inputs, nine neurons in the first hidden layer, ten neurons in the second hidden layer
and one output. For the five input layers, a 5-10-10-1 configuration was implemented. The
main results of these two ANNs are summarized in Table 3. The results obtained provided
high R2, which could be considered satisfactory when compared to other studies [2,36,37].

Table 3. ANN results.

ANN RMSE R2 ME

4-9-10-1 0.0182 0.9891 0.0091
5-10-10-1 0.0195 0.9903 0.0095

Figure 5 shows the main results of the ANN constructions process. Figure 6 shows the
ANN implementation in the validation data.
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layers and four input parameters, while 2L5I is two layers and five input data points.
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Figure 6. Results for the 4-9-10-1 (left) and 5-10-10-1 (right) configuration predictions applied in the
validation data.

4. Discussion

In this work, it has been proved that ANNs are more precise than PTFs in the θs
modeling with better values in R2 even with the most simple ANN (four input parameters).
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Furthermore, for comparative purposes, the results obtained with the studies men-
tioned in Table 2 were analyzed. Hodnett and Tomasella [2] found θs values from 0.4100
to 0.6010 cm3/cm3; meanwhile, the sample θs values here obtained ranged from 0.3500
to 0.5500 cm3/cm3. This difference is explained by the fact that the soil samples used
in this study come from cultivated areas and cover 10 of 12 textural classes. In addition,
Hodnett and Tomasella [2] used six input parameters and only linear relations for the
PTF construction, and the R2 or RMSE information was missing. In this work, only four
parameters were used for the more complex calculated TFP, and nonlinear relationships
were constructed. In this case, no data on organic matter content were available; therefore,
it was not possible to test the PTF found by Hodnet and Tomasella [2]. Vereecken et al. [36]
used 182 samples from the north of the Samber and Meuse rivers, Belgium, in which they
concluded that θs can be estimated with two soil properties (bulk density and clay content),
obtaining an R2 = 0.8480. Finally, Wösten et al. [37] used the HYPRES database, which
contains information on a total of 5521 soil horizons, to create a PTF of θs from only 4030 soil
horizons, including six input variables, where horizon depth stands out as a quantitative
variable. However, even having used all this information, they obtained an R2 = 0.7600
due to the absence of some hydraulic properties such as Ks. Despite exploring nonlinear
forms for PTFs, the result found by Vereecken et al. [36] present the same problem as
Wösten et al. [37], where both use bulk density and clay content as input data; R2 < 0.8500
is observed.

Therefore, eight new PTFs were found that proved to be more accurate compared to
those found in the literature for the calculation of θs. The models here developed present
the advantage of having a high value of R2 and the characteristic of only requiring three
primary soil variables as the input parameter, which are clay and sand content, as well as
Ks in two of the eight functions or BD in three of the eight functions developed.

Furthermore, with the development of ANNs with the same four input parameters, it
is shown that the error obtained in the PTFs can be reduced.

The development of PTFs is a useful tool that can be applied mainly in irrigation
(sprinkler, drip or surface), as well as in agricultural drainage, to estimate soil parameters
that are difficult to access. They are easy to evaluate and depend on the number of variables
to be applied. However, ANN is an alternative when a more accurate approximation is
sought, as long as computer equipment (hardware and software) is not a disadvantage.

5. Conclusions

In this work, eight new PTFs were developed for θs estimation, considering the clay
and sand content (%), BD (g/cm3) and the Ks (cm/h), based on 900 samples. The results
showed, for PTFs, R2 > 0.9046, reaching a maximum value of R2 = 0.9877, where only
three input parameters were used. These functions can be used to offer a quick response in
the irrigation modeling and drainage, but with a high capacity of improvement to obtain
an optimal design.

Further, 81 artificial neural networks were constructed and tested to calculate the θs,
based on the best RMSE values. Two of them were selected as the final ANNs, the first
one with four input data and the second one with five. The results showed R2 > 0.9891,
which suggests that the use of the ANN is necessary to develop more accurate designs in
the irrigation models, which show better results in the final parameter estimations.
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