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Abstract: Taking a certain coastal area of Jiangsu province as the research background, this study
scientifically predicts the runoff on the medium and long-term time scale according to the changes of
various climate factors such as atmospheric circulation, sea surface temperature, and solar activity in
the first half of the year. A lag correlation is established between various related climate factors and
the monthly runoff process in the research area for the previous 1–6 months. Selecting advantageous
factors and constructing a significant factor set. Using the improved BP (Back-Propagation) artificial
neural network model and combining it with the sensitivity analysis method, a specific number of
8-factor combinations are selected from the set of significant factors for medium and long-term runoff
prediction. After that, the prediction results are compared with the forecasting effects of two multi-
factor combination runoff simulation schemes formed by stepwise regression and Spearman rank
correlation methods. The study concluded that the multi-factor combination simulation effect
formed through sensitivity analysis was the best. The 20% standard forecast qualification rate of the
three schemes is not significantly different. The Mean Absolute Relative Error of the multi-factor
combination training and validation periods simulated through sensitivity analysis is the smallest
among the three schemes, which are 36.61% and 38.01%, respectively. The Nash Efficiency Coefficient
in the validation period is 0.45, which is far better than other schemes and has better generalization
ability. The Standard Deviation of Relative Error in the training and validation periods is much
smaller than other schemes, and the dispersion of relative errors is the smallest.

Keywords: coastal area; medium to long-term runoff prediction; climate factors; improved BP
artificial neural network; sensitivity

1. Introduction

Runoff volume, a significant source of water resource management, has been studied
for over half a century [1]. Accurate prediction of runoff is crucial for effective water re-
sources management, agricultural irrigation, flood warning systems, and hydropower gen-
eration. The intricate interplay between vegetation and precipitation has gained widespread
recognition. Considering the limitations imposed by water availability on ecosystem func-
tioning, precise runoff prediction can facilitate optimal ecological restoration under limited
water conditions and serve as a decision-making basis for vegetation restoration in diverse
regions [2,3]. During the melting process, substantial amounts of snow-melt runoff enter
rivers, potentially leading to flooding. Shigemi Hatta proposed the use of weekly weather
forecast data in snowmelt runoff prediction, which was calculated based on sunshine
percentage at that time when solar activity was not well understood [4]. Subsequently,
researchers have explored more variables such as topography, geology, air temperature,
precipitation, and watershed area to improve the accuracy of flood damage avoidance
predictions [5]. In recent years, with richer meteorological and surface parameter data as
well as remote sensing technology available, progress has also been made in data quality
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control and preprocessing techniques for research purposes. H.V. Trivedi pioneered the
application of grey system theory in hydrology to model runoff prediction with good
practical effects using only a small set of hydrological data required for flow prediction [6].

Due to the complex characteristics of the runoff process, such as time-varying and non-
stationary behavior, the selection of a leading predictor plays a crucial role in accurately
predicting runoff. The prediction of runoff performance can potentially be influenced
by the addition of rainfall factors and underlying surface [7,8]. Rai’s study on overland
roughness found that hydrological curves with different land roughness were consistent
with observed runoff hydrological curves [9]. Samantaray discovered that predicting runoff
always relies on five data items, including rainfall, temperature, stage, specific humidity,
and relative humidity to evaluate models [10]. In the ensemble streamflow prediction
(ESP) modelranspiration, temperature, soil moisture, groundwater level, and snow are
allowed to be incorporated into modeling to enhance flow rate predictions’ reliability [11].
Given the wide availability of models, selecting the most appropriate predictive model for
a particular problem depends on available data quality as well as system complexity and
desired accuracy levels. Therefore, when studying runoff prediction, valuable data include
rainfall data, runoff data, groundwater level data, land cover map and soil map from 1980
to 2010, which includes 88 monthly general circulation indices, 26 monthly SST indices,
and 16 monthly other indices [12]. The primary purpose of this study is to investigate
whether these factors can aid in proposing a model for predicting and evaluating empirical
results. Three feature-selection methods have been applied to determine if these features
are effective predictors.

The methods for medium and long-term runoff forecasting can be categorized into
two groups: process-driven methods, which are based on hydrological mechanisms, and
data-driven methods guided by probability, statistics, and other mathematical tools [13].
The process-driven approach can be categorized into a conceptual model and a distributed
model. The conceptual representative models encompass the Xinanjiang model and GR4J,
while the distributed representative models include VIC and SWAT. The former is rel-
atively straightforward to construct. Louise et al. employed the GR6J model to assess
the performance of original (uncorrected) and deviation-corrected ensemble forecasts for
precipitation and discharge in 16 river basins in France [14]. The latter is comparatively
intricate to build. Yuan et al. utilized real-time seasonal climate predictions from the North
American multi-model Ensemble (NMME) climate model and developed a seasonal runoff
forecast model for the Yellow River Basin using statistical downscaling methods [15]. The
construction process of process-driven methods is more complex than that of data-driven
methods, hence these approaches are less commonly used for medium- and long-term
runoff forecasting. On the other hand, data-driven methods involve a more complex con-
struction process but rely on multidisciplinary knowledge such as probability, statistics,
and optimization to establish a mapping relationship from forecast factors to runoff pro-
cesses by uncovering potential physical laws behind hydro-meteorological data [16]. These
models are often referred to as “black box models” due to their reduced interpretability.
Data-driven methods can be further classified into three categories: traditional statistical
methods, machine learning techniques, and deep learning techniques. The traditional
statistical method is a kind of method used earlier in the medium- and long-term runoff
forecast, among which the more commonly used are the periodic analysis extrapolation
method, historical evolution method, time series method, and regression analysis method.
Compared with traditional statistical methods, machine learning methods have stronger
nonlinear mapping ability and can better describe the complex nonlinear laws behind
hydrometeorological data. Previous studies have demonstrated that neural networks offer
higher accuracy predictions in this domain—Sofia’s experiment successfully predicted
Tupungato River’s monthly flow one month in advance using optimized mathematical
relationships with variable representation. Therefore, these research methodologies and
ideas serve as valuable references.
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In order to achieve higher prediction accuracy, most research employs and trains
various machine learning and deep learning prediction models. These include artificial
neural network (ANN), support vector machine (SVM), decision tree (DT), convolutional
neural network (CNN), long short-term memory network (LSTM), grey system method,
wavelet analysis method, chaos theory method, optimal combination prediction method,
and other medium- and long-term runoff prediction methods. These models possess the
capability to handle nonlinear relationships and adapt to changing hydrological environ-
ments, yielding promising results in previous hydrological modeling studies. The SVM
model is particularly effective in handling high-dimensional data and capturing complex
correlations within hydrological processes [17]. Runoff prediction also uses decision trees
and their integration methods, such as XGBoost and LGBM, which are also widely used to
predict runoff discharge [18]. Maurus Borne emphasized the significance of accurate fore-
casting in addressing water resource management issues in semi-arid regions where reliable
scheduling decisions heavily rely on forecasted data from water resources ministries [19].
Timely mid- and long-term forecasting incorporating rainfall factors and underlying surface
characteristics into theoretical models has become increasingly crucial for flood control and
drought resistance in river basins. Sofia conducted an experiment using samples to indicate
monthly discharges with a 1-month lead-time in the Tupungato River basin located in the
Central Andes of Argentina. They recommended combining support vector regression
(SVR) with artificial neural networks (ANN) as a promising model compared to classifi-
cation and regression trees [1]. Eui Hoon Lee’s case study demonstrated that an ANN
model based on optimization algorithms is effective for predicting runoff [20]. Short-term
components neural network was used to predict runoff for the Brosna catchment located
in Ireland [21], while pre-processed evolutionary Levenberg–Marquardt neural networks
(PELMNN) model and feed-forward neural networks were employed for streamflow runoff
prediction at the Aghchai watershed [22].

Junguo proposes a model selection and combination strategy that integrates 16 differ-
ent physical models with LSTM technology. Additionally, an extensive performance index
is proposed to consider the characteristics of model groups by analyzing their respective
performances [23]. The Granata study compares the application of four distinct types of
neural networks (MLP, RBF-NN, LSTM, and Bi-LSTM) for short-to-medium-term flow fore-
casts (up to 15 days) across six rivers in the United States. It concludes that the RBF-neural
network exhibits significant potential in achieving accurate short-to-medium-term forecasts
with minimal parameter optimizations [24]. The NARX-MLP-RF model established by Di
Nunno et al. has been demonstrated to be particularly suitable for accurate prediction of
rainfall and flow distribution changes in small river basins [25]. These techniques effec-
tively consider temporal dependence and capture complex relationships through nonlinear
modeling, enabling precise runoff prediction. Artificial neural network methods, among
them, are well-suited for simulating nonlinear relationships between random variables in
medium- to long-term runoff prediction. They possess advantages such as self-learning,
self-organizing, strong adaptability, and simplicity that have been widely applied with fa-
vorable outcomes [26–29]. Furthermore, this study aims to select a model exhibiting stable
performance as well as verify whether it can achieve improved prediction accuracy through
factor screening. Therefore, this paper selects the widely recognized backpropagation neu-
ral network but enhances its optimization algorithm by constructing an adaptive learning
rate while investigating the influence of influential factors on prediction effectiveness.

To address the gaps in previous studies, this paper also provides several innovative
points and contributions. On one hand, prior researchers have dedicated their efforts to
studying model precision comparison and combination models [30,31]. However, there is
limited research exploring the optimization of the back propagation algorithm. In this study,
the author constructs a self-adaptive learning rate to enhance neural network performance.
Additionally, an excellent model is employed for runoff forecasting with its prediction
accuracy serving as a benchmark for subsequent model studies. On the other hand, selecting
appropriate meteorological factors under different lag times in the early stage plays a crucial
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role in forecasting accuracy. While previous studies have examined astronomical factors,
atmospheric circulation, ocean thermal conditions, underlying surface conditions, and
basin water conditions [12], investigations into influential features remain insufficiently
explored. As previous studies primarily focused on prediction model selection, it is
imperative to analyze more representative factors for a comprehensive understanding
of runoff volume changes. Representative impact factors can also be recommended for
areas with limited hydrological data. Therefore, this paper effectively improves the overall
forecasting performance of a single forecasting model through optimal factor selection and
provides valuable references for future research.

The following are the remaining sections of this paper. Section 2 represents data
collection and then discusses experiment methodology. All models’ reliability and validity
were also measured to compare their performance. The empirical findings and result
assessment related to existing literature are outlined in Section 3. Study insights and
conclusions are provided at the end of this paper.

2. Materials and Methods
2.1. Research Area and Dataset

The coastal area of Jiangsu Province is located at 119◦21′ E–121◦55′ E and 31◦33′ N–35◦07′ N,
in the north-central part of Jiangsu Province, including all administrative areas under the
jurisdiction of Lianyungang, Yancheng, and Nantong, as shown in Figure 1. The total area
is 32,500 square kilometers, with a narrow east-west and long north-south distribution,
and a coastal strip. It is located in the transition zone between the northern subtropical
zone and the warm temperate zone. The region has abundant precipitation, but the annual
time distribution is uneven. In this study, the runoff data selected include the monthly
runoff process of a certain area in the coastal area of Jiangsu from 1980 to 2010, a total of 31
years. As runoff changes are affected by the variations in the climate system during the
preceding period, the author uses the influencing factors from the previous 1–6 months for
medium and long-term runoff prediction. At the same time, the author has adopted the
latest 130-item monthly index set of the climate system from 1979 to 2010, released by the
National Climate Center, as shown in Table 1.
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Table 1. Monthly index set of 130 climate systems.

Index Set Name Classification Number (Items)

Climate System Index Sets

Atmospheric circulation index 88

Sea surface temperature index 26

Other indices 16

summation 130

2.2. Prediction Factor Selection Method

Change in the runoff process is mainly affected by the comprehensive influence
of astronomical, meteorological, oceanic, and underlying surface conditions. Usually,
the surface conditions change little, mainly depending on precipitation and evaporation,
which are constrained by atmospheric circulation. As a channel for water vapor transport,
atmospheric circulation, including monsoon and weather system activities, can cause
changes in wind speed fields, which can affect the distribution and variation of water vapor
content in the atmosphere and thus affect precipitation, which directly forms runoff. In
addition, most of the moisture in the atmosphere comes from seawater evaporation, and
the amount of water vapor is directly related to the ocean surface temperature, which
is the main driving factor of the water cycle. Therefore, the runoff process is a complex
product of weather processes, and the atmospheric circulation factors that cause medium-
and long-term climate change are inevitably the physical causes that affect the medium-
and long-term changes of runoff factors. However, factors reflecting the characteristics of
large-scale weather systems have a lag effect on runoff. This study uses a set of 130 monthly
indices of the climate system from the previous 1–6 months as the prediction factors for
medium and long-term runoff in the study area, totaling 780. As the number of factors is
large, the Spearman rank correlation method is used to separately screen out the dominant
influencing factors from the previous 1–6 months, and then use stepwise regression. Then,
stepwise regression is adopted to further select climate factors from the dominant factors
with different lag correlations that have a significant impact on runoff according to the
maximum variance contribution criterion, thus forming a set of significant factors for multi-
factor combination runoff prediction. According to the maximum variance contribution
criterion, climate factors that have a significant impact on runoff are further selected from
the dominant factors with different lag correlations to form a significant factor set for
multi-factor combination runoff prediction.

2.2.1. Preliminary Factor Selection Method of Spearman Rank Correlation Coefficient

This paper uses the Spearman rank correlation coefficient method to preliminarily
screen the numerous climate factors selected. The Spearman rank correlation coefficient
method analyzes the correlation between the two based on the corresponding ranks of the
influencing factors to runoff. This method has a wide range of applications and relatively
low data requirements. It does not require the data to follow any specific distribution
and only requires that the data of the two variables are paired rank evaluation data. The
degree of correlation between each influencing factor and runoff is represented by the rank
correlation coefficient, and the calculation formula is:

Ri = 1− 6
n(n2 − 1)

n

∑
j=1

(yj − xi,j)
2 (i = 1, 2 · · · · · ·N), (1)

where Ri is the Spearman rank correlation coefficient between the i-th influencing factor and
runoff, and the value is between −1 and 1; n is the length of the sample series; yj and xi,j
are the corresponding ranks of the predicted object and influencing factors; N is the total
number of influencing factors.

The significance of the Spearman rank correlation coefficient is to use the sum of
squares of rank differences for testing. At a given confidence coefficient, consult the
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corresponding correlation coefficient critical value table, obtain the critical value Rα, if
|Ri|> Rα , it indicates that the rank correlation degree of the i factor and runoff is high, and
this factor can be selected, otherwise, this factor should be discarded.

2.2.2. Stepwise Regression Method to Construct a Significant Factor Set

After initially screening out the dominant factors from the previous period at different
lags using the Spearman rank correlation coefficient method, the author further selected
the climate factors that have a significant impact on runoff using the stepwise regression
method. The purpose of doing this is to ensure the independence between the final selected
factors, eliminate the repeated impact of some factors on runoff, and improve the prediction
accuracy as much as possible.

The prediction accuracy of the stepwise regression equation increases with the decrease
of the residual standard deviation. From the perspective of measuring prediction accuracy,
when a factor that has little or no impact on runoff prediction is introduced into the equation;
the reduction in the sum of squares of residuals derived from the addition of this factor is
negligible. On the other hand, due to the addition of this factor, the remaining variance
degrees of freedom may decrease, which may lead to an increase in the remaining standard
deviation, affecting the prediction accuracy and stability of the regression equation. At
the same time, from the perspective of considering the independence between factors, the
impact of some factors on runoff may be repetitive. Therefore, each step requires a test
to introduce and eliminate factors. The optimal regression equation is established when
no factor can be eliminated from the equation and there are no significant but yet-to-be-
introduced factors affecting runoff. The established regression equation only includes
factors that are independent of each other and significantly impact runoff.

2.3. Medium and Long-Term Runoff Prediction Model Based on Multi-Factor Combination

Based on the improved BP artificial neural network model, combined with the sensi-
tivity analysis method, this paper constructs a multi-factor combination of medium- and
long-term runoff prediction model.

2.3.1. Improved BP Neural Network Model

1. Classic BP Neural Network Model

The artificial neural network (ANN) is an abstract mathematical model of the hu-
man brain’s neural network, constructed by humans based on their understanding and
knowledge of the brain’s neural network. Based on its model structure and information
transmission method, it can be categorized into feedforward neural network models, feed-
back neural network models, and hybrid neural network models. Among these categories,
the feedforward neural network utilizing the error backpropagation (BP) algorithm is
currently recognized as the most prevalent and esteemed classic artificial neural network
model.

(1) Network Topology

The BP artificial neural network is a layered structure consisting of an input layer,
multiple hidden layers, and an output layer. Kolmogorov’s theorem has demonstrated that
a single hidden layer with nodes having different thresholds can infinitely approximate
any continuous function within a closed interval. Therefore, the three-layer BP neural
network can accurately predict medium to long-term runoff by realizing any mapping from
n-dimensions to m-dimensions. Information flows through this structure from the input
layer and is processed by weight matrices and activation functions in the hidden layers
before being transmitted level-by-level to the output layer for output. Figure 2 shows its
network topology diagram.



Water 2023, 15, 3559 7 of 20Water 2023, 15, x FOR PEER REVIEW  7  of  21 
 

 

 

Figure 2. Schematic Diagram of Three-layer BP Artificial Neural Network Structure. 

In the figure, the input column vector of the network is 𝑋 𝑥 ⋅⋅⋅ 𝑥 ⋅⋅⋅ 𝑥 , and the 

output column vector is  𝑌 𝑦 ⋅⋅⋅ 𝑦 ⋅⋅⋅ 𝑦 ; n, p, m are the total number of nodes in the 

input layer, hidden layer, and output layer, respectively.   

(2) Network Learning Rules 

The core operational process following the construction of a BP neural network can 

be  divided  into  two  stages:  network  learning  (training)  and  association  (prediction). 

Learning essentially involves clarifying the inherent connection between input and output 

network  information. The BP algorithm  is a supervised  learning method, with training 

consisting of two steps. Firstly, forward transmission of information occurs where input 

flows through the hidden layer to obtain actual calculation values from the output layer. 

Secondly, backward correction of errors takes place by calculating discrepancies between 

actual calculated outputs and expected target values. When errors do not meet require-

ments, this serves as a basis for determining adjustment amounts for various parameters 

within  the network while modifying weights and  thresholds  layer by  layer. These  two 

links complete an entire iteration process for network learning. After repeated iterations 

resulting in output error meeting accuracy requirements or reaching upper limits on train-

ing times, learning, and training cease. 

2. Problems and Improvements of BP Network 

The BP artificial neural network is widely used and highly recognized. However, it 

also has limitation problems such as slow convergence speed, the tendency to get stuck in 

local minima, overfitting leading to poor generalization capabilities, and unclear princi-

ples for structure design. In response to these issues, the following improvements have 

been made to the BP network: 

(1) Adaptive Learning Rate  𝜂 

The learning rate  𝜂  is a crucial parameter that impacts the speed of model conver-

gence by adjusting the degree of correction for network errors. To enhance convergence 

and address the issue of reduced generalization caused by overtraining, it is necessary to 

appropriately adjust the learning rate based on specific circumstances. When utilizing BP 

networks to solve practical problems, determining whether to modify the  learning rate 

value requires comparing the objective function values after each iteration with those from 

previous iterations. The adjustment value for the learning rate  𝜂  in l-th generation train-
ing can be expressed as follows: 

( 1)     ( ) ( 1)
( )

( 1) ( ) ( 1)

l l l
l

e l l l

  


  

  
    

,  (2)

where  0.001 𝜆 0.0001,  l  is  the number of  training  iterations, and  𝛿is  the measure-

ment function, that is, the model error. 

(2) Correction of Weight Adjustment Amount 

To make the training process of the BP network more stable, a momentum term is 

introduced to correct the weight adjustment amount, as shown in Equation 3. 

Figure 2. Schematic Diagram of Three-layer BP Artificial Neural Network Structure.

In the figure, the input column vector of the network is X = [x1 · · · xi · · · xn]
T , and the

output column vector is Y = [y1 · · · yk · · · ym]
T ; n, p, m are the total number of nodes in the

input layer, hidden layer, and output layer, respectively.

(2) Network Learning Rules

The core operational process following the construction of a BP neural network can be
divided into two stages: network learning (training) and association (prediction). Learning
essentially involves clarifying the inherent connection between input and output network
information. The BP algorithm is a supervised learning method, with training consisting of
two steps. Firstly, forward transmission of information occurs where input flows through
the hidden layer to obtain actual calculation values from the output layer. Secondly,
backward correction of errors takes place by calculating discrepancies between actual
calculated outputs and expected target values. When errors do not meet requirements, this
serves as a basis for determining adjustment amounts for various parameters within the
network while modifying weights and thresholds layer by layer. These two links complete
an entire iteration process for network learning. After repeated iterations resulting in
output error meeting accuracy requirements or reaching upper limits on training times,
learning, and training cease.

2. Problems and Improvements of BP Network

The BP artificial neural network is widely used and highly recognized. However, it
also has limitation problems such as slow convergence speed, the tendency to get stuck in
local minima, overfitting leading to poor generalization capabilities, and unclear principles
for structure design. In response to these issues, the following improvements have been
made to the BP network:

(1) Adaptive Learning Rate η

The learning rate η is a crucial parameter that impacts the speed of model convergence
by adjusting the degree of correction for network errors. To enhance convergence and
address the issue of reduced generalization caused by overtraining, it is necessary to
appropriately adjust the learning rate based on specific circumstances. When utilizing BP
networks to solve practical problems, determining whether to modify the learning rate
value requires comparing the objective function values after each iteration with those from
previous iterations. The adjustment value for the learning rate η in l-th generation training
can be expressed as follows:

η(l) =

{
η(l − 1) δ(l) < δ(l − 1)
e−λη(l − 1) δ(l) ≥ δ(l − 1)

, (2)

where 0.001 ≥ λ ≥ 0.0001, l is the number of training iterations, and δ is the measurement
function, that is, the model error.

(2) Correction of Weight Adjustment Amount
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To make the training process of the BP network more stable, a momentum term is
introduced to correct the weight adjustment amount, as shown in Equation 3.

∆w(l) = η
∂δ

∂w
+ β∆w(l − 1), (3)

where β is the momentum term coefficient, ∆w is the weight adjustment amount, and other
variables have the same meaning as above.

2.3.2. Factor Sensitivity Analysis Method

Various climatic factors have varying degrees of impact on medium-to-long-term
runoff, and each factor exhibits different sensitivity to runoff prediction. This paper utilizes
N significant factor set to establish a simulation prediction model for medium-to-long-term
runoff based on an improved BP artificial neural network. By removing one factor at a
time from the set, a new multi-factor simulation prediction model is established using
the remaining N − 1 factors. The most sensitive factor is identified as the one that causes
the greatest deterioration in simulation result error and fitting effect of the new model.
Equation (4) defines sensitivity γ to determine each influencing factor’s impact on medium-
to-long-term runoff prediction.

γi = ∆εi + ∆φi, (4)

where γi is the sensitivity of the i-th factor in the significant factor set. The larger the sensi-
tivity of the factor, the higher the sensitivity of the factor to medium-to-long-term runoff
prediction. ∆εi is the increase in the average relative error of the model simulation after
removing the i-th factor compared to before the removal (if it decreases, the increase value
is negative). ∆φi is the decrease in the Nash efficiency coefficient of the model simulation
result after removing the i-th factor (if it increases, the decrease value is negative).

In order to further consider the impact of different data series’ lengths on the sensitivity
ranking of each influencing factor, the existing n-year data series is divided into the first
m years of the original data period and the later p years of the new data period. First, the
factor sensitivity analysis is carried out with m years of original data, and the sensitivity
ranking of each factor is obtained. Then, the p-year new data are divided into k equal parts,
and the series length of the original data period is expanded k times. Each time the series
length is increased, the factors are re-analyzed for sensitivity. Finally, the sensitivity ranking
results of k + 1 times are compared. If the factors with significant sensitivity do not change,
this multi-factor combination can be directly used for runoff prediction for a longer period
in the future. If the factors with significant sensitivity change, when predicting future
medium-to-long-term runoff, the data series needs to be continuously updated, and the
factor sensitivity analysis needs to be carried out again before making runoff predictions.

2.4. Evaluation System for Prediction Results
2.4.1. Single Evaluation Index

To comprehensively evaluate the effects of the training period and validation period
of each multi-factor combination scheme model, this article uses four commonly used
indicators: Mean Absolute Relative Error (MARE), Nash Efficiency Coefficient (NSE), 20%
standard forecast qualification rate ∂20%, and Standard Deviation of Relative Error σ.

1. Mean Absolute Relative Error

MARE =
1
n

n

∑
i=1

∣∣∣∣Q(i)−Q0(i)
Q0(i)

∣∣∣∣, (5)

where n is the total length of the sample series, Q(i) is the runoff simulation value of the i-th
sample, and Q0(i) is the actual runoff value of the i-th sample. When the runoff simulation
value equals the actual value, the value of MARE is 0. Therefore, the closer it is to 0, the
better the simulation effect.
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2. Nash Efficiency Coefficient

NSE = 1−

n
∑

i=1
(Q0(i)−Q(i))2

n
∑

i=1

(
Q0(i)−

−
Q0

)2 , (6)

where
−
Q0 is the average value of the actual runoff values of n samples, and the other

variables have the same meaning as above. When NSE is 1, it means that the runoff
simulation value equals the actual value, and the simulation effect is good. When NSE is 0,
it means that the simulation result is approximately the average level of actual values, and
the simulation effect is generally credible. When NSE is less than 0, the simulation effect is
not credible. Therefore, the closer its value is to 1, the better the simulation effect of the
model.

3. 20% Standard Forecast Qualification Rate

∂20% =
nh
n

, (7)

where n is the total number of medium-to-long-term runoff predictions, and nh is the
number of qualified predictions when the qualification rate standard is 20%. This indicator
reflects the overall accuracy of the simulation, and the larger its value, the better the
simulation effect.

4. Standard Deviation of Relative Error

∂20% =
nh
n

, (8)

In the formula, the variables have the same meaning as above. This indicator reflects
the degree of deviation from the average value of the relative error distribution between
the runoff simulation value and the actual value. The smaller the σ value, the better the
simulation effect.

2.4.2. Comprehensive Evaluation Index

When evaluating the pros and cons of the simulation effects of the training period
and validation period of each multi-factor combination scheme model, different evaluation
results may be produced based on different single indicators. Therefore, considering all
single indicators, a comprehensive evaluation index is constructed to intuitively represent
the pros and cons of the model simulation runoff effect.

Since each single evaluation index may have different dimensions and both high-
quality indicators and low-quality indicators exist, they are not commensurable, so the
initial index values cannot be used directly to determine the comprehensive evaluation
index and need to be standardized and homogenized. If there are negative numbers in
the index values, non-negativity processing is also required. After processing, this paper
uses the entropy method that can objectively determine the weights of each single index to
construct a comprehensive evaluation index. For an evaluation system of n schemes and m
evaluation indexes, the specific calculation process is as follows:

1. Calculation of Entropy

Hj = −k
n

∑
i=1

fij ln fij (j = 1, 2, . . . . . . , m), (9)

where Hj is the entropy of the j-th evaluation index, 0 ≤ Hj ≤ 1; k = 1
lnn ; fij =

rij

∑n
i=1 rij

;

Among them fij is the proportion of the j-th index of the i-th scheme in the index.
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2. Calculation of Entropy Weight

ωj =
1− Hj

m−
m
∑

j=1
Hj

(j = 1, 2, . . . . . . , m), (10)

where ωj is the entropy weight of the j-th evaluation index, ∑m
j=1 ωj = 1 and 0 ≤ ωj ≤ 1.

3. Results
3.1. Preliminary Selection of Factors

Using the monthly runoff process from January 1980 to December 2010 in a certain
coastal area of Jiangsu, and the monthly climate index set from July 1979 to December
2010, the Spearman rank correlation coefficients of the monthly climate factors and the
monthly runoff process of the forecast object at different lags were calculated according to
Formula (1). Under the premise of a given confidence coefficient α = 0.05, the critical value
Rα = 0.297. According to |Ri|> Rα , the dominant factors that passed the significance test
were initially selected from the 130 climate factors, as shown in Figures 3–8. Among them,
the number of early factors that passed the test at lags of 1–6 months were 29, 11, 16, 28, 36,
and 33, respectively.

3.2. Construction of Significant Climate Factor Set

In order to find out all the factors that have a significant impact on runoff at different
lags, the stepwise regression equation was established separately using the dominant
factors in the first 1–6 months screened out by the Spearman rank correlation coefficient
method and the monthly runoff process. Under the premise of a given confidence coefficient
α = 0.05, factors that are independent of each other and have a significant impact on runoff
at different lags were further selected. Considering these factors comprehensively, the
significant climate factor set for medium and long-term runoff prediction in a certain coastal
area of Jiangsu was constructed, as shown in Table 2.

Table 2. Significant Climate Factor Set Affecting Medium and Long-term Runoff Prediction in a
certain coastal area of Jiangsu.

Lag Previous One
Month

Previous Two
Months

Previous Three
Months

Previous Four
Months

Previous Five
Months

Previous Six
Months

Factor Number

55 102 101 32 65 55
66 101 104 101 58
16 55 26 104 104

102 31 101
50

The above table reveals a total of 20 climate factors that have been carefully selected
due to their significant impact on medium and long-term runoff during the first half of
the year, at various time lags. Among these factors, there are five variables from the
previous month, including the Northern Hemisphere Polar Vortex Strength Index, Tibet
Plateau-au-2 Index, West Pacific Subtropical High Strength Index, Indian Ocean Warm Pool
Strength Index, and Northern Hemisphere Polar Vortex Area Index. Additionally, there
are 3 variables from two months prior: the Indian Ocean Warm Pool Strength Index, the
Indian Ocean Warm Pool Area Index, and the Northern Hemisphere Polar Vortex Strength
Index. Furthermore, there are four variables from three months ago: Indian Ocean Warm
Pool Area Index; West Pacific Warm Pool Strength Index; India Subtropical High Ridge
Line Position Inde. Moreover, there are three variables from four months earlier: North
America-North Atlantic Subtropical High Ridge Line Position Index; Indian Ocean Warm
Pool Area Index; and West Pacific Warm Pool Strength Index. In addition, there are four
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variables in the previous five months, including the Tibet Plateau-1 Index; the Northern
Hemisphere Polar Vortex Center Strength Index; the West Pacific Warm Pool Strength Index;
and the Indian Ocean Warm Pool Area Index. Finally, only one variable is considered from
six months ago—the Northern Hemisphere Polar Vortex Strength Index.

Therefore, the formation of runoff in a certain coastal area of Jiangsu is closely related
to factors such as the water vapor channel that affects precipitation, cold air moving
southward, sea-air interaction, the dynamic and thermal effects of the Qinghai-Tibet Plateau,
and teleconnection types. Among them, the West Pacific Subtropical High, the India
Subtropical High, and the South China Sea Subtropical High control the water vapor
transport channel, the polar vortex affects the southward cold air, the interaction between
the West Pacific and Indian Ocean warm pools and the atmosphere affects the circulation
situation, and the Tibet Plateau, through its unique dynamic and thermal effects of large
terrain, the North America-North Atlantic Subtropical High is connected with the runoff in
the study area through teleconnection.
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Figure 3. Primary chart of dominant factors a month ago.
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Figure 4. Primary chart of dominant factors two months ago.
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Figure 6. Primary chart of dominant factors four months ago.

3.3. Sensitivity Analysis Results

Using the 20 climate factors in the significant climate factor set affecting the medium
and long-term runoff prediction in a certain coastal area of Jiangsu, and the local monthly
runoff process from 1980 to 2010, a prediction model based on the improved BP artificial
neural network was established. Using the sensitivity analysis method, the sensitivity of
each factor in the significant factor set was obtained, and the sensitivity ranking of each
factor is shown in Table 3.

As can be seen from Figure 9, the sensitivity values of the factors ranked in the top
eight are significantly increased compared to the last 12 factors. This suggests that the
climate factors ranking in the top eight are very sensitive to the medium and long-term
prediction of runoff in the study area.
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Table 3. Sensitivity Ranking of Each Factor in the Significant Factor Set.

Factor
Number Sensitivity Ranking Factor

Number Sensitivity Ranking

102(1) 0.2936 1 101(4) 0.0379 11
55(6) 0.2617 2 102(2) 0.0330 12
50(1) 0.2187 3 31(3) 0.0321 13
16(1) 0.1635 4 58(5) 0.0305 14
101(2) 0.1216 5 66(1) 0.0213 15
101(5) 0.0866 6 104(5) 0.0205 16
26(3) 0.0842 7 104(4) 0.0201 17
101(3) 0.0831 8 32(4) 0.0173 18
65(5) 0.0508 9 55(2) 0.0147 19
104(3) 0.0407 10 55(1) 0.0083 20

Note: The numbers in parentheses represent the previous months, the same below.
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Figure 8. Primary chart of dominant factors six months ago.



Water 2023, 15, 3559 14 of 20Water 2023, 15, x FOR PEER REVIEW  15  of  21 
 

 

 

Figure 9. Sensitivity of each factor in the set of significant factors. 

Considering the influence of data series length changes on the selection of significant 

sensitivity factors, further factor sensitivity analyses were conducted on the series from 

1980 to 2000 and from 1980 to 2005, respectively. The results show that the factors ranked 

in the top eight in terms of sensitivity do not change with the length of the data series. 

This indicates that these eight factors have good temporal stability in terms of their sensi-

tivity to runoff prediction in a certain coastal area of, Jiangsu, and can be used for runoff 

prediction in this area for a longer period of time in the future. 

3.4. Multi‐Factor Prediction Simulation Results of the Improved BP Neural Network Model 

The actual monthly runoff process of the local area from 1980 to 2010 obtained from 

the hydrological monitoring station in a coastal area of Jiangsu Province was partitioned 

into a training period (1980–2005) and a validation period (2006–2010). With a given con-

fidence coefficient, stepwise regression selected eight factors from the significant factor 

set. The top eight factors in the sensitivity ranking were highly sensitive and cannot be 

overlooked. Therefore, for multi-factor combination medium and long-term runoff simu-

lation prediction in the study area, eight factors were chosen. An improved BP neural net-

work model based on sensitivity analysis was utilized for simulation prediction, as shown 

in Figures 10 and 11 for the training and validation periods, respectively. It can be seen 

that  the  improved BP neural network model based on multi-factor sensitivity analysis 

constructed in this study can better reflect the measured runoff law in the simulated runoff 

process during the training and validation periods, effectively extending the prediction 

period of runoff forecasting, predicting the future runoff variation law through changes 

in atmospheric weather systems in advance, and providing a basic reference for clarifying 

the physical causes of runoff formation and variation in the coastal areas of Jiangsu Prov-

ince from the perspective of atmospheric circulation, as well as establishing a medium- 

and long-term runoff forecasting model. 

Figure 9. Sensitivity of each factor in the set of significant factors.

Considering the influence of data series length changes on the selection of significant
sensitivity factors, further factor sensitivity analyses were conducted on the series from
1980 to 2000 and from 1980 to 2005, respectively. The results show that the factors ranked
in the top eight in terms of sensitivity do not change with the length of the data series. This
indicates that these eight factors have good temporal stability in terms of their sensitivity to
runoff prediction in a certain coastal area of, Jiangsu, and can be used for runoff prediction
in this area for a longer period of time in the future.

3.4. Multi-Factor Prediction Simulation Results of the Improved BP Neural Network Model

The actual monthly runoff process of the local area from 1980 to 2010 obtained from
the hydrological monitoring station in a coastal area of Jiangsu Province was partitioned
into a training period (1980–2005) and a validation period (2006–2010). With a given
confidence coefficient, stepwise regression selected eight factors from the significant factor
set. The top eight factors in the sensitivity ranking were highly sensitive and cannot
be overlooked. Therefore, for multi-factor combination medium and long-term runoff
simulation prediction in the study area, eight factors were chosen. An improved BP neural
network model based on sensitivity analysis was utilized for simulation prediction, as
shown in Figures 10 and 11 for the training and validation periods, respectively. It can be
seen that the improved BP neural network model based on multi-factor sensitivity analysis
constructed in this study can better reflect the measured runoff law in the simulated runoff
process during the training and validation periods, effectively extending the prediction
period of runoff forecasting, predicting the future runoff variation law through changes in
atmospheric weather systems in advance, and providing a basic reference for clarifying the
physical causes of runoff formation and variation in the coastal areas of Jiangsu Province
from the perspective of atmospheric circulation, as well as establishing a medium- and
long-term runoff forecasting model.

As shown in Figures 12 and 13, from the Taylor diagram of the prediction results, it
can be seen that the correlation coefficient of the model based on sensitivity analysis is
between 0.7 and 0.8. In the simulation prediction results during the validation period, the
model’s centered root mean square error significantly decreased, showing better simulation
prediction performance overall compared to the other two models.
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4. Discussion
4.1. Comparison of Simulation Accuracy for Different Factor Quantities

In order to further validate the reasonability and reliability of the selected factors
for multi-factor combination runoff simulation prediction in the study area, we trained
and built models using the top 9 and top 10 factors from the sensitivity analysis method
(1980–2005). Subsequently, we compared the Mean Squared Error (MSE) and Nash-Sutcliffe
Efficiency (NSE) indexes of the prediction results during the validation period (2006–2010)
with those obtained from a model utilizing only the top eight factors. As shown in Table 4,
increasing the number of influencing factors from 8 to 10 resulted in a marginal decrease of
only 0.003 in the MSE index and an increase of merely 0.05 in the NSE index, indicating
limited improvement in prediction accuracy. Therefore, considering this limitation, we
controlled as much as possible by inputting a reduced number of influencing factors into
our model to enhance its learning efficiency while ensuring that our selection for simulation
prediction was reasonable and reliable.

Table 4. Comparison of prediction effects of different factor quantity models.

Selection Factor Factor Number MARE NSE

the first 8 factors 102(1), 55(6), 50(1), 16(1), 101(2), 101(5),
26(3), 101(3) 0.3800 0.45

the first 9 factors 102(1), 55(6), 50(1), 16(1), 101(2), 101(5),
26(3), 101(3), 65(5) 0.3783 0.47

the first 10 factors 102(1), 55(6), 50(1), 16(1), 101(2), 101(5),
26(3), 101(3), 65(5), 104(3) 0.3770 0.50

4.2. Simulation Comparison of Three Multiple Factor Combination Schemes

In this study, the widely used and highly recognized improved BP artificial neu-
ral network model is employed. Three different multi-factor combination medium and
long-term runoff prediction schemes are constructed based on variance contribution, rank
correlation coefficient, and sensitivity value indicators combined with stepwise regression,
Spearman rank correlation, and sensitivity analysis. The evaluation index system’s ad-
vantages and disadvantages in each combination scheme’s training period and validation
period are comparatively analyzed. Additionally, the sensitivity analysis factor selection
method’s strengths and weaknesses are evaluated. Ultimately, eight factors are selected
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using stepwise regression, Spearman rank correlation, and sensitivity analysis as shown in
Table 5.

Table 5. Different multi factor combination schemes.

Screening Method Stepwise Regression Spearman Related Sensitivity Analysis

Factor Number

55(6) 55(6) 102(1)
32(4) 32(4) 55(6)
55(2) 58(5) 50(1)

101(5) 65(5) 16(1)
66(1) 101(4) 101(2)
16(1) 101(3) 101(5)
50(1) 16(1) 26(3)

102(1) 55(1) 101(3)

The BP artificial neural network model is trained 30,000 times with eight hidden layer
nodes determined by trial calculation. The initial learning rate and allowable error of the
initial network are set accordingly. Three multi-factor combination schemes selected by
stepwise regression, Spearman rank correlation, and sensitivity analysis are assumed to be
schemes one, two, and three, respectively. These three schemes utilize the improved BP
artificial neural network model to simulate medium- and long-term runoff in the study
area while calculating single indicator values during both training and validation periods
as shown in Tables 6 and 7. Low-optimal type indicators within the evaluation index
system are uniformly converted into high-optimal type indicators before normalization
takes place. Comprehensive evaluation index values of each scheme are then calculated
using the entropy method where higher values indicate better simulation effects of the
model. Entropy weights along with comprehensive index values for each evaluation index
can be found in Tables 8 and 9.

Table 6. The values of each individual indicator during the training period of three schemes.

MARE (%) NSE ∂20% (%) σ

Scheme 1 37.67 0.60 37.82 0.41
Scheme 2 48.47 0.66 37.50 0.70
Scheme 3 36.61 0.51 33.01 0.34

Table 7. Value of each individual indicator during the validation period of three schemes.

MARE (%) NSE ∂20% (%) σ

Scheme 1 43.87 0.21 36.67 0.39
Scheme 2 50.26 0.19 30.00 0.50
Scheme 3 38.01 0.45 31.67 0.27

Table 8. Entropy weight of each evaluation index.

MARE (%) NSE ∂20% (%) σ

Training period 0.0686 0.0900 0.0306 0.8107
Validation

period 0.0400 0.8140 0.0368 0.1092

Table 9. Comprehensive indicator values for the training and validation periods of three schemes.

Scheme 1 Scheme 2 Scheme 3

Training period 0.583 0.349 0.636
Validation period 0.273 0.241 0.482
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The comparison of the three schemes reveals that Scheme Three exhibits the smallest
average relative error in both training and validation periods, while its Nash efficiency
coefficient is relatively poor during the rating period but significantly better than Schemes
One and Two in the validation period, indicating superior generalization ability. Moreover,
all three schemes demonstrate similar 20% standard forecast pass rates. Notably, Scheme
Three displays a much smaller standard deviation of relative error in both training and
validation periods compared to Schemes One and Two, suggesting minimal dispersion of
its relative error. Overall, considering these four single indicators comprehensively during
both rating and validation periods using objective weighting entropy method yields Scheme
Three as having the best comprehensive evaluation index with optimal simulation effect.

4.3. Research Characteristics and Prospects

The multi-factor combination medium and long-term runoff prediction model devel-
oped in this study, based on an improved BP neural network, exhibits several innovative
features. However, it also possesses certain methodological limitations and deficiencies
identified in existing literature, studies that require further investigation. These limitations
primarily pertain to the following aspects.

(1) This study focuses more on studying and analyzing the impact of changes in
meteorological and hydrological factors in the early stages on runoff changes over a longer
period of time and analyzing the impact of multi-factor combinations under different
screening criteria on runoff prediction. However, it does not combine different models or
use combined models to analyze the impact on runoff prediction accuracy.

(2) this study seeks to optimize a small number of physical factors with significant
impacts from a large number of climate impact factors, and on the basis of meeting the
requirements of prediction accuracy, minimize model input factors, simplify model network
structure, reduce network training burden, and improve model learning efficiency. However,
it does not further analyze the prediction effect of large-scale weather system characteristic
factors themselves on runoff processes under different human activity disturbances.

(3) although this study considered the different effects of various pre-event meteorolog-
ical and hydrological factors on the formation of runoff processes under different lag times
when selecting significant factors, it did not analyze and compare the prediction effects of
relevant factors during the flood season and non-flood season on the runoff process.

5. Conclusions

The prediction of medium and long-term runoff holds significant importance for the
coordinated management of water resources. This study focuses on evaluating the impact
of different multi-factor combinations, selected through various methods, on the prediction
accuracy of medium and long-term runoff in a specific coastal area of Jiangsu. The analysis
is based on the latest monthly index set comprising 130 climate systems released by the
National Climate Center. Consequently, this research has yielded the following outcomes:

(1) Using the Spearman rank correlation coefficient, 29, 11, 16, 28, 36, and 33 dominant
climate factors were identified for medium to long-term runoff prediction in the coastal
area of Jiangsu over a period of one to six months.

(2) Through stepwise regression analysis, a set of 20 significant climate factors with
good independence at different lag times was selected for further analysis.

(3) According to the stepwise regression, Spearman rank correlation, and sensitivity
analysis methods, a total of eight factors were selected from the significant factor set
individually, resulting in three distinct multi-factor combination schemes. Utilizing an
improved BP artificial neural network for simulating medium and long-term runoff in the
research area, a comparison of comprehensive evaluation index values between the three
schemes during both the rating period and verification period revealed that the sensitivity
analysis method yielded the most effective simulation results. The comprehensive index
values for this scheme were 0.636 and 0.482, respectively, during the training period and
verification period. Furthermore, it was observed that these selected eight factors exhibited
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relatively stable sensitivities over time. Therefore, this particular multi-factor combination
is chosen for predicting medium and long-term runoff in coastal areas of Jiangsu province.

The eight climate factors include the Indian Ocean Warm Pool Intensity Index, the
Northern Hemisphere Vortex Area Index, and the Western Pacific Subtropical High Intensity
Index from the previous month. Additionally, it comprises the Indian Ocean Warm Pool
Area Index from the previous two months, the Indian Subtropical High Ridge Line Position
Index, and the Indian Ocean Warm Pool Area Index from the previous three months.
Furthermore, it incorporates the Indian Ocean Warm Pool Area Index from the previous
five months and finally concludes with the Northern Hemisphere Vortex Intensity Index
from the previous six months.

(4) The method optimizes eight pre-climate indexes suitable for the coastal area of
Jiangsu Province. In the future, these optimized pre-significant factors can be directly
utilized for regional runoff prediction, providing a valuable reference for formulating
flood control and relief strategies, farmland irrigation management, hydropower station
operations, and other disaster relief scheduling plans in the region. Moreover, this approach
introduces novel perspectives for medium and long-term runoff forecasting in the region.
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