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Abstract: Groundwater is an essential and indispensable resource, meeting dire needs for drinking
and irrigation purposes. The aim of this study is to assess the suitability of groundwater quality
for drinking purposes. This evaluation will be conducted using the Groundwater Pollution Index
(GPI), the nitrate pollution index (NPI), and the geographic information system (GIS) in Sidi Slimane,
Morocco. In this study, a comprehensive collection of 20 samples was obtained from various locations
for analysis and evaluation. Hadrochemical facies of this study area showed that out of 20 samples,
90% belonged to a type (Na+-K+-Cl−-SO4

2−), while only 10% fell into a category (Ca2+-Mg2+-Cl−-
SO4

2−). The Groundwater Pollution Index values ranged from 0.7 to 10.8, with an average of 7.03;
about 60% of the groundwater samples analyzed in this study area were classified as highly polluted
and unsuitable for drinking purposes. Nitrate index values ranged from −0.9 to 10.5. Approximately
80% of the sampled sites require treatment before consumption. According to the Nitrate Pollution
Index (NPI), it is essential to regularly monitor 16 well sites to prevent nitrate contamination resulting
from human activities, including waste disposal in open areas and sewage infiltration. This study
recommends raising farmers’ awareness of the use of slow-release natural fertilizers made from
nitrogen rather than nitrogen-based fertilizers, reducing waste disposal by residents, and maintaining
an appropriate sewage network to minimize sewage flow leakage. This study plays a vital role in
identifying the polluted areas and highlighting the need to take appropriate measures to control the
sources of pollution in this study area in order to protect water resources and ensure the provision of
safe water to the local population.

Keywords: groundwater; contamination; groundwater pollution index; nitrate pollution index; GIS

1. Introduction

The availability of clean drinking water plays an important role in the advancement
of civilization, ensuring human survival, and meeting the various requirements of hu-
mans, animals, and plants. Groundwater is generally of high quality, but interaction with
geological formations and soil minerals can affect its quality [1–4].

In many parts of Morocco, groundwater is a major source of drinking water for
agricultural and industrial purposes, and therefore the quality of the water is deteriorating
day by day due to population increases, human activities, growth, increased demand, etc.
The deterioration of groundwater (GW) quality as a result of seawater intrusion (SWI)
poses a significant water security challenge in regions with limited water resources [1].
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In regions with a semi-arid climate, the combination of population growth and eco-
nomic activities poses a significant threat to groundwater resources. This threat is marked
by a noticeable decline in water quality and a reduction in groundwater levels, which in
turn endanger various forms of life [2]. Groundwater serves as a crucial component of the
water supply system, serving the purposes of drinking, irrigation, and industrial usage in
arid and semi-arid areas worldwide.

Due to inadequate rainfall and the amplified effects of climate change, numerous arid
and semi-arid regions in North Africa find themselves with limited reserves of surface
water. Consequently, groundwater has emerged as the primary and, often, the sole source
of freshwater available for consumption, industrial processes, and agricultural activities in
these regions. This growing reliance on groundwater has intensified due to the expanding
population and the escalating demand for water for human needs. This situation has given
rise to a host of challenges, as highlighted by researchers globally [3]. In Morocco, specif-
ically, groundwater assumes a pivotal role in supplying drinking water and supporting
irrigation. It has made a substantial contribution to the country’s economic growth and has
served as a significant catalyst for its socio-economic development, health, and hygiene
standards. Morocco’s geographical location places it in a semi-arid region with an arid
climate transition. This study area, located in the western region of Morocco, is known for
its flourishing agricultural abundance. Despite being located in a semi-arid region, it has a
beautiful natural environment. However, the problems of population growth, urbaniza-
tion, and human impact on nature pose a major threat to sustainable development in this
region [5,6]. The region has natural wealth, arable land, and significant water resources,
as well as varied ecosystems. The soil is diverse, with a high water retention capacity and
humidity provided by the ocean mass [7]. The region also has groundwater resources at
different depths, which allow it to meet irrigation needs that are potentially important
assets for its socio-economic development. According to the Ministry of the Interior 2015
record [8], the main ones can be listed below: (i) the Gharb basin with an area of 390 km2,
with 126 Mm3/year of renewable resources and a relatively balanced water balance, the one
of hydrogeological interest on a regional scale characterized by a significant recharge by
precipitation water; (ii) the Maâmora basin with an area of around 4000 km2 that constitutes
a large reservoir of water of 134 Mm3/year of renewable resources; (iii) the Témara basin
with a potential input of 17 Mm3/year, which covers an area of 350 km2 the depths relative
to the ground oscillate between 10 m in the West and 30 m in the East; (iv) the Shoul
Basin that is considered a natural extension of the Maâmora Basin, which covers an area of
200 km2 with potential contribution of 7.5 M m3/year and water depth varies between 20
and 60 m.

The water resources of the region’s aquifer are in continuous decline because of the
withdrawals linked to irrigation. Pollution, soil erosion, and solid transport constitute
the main constraints that stand in the way of the rational management and sustainable
development of water resources in Morocco [9]. Rainfall contributions throughout the
territory are estimated at 150 billion m3. The useful rain represents only 29 billion m3.
The mobilizable hydraulic potential, under current technical and economic conditions, is
estimated at 20 billion m3 of which 16 billion are from surface water and 4 billion are from
groundwater [10].

The parameters for assessing the overall quality of groundwater differ from those of
surface water and are specific to physicochemical, organic, and bacteriological pollution [11].
Water sources are facing significant pollution issues resulting from the discharge of urban
and industrial wastewater, as well as the extensive use of fertilizers and pesticides. This
pollution ranges from moderate to severe, posing a threat to the quality and sustainability
of both surface water and groundwater resources [12]. The agricultural sector puts many
pressures on the environment. Among them are the overexploitation of water resources
and the deterioration of the quality of the soil and groundwater due to the use of pesticides,
insecticides, rodenticides, fungicides, and herbicides that reduce biodiversity and food
availability for certain links in the food chain [13].
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According to the campaign carried out by the Sebo Aquifer Agency in 2007 on the
quality of the groundwater, it was found that 45% of the stations covered by measurement
in the Mamora were of low quality due to the high levels of nitrates, which exceed the
maximum permissible value of 50 mg/L [14]. In a study conducted by El Khodrani et al. [6]
in 2016, the focus was on examining the physico-chemical quality of groundwater in the
rural commune of Sfafaa, located in Sidi Slimane, Gharb, Morocco, and noticed that more
than 70.6% of the water is highly to extremely saline, especially in the upstream and
downstream parts of the province. A concerning level of contamination by nitrates was
observed in some zones [6]. Globally, elevated NO3

− levels pose a significant concern in
numerous aquifers; making them a primary threat to groundwater resources; particularly
in areas with irrigation [4,5]. Consequently, safeguarding water resources from NO3

−

contamination becomes paramount, especially in arid and semi-arid regions where water
resources are both scarce and heavily utilized [6,7]. Indeed, various studies have shown
that excessive groundwater extraction and the application of nitrogen-based fertilizers
contribute to groundwater pollution and heighten the risks to human health [8,9].

The objective of this study is to evaluate the appropriateness of groundwater in the
designated study area for drinking purposes. This assessment is conducted using indicators
such as the Groundwater Pollution Index, the Nitrate Pollution Index, and the utilization
of Geographic Information System technology.

2. Materials and Methods
2.1. Study Area

This study area is situated in the northwestern region of the Kingdom of Morocco,
specifically within the Rabat-Salé Kenitra region. It is depicted in Figure 1. This area
encompasses a land area of 1517 km2 and is predominantly characterized by a semi-arid
climate. The level of elevation above sea level differs from place to place in this area,
and the maximum height is about 475 m (Figure 2). The general trend of surface water
movement in the area (hydrology of this region) is towards the northwest, as shown in
Map Figure 1 [8].

The Sidi Salsman region, located in the western Rharb pre-Rifean zone, exhibits distinct
geological units: Mamora Basin: notable for Cretaceous deposits with thin limestone layers
and marls resting on the Paleozoic basement. Paleozoic Block: A northern extension of
the Moroccan Meseta, marked by strong folding and granitoid intrusions. Contains the
“Kecbia” graben with 500–1000 m of Triassic deposits. Pre-Rifean Ridges: Located at the
Hercynian Meseta border, showcasing varied deposits includes Cambrian sedimentary
sequences in the Rharb-Mamora basement linked to granitoids. The Mio-Pliocene marine
formations suggest an open deposition environment. Locally, east of the Beht River, find
Lower Jurassic bioclastic sandstones and Upper Cretaceous sediments near Kenitra resting
on Paleozoic or Triassic layers. Cretaceous deposits are also observed in the northern
allochthonous complex [10,11].

2.2. Field and Laboratory Methods

A total of twenty well samples were carefully collected from diverse locations within
the Sidi Slimane region. The procedures of the standards were followed, and the water
samples were collected using clean and dry polyethylene bottles after a 10 min pumping
process. These samples were then transported in portable coolers, maintaining a constant
low temperature of 4 ◦C, to the laboratory. The physicochemical parameters of the ground-
water samples were assessed using the methods specified in the American Public Health
Association’s Standard Methods for the Examination of Water and Wastewater [15]. The
physical parameters, pH and EC, were assessed using a pH meter (WTW Inolab) for pH
measurements, and the measurement of electrical conductivity (EC) was conducted using
the Thermo ORION 3 STAR conductivity meter. The chemical analyses encompassed the
following elements: Calcium (Ca2+) and magnesium (Mg2+) concentrations were deter-
mined utilizing a complex meter with EDTA titration. Sodium (Na+) and potassium (K+)
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concentrations were ascertained through flame photometry using the JENWAY PFP7 instru-
ment. Carbonate (CO3

2−) and bicarbonate (HCO3
−) levels were assessed by subjecting the

sample to a solution of 0.02 N sulfuric acid along with phenolphthalein and bromocresol
green indicator. Chloride (Cl−) concentrations were determined by titration with silver
nitrate in the presence of a potassium chromate solution, while sulfate (SO4

2−) levels were
examined using a spectrocolorimeter (V-1100). Nitrate (NO3

−) was analyzed through
distillation using a distillation apparatus, specifically the VELP SCIENTIFICA UOK148.
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Figure 1. Location of this study samples. Figure 1. Location of this study samples.

2.2.1. Pollution Index of Groundwater (PIG)

The Groundwater Pollution Index (PIG), developed by Subba Rao in 2012, is a method-
ology used to assess groundwater quality. It evaluates the effect of specific variables on
the overall quality of groundwater [16]. The PIG technique has been used effectively in
monitoring drinking water quality in various locations, as evidenced by studies by Subba
Rao et al. in 2018 and 2019. The calculation of the groundwater pollution index includes
five steps [16,17].
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Step 1: Assigning Relative Weight (RW)

The first step involves assigning a relative weight (RW) to all parameters analyzed
in this study. RW is based on two main factors: the importance of the parameter in
determining the overall quality of groundwater and its relative impact on human health.
In Subba Rao’s study, a scale of 1 to 5 was used, with the lower end being 1 for potassium
(K+), which has the least effect, and RW 2 being assigned (Ca2+), (Mg2+), and (HCO3

−),
while WR 4 is for EC pH and (Na+) and 5 for variables such as (NO3

−), (SO4
2−), and (Cl−)

(Table 1).

Step 2: Calculating Weight Parameter (WP)

To determine the weight parameter (WP) for each individual parameter, the calculation
consists of dividing the RW value of that specific parameter by the sum of all the RW values.

WP = RW/ ∑ RW (1)

SC = Cn/WQS (2)

GPI = ∑ WP × SC (3)

GPI = ∑ GPI (4)

Step 3: Calculating of Concentration (SC)

The calculation for the status of concentration (SC) involves dividing the concentration
(Cin) of each water quality parameter by its corresponding limit set by the drinking water
quality standard (WQS). These standards are determined by organizations like the World
Health Organization. (WHO, 2011).

Step 4: Calculating of (PIG)

The groundwater pollution index (GPI) is calculated by multiplying the weight pa-
rameter (WP) by the status of concentration (SC) for each parameter.
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Step 5: Calculating (PIG) Quality

The groundwater pollution index is calculated by summing up the GPI values for all
the parameters analyzed in each water sample.

According to Subba Rao (2012) [18], for the GPI classification of water, there are five
categories (Table 2). Samples with GPI values < 1.0 are considered insignificant in terms of
pollution. GPI values between 1.0 and 1.5 indicate low pollution, while values ranging from
1.5 to 2.0 indicate moderate pollution, GPI values from 2.0 to 2.5 indicate high pollution,
and GPI values > 2.5 indicate very high pollution.

Table 1. Parameters were analyzed along with their respective values (RW), (WP), and WHO (2011) [19].

Parameter RW WP WHO (2011)

pH 4 0.1025641 7

TH 4 0.1025641 300

EC 4 0.1025641 500

K+ 1 0.02564103 12

Ca2+ 2 0.05128205 75

Mg2+ 2 0.05128205 45

Na+ 4 0.1025641 200

SO4
2− 5 0.12820513 250

Cl− 5 0.12820513 250

NO3
− 5 0.12820513 50

Sum 29 1
Units of all parameters (mg/L); RW: Relative Weight; WP: Weight Parameter.

Table 2. Categories of NPI [20].

NPI Value NPI Interpretation

less than 0 clean (unpolluted)

from 0 to 1 low pollution

from 1 to 2 moderate pollution

from 2 to 3 high pollution

bigger than 3 very high pollution

2.2.2. Nitrate Pollution Index (NPI)

This is a very important indicator for determining water pollution with nitrates in
polluted water resulting from human activities. It provides an indication of the level of
nitrate pollution based on the nitrate concentration in wells compared to a health advisory
value [20]. The formula to calculate the NPI is given in Equation (5).

NPI =
Cs − HAV

HAV
(5)

where NPI is the nitrate pollution index, Cs is the nitrate concentration in the well (mg/L),
and HAV is the health advisory of nitrate for drinking water (mg/L), taken as 20 mg/L.

The calculation of Gibbs Ratio 1, Gibbs Ratio 2, Chloro-Alkaline Index (CAI), CAII, and
Saturation Index (SI) was carried out using the equations given in Table 3 (Equations (6)–(10)).
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Table 3. Mathematical equations to calculate the groundwater quality parameters.

Name Equation Equation No. Ref.

Gibbs Ratio 1 G1 = Cl−

(Cl−+ HCO−
3 )

(6) [21]

Gibbs Ratio 2 G2 =
(Cl−+ HCO−

3 )
(Na++ K++ Ca2+)

(7) [21]

CAI
(Chloro-Alkaline Index) CAI = (Cl−−(Na++K+))

(Cl−)
(8) [22]

CAII CAII = (Cl−−(Na++K+))
(HCO−

3 +HSO−
4 +CO2−

3 )
(9) [22]

Saturation Index (SI) SI = log
(

IAP
KT

)
(10) [23]

In order to prepare and draw maps and the spatial distribution of the results, the
Geographic Information Systems program (version 10.8.3) was used.

3. Results and Discussion

Table 4 displays the various parameters and their corresponding statistical descriptions
that were utilized to assess the appropriateness of groundwater for irrigation purposes in
the Sidi Slimane area.

Table 4. Statistical summary of the different parameters.

Variable Minimum Maximum Mean Standard Deviation

PH 6.74 7.85 7.3165 0.28

EC 1540 17,550 4915 3772

TDS 1001 11,408 3195 2452

TH 312 1524 715 332.7

Ca2+ 2.84 14.5 8.373 3.525

Mg2+ 2.22 16.02 5.927 3.548

Na+ 8.08 85.19 32.09 22.03

K+ 0.06 0.3 0.1525 0.0703

HCO3
− 2.38 13.1 7.568 2.599

NO3
− 0.23 6.24 1.604 1.557

Cl− 7.46 82.5 31.31 21.86

SO4
2− 0.29 4.66 1.647 1.21

3.1. Groundwater Chemistry

Figure 2 shows that the chemical composition of the samples studied in this study
area indicates that sodium is dominant in cations and chlorine is dominant in anions. This
indicates the effect of the sea or salt water on the water source. The order of availability of
ions in the wells is depicted in the figures below.

3.2. Hydrochemical Facies

The results of hydrochemical facies in Figure 3 indicate that out of 20 samples, 90%
of them belong to the (Na+-K+-Cl−-SO4

2−) type, while only 10% fall into the (Ca2+-Mg2+-
Cl−-SO4

2−) category. This suggests the absence of both permanent and temporary water
hardness (class 1 and 5) in the groundwater of the Sidi Slimane region.
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3.3. Water-Rock Interaction

To understand and characterize the effects of rock-water interaction, precipitation, and
evaporation, use a Gibbs diagram to plot the chemical data of groundwater samples [21].
In this study area, Gibbs diagrams (Figure 4) showed that the majority of water samples
fall into the dominant rock category, and the rest of the samples fall into the evaporation
zone. This indicates the groundwater is affected by the chemical weathering of rocks.

Figure 4. Plots showing dominant cations (a) and inions (b) as sources of groundwater chemistry.

The processes of mineral weathering and cation exchange during water-rock interac-
tion can be traced by analyzing cation concentrations and ratios [24]. The relation between
((Ca2+ + Mg2+) and (SO4

2− + HCO3
−) meq/L) can provide information about the minerals

that contribute to well mineralization. This is because the concentrations of these ions in
groundwater are primarily controlled by the dissolution of minerals in the aquifer. The
scatter plot for (Ca2+ + Mg2+) and (SO4

2− + HCO3
−) shown in Figure 5 revealed that the

majority of the sample points lie below the equilibrium line, with two points above the
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line. It is shown that silicate weathering is the main contributor to bicarbonate ions in
the studied waters. On the other hand, the two dots above the line indicate carbonate
weathering as a contributing source.
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The Ca2+/Mg2+ ratio in groundwater can provide insights into the dissolution of differ-
ent types of rocks. According to Mayo & Loucks (1995) [25], the ratio of Ca2+/Mg2+ being
less than 1 may indicate a more dominant contribution from the dissolution of dolomite,
whereas a higher ratio may indicate a greater contribution from calcite dissociation. Addi-
tionally, a Ca2+/Mg2+ ratio greater than 2 may suggest the dissolution of silicate minerals
into the groundwater [25]. The Ca2+/Mg2+ ratio in groundwater can provide information
about the dissolution of minerals. A ratio between 1 and 2, which was observed in 65% of
the samples (Figure 6), indicates the dissolution of calcite. A higher ratio than 2, observed
in 15% of the samples, suggests the contribution of silicate minerals to the groundwater
through the dissolution of calcium and magnesium. Additionally, 4 samples (around 2.94%)
had a Ca2+/Mg2+ ratio < 1, which shows the dissolution of dolomite.

Figure 7 shows that some samples in the dataset cluster along the 1:1 decay line of
halite, indicating that these samples are of halite decay origin. However, there are some
groundwater samples located below and above the aquiline that show a clear dominance
of a sodium ion over a chloride ion. This suggests that the source of these ions is something
other than the dissolution of halite. In addition, some samples show the dominance of
chloride over sodium ions. This may be due to the removal of Na from the groundwater
system through reverse ion exchange processes. However, if some groundwater samples do
not show this relative abundance, it could indicate a different source of ions or a different
hydrogeological process. For example, reverse ion exchange processes could remove Na
from the groundwater system and change the relative abundance of ions [26].
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3.4. Base Ion Exchange in Groundwater Chemistry

Schoeller proposed in 1977 the chloralkaline indices, which indicate a set of parameters
used to assess the chemical composition and origin of water samples. These indices help
to characterize and evaluate the hydrogeochemical processes occurring in the aquifer
system [22]. The calculated values for CAI-1 and CAI-II ranged between 0.39 and 0.18,
−0.1284 and 0.1231, with a mean of −0.05 and −0.0194, respectively. From Figure 8, it
is evident from Figure 9 that 60% of the samples were found to have positive indices for
CAI-I and CAI-II, which represent the contribution of the reverse ion exchange process.
Time and about 40% of the groundwater points in the positive indices of CAI-I and CAI-II,
that is, there is a control of the anion exchange process, which reveals the dominance of the
anion exchange process on the chemistry of groundwater compared to the cation exchange
process in this study logic. That is, the results of the positive ion exchange process are the
most widespread in the study areas.
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3.5. Saturation Indices of Groundwater

Based on measured calcium and magnesium concentrations in water and alkalinity,
saturation indices relative to gypsum, anhydrite, calcite, dolomite, and aragonite were cal-
culated by the diagram software [23]. Figure 9 illustrates the saturation indices of samples
concerning various mineral phases. The results indicate that the aquifer is oversaturated
with respect to calcite and dolomite, while it is undersaturated with respect to aragonite
and gypsum.

3.6. Groundwater Pollution Index

The Groundwater Pollution Index (GPI) value gives a single value that reflects the
total groundwater pollution rate. It takes into account the impact of multiple chemical
variables on groundwater quality [16]. The GPI value accurately represents the level of
well contamination. The results indicate that 20% of the wells fall under the category of
“Low Pollution”, and a total of 4 wells are suitable for drinking. Approximately 15% of the
wells are categorized as “Moderate Pollution”, 10% as “High Pollution”, and 55% of wells
fall into the “Very High Pollution” category, with a total of wells (Table 5).
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Table 5. The category of the groundwater pollution index (GPI) for this study area.

Pollution Category Percentage of Wells Number of Wells

Clean or Insignificant Pollution (IP) - -

Low Pollution (LP) 20% 4

Moderate Pollution (MP) 15% 3

High Pollution (HP) 10% 2

Very High Pollution (VHP) 55% 11

Overall, the GPI suggests that the overall well samples in this study area are not
suitable for drinking purposes. The spatial distribution of the GPI indicates that most of
the well samples in this study area have contamination levels ranging from high to very
high (Figure 10), indicating that the water cannot be directly recommended for drinking in
this area.

3.7. Classification Ascendant Hierarchies (CAH)

Hierarchical cluster analysis refers to a statistical method to characterize a dataset in
groups according to their similarities. The dendrogram (Figure 11) shows the binding of
the 20 wells according to the similarity of the chemical properties of groundwater. Wells 1,
18, 6, and 19 are grouped into one category; wells 2, 5, 3, 4, 8, 9, 12, 10, and 11 are grouped
together; and the rest of the wells fall into another category, indicating the convergence of
the groundwater quality of wells in each category.
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3.8. Nitrate Pollution Index (NPI)

The Nitrate Pollutants Index is an indicator for assessing water pollution caused by
high nitrate concentration [20]. In this study area, the NPI values range from −0.287 to
18.344, with an average NPI of 3.97. About 10% of well locations have no pollution, 15%
have low pollution, 25% have moderate pollution, and 50% of well sample locations have
high to very high pollution due to the higher concentration of nitrate in well samples
(Table 6 and Figure 12).
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Table 6. The category of the nitrate pollution index (NPI) for this study area.

NPI Value NPI Interpretation No %

<0 Clean (unpolluted) 2 10

0–1 Low pollution 3 15

1–2 Moderate pollution 5 25

2–3 High pollution 1 5

>3 Very significant pollution 9 45
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Figure 12 shows that most of the wells in this study area are contaminated with nitrates.
In this study area, the sources of nitrate contamination are categorized into two distinct
types: point sources and diffuse sources. Point sources include waste dumping yards, open
landfills, uncovered septic tanks, and livestock confinement, all of which constitute the
main contributors to nitrate contamination in the study area. On the other hand, diffuse
sources of nitrate contamination are attributed to the use of organic nitrogen fertilizers,
excessive synthetic fertilizer application, overuse of pesticides, and persistent sewage
system leakages. An elevated concentration of nitrate in groundwater has significant
implications for human health, with infants and children being particularly susceptible to a
condition known as methemoglobinemia. Additionally, it can have adverse environmental
effects, such as promoting the proliferation of aquatic plants and algae, ultimately leading
to eutrophication in lakes.



Water 2023, 15, 3701 15 of 16

4. Conclusions

The quality of groundwater is a critical factor in assessing the well-being and progress
of human communities; it is a vital source for both domestic and agricultural purposes
throughout Morocco. The current study centered on assessing groundwater quality in
relation to both natural and anthropogenic contamination. This research and methodology
contribute to enhancing our comprehension of groundwater hydrochemistry in arid and
semi-arid regions globally. This study included 20 groundwater samples from different
locations to assess their characteristics. The results revealed the use of chemical reaction
schemes for rocks: out of 20 samples, 90% belong to the (Na+-K+-Cl−-SO42−) type, while
only 10% fall into the (Ca2+-Mg2+-Cl−-SO42−) category. The Groundwater Pollution Index
values ranged from 0.7 to 10.8, with an average of 7.03; about 60% of the groundwater
samples analyzed in this study area were classified as highly polluted and unsuitable
for drinking purposes. Nitrate Index values ranged from −0.9 to 10.5. Approximately
80% of the sampled sites require treatment before consumption. According to the Nitrate
Pollution Index (NPI), it is essential to regularly monitor 16 well sites to prevent nitrate
contamination resulting from human activities, including waste disposal in open areas
and sewage infiltration. This study recommends raising farmers’ awareness of the use of
slow-release natural fertilizers made from nitrogen rather than nitrogen-based fertilizers,
reducing waste disposal by residents, and maintaining an appropriate sewage network to
minimize sewage flow leakage.
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