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Abstract: Previously conducted studies have established that the early warning of water inrush
is crucial for the prevention and control of mining water catastrophes in the panel. In order to
ensure the safety of coal mining, in this paper, monitoring indicators were determined using the
sensitivity analysis method, and then a multi-indicator early-warning model for water inrush was
established mainly based on the geological data of the Yanghuopan coal mine. The monitoring stage
of the early-warning model should be determined according to the distance between the monitoring
borehole and the mining position. Then, the development of a water-conducting fracture zone and
the fluctuation and stochastic oscillator of monitoring indicators are comprehensively analyzed to
determine the early-warning level. A multi-indicator early-warning model was applied to panel
30302 of the Yanghuopan coal mine and panel 1304 of the Zhaoxian coal mine in the Yushen mining
areas. The abnormal warning of the water disaster in panel 1304 was sent 3 days before the disaster,
which shows the effectiveness of the model. It can provide a reference for the development of an
early-warning model for mine water inrush in Yushen mining areas.

Keywords: coal mining safety; real-time monitoring; sensitivity analysis; water-conducting fractured
zone; stochastic oscillator

1. Introduction

The spatial position, combination, and interaction between the mining coal seam
and aquifer, aquifuge, water pathways [1], hydrogeological barriers, and mining panels
complicate the mine’s hydrogeological structure, resulting in a variety of mining water
disasters [2]. According to the State Administration of Work Safety in China, there were
over 1000 coal mine water-inrush accidents from 2000 to 2021, resulting in over 4300 deaths.
Mining water disasters are one of the most serious risks to coal mining output [3]. It is of
great significance to understand the characteristics of coal mine water for the prevention
and control of water inrush [4]. The amount of non-traditional energy is not enough to meet
the huge and growing energy demand, which means that coal still remains the only reliable
reserve in many countries for the next few decades [5]. Although the development direction
of coal mining is mechanization [6] and intelligence, mine water disasters are still endless.
To ensure safe production, many rules and regulations, such as the Coal Mine Safety Rules
(Version 2022) and the Detailed Rules for Mine Water Prevention and Control (Version 2018),
have been enacted. Mining predecessors have detailed a series of technical procedures
for the prevention and control of water disasters as follows: investigation, prevention [7],
blockage [8], drainage, interception, and monitoring [4], which should be integrated with
mining water disaster control experience. Monitoring and early warning play an important
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role among these factors [9]. The precursor of water inrush is characterized by some main
stress—strain parameters, geophysical parameters, and hydrogeological parameters [10,11].
It is often accompanied by informational changes in the mining environment, such as
seepage, displacement, stress, and temperature field [12]. Water pressure, temperature [13],
rock stress, and strain, as well as hydrochemical [14] and microseismic indicators, are
all monitoring indicators of the early-warning system [15], which can be used for the
early warning of water inrush in mines [16]. Water sources and pathways are the main
monitoring aspects for the early warning of the mine water inrush [17]. With the mining
of the panel, the pressure and temperature of groundwater change due to the connection
of aquifers on different horizons [9]. At the end of the last century, a monitoring system
of water inrush from the seam floor was established [18] for the first time, with four
sensors for temperature, water pressure, stress, and strain. It predicted a floor water inrush
accident successfully. Water disasters can be predicted by identifying the charge of ions in
mining water because there are differences in the composition and concentration of ions in
different water sources [19,20]. Moreover, rock bursts often produce hydraulic pathways,
even inducing a water inrush disaster [21]. Through microseismic monitoring, the focal
mechanism solution of the anomalous area is reversed to realize an early warning of water
inrush [22]. Researchers are also put forward to detect the burst signal as an early-warning
sign of mine disasters [23]. Other researchers combine multi-source information technology
for early warnings, such as a normal cloud model to dynamically assess mine water inrush
risk [24]. A convolutional neural network [25], fuzzy mathematics [26], analytic hierarchy
processing [27], and other analytical methods have been applied to quickly identify water
inrush sources. Of course, precursor warning is not limited to water inrush. For example,
the behavior of the surrounding rock mass can be predicted by watching the set value of the
roof sagging continuously in time [28]. Wireless sensors are used to identify explosives in
the air and monitor their concentration so as to analyze the risk of mining explosions [29].

Because of the complexities and the relationship among aquifer types, aquifer char-
acteristics, flow patterns, and mining excavation, it is difficult to predict the inflow of
mine water [30]. The goal of early warning is to infer and anticipate mining water hazards
using immediate and direct parameters rather than indirect ones, i.e., to predict water
disasters using basic measurable factors [31]. However, the threshold-setting techniques in
existing early-warning models are subjective, leading to the inaccurate identification of a
water inrush. During mining, the threshold value fluctuates depending on the monitoring
scenario. Through the monitoring and real-time analysis of each indicator during mining,
the program obtains the judgment result of the mine water inrush in time. Corresponding
software can be developed to reduce the operation difficulties of field staff. The purpose
of this study is to create a real-time early-warning model based on sensitivity analysis to
choose the relevant indicators according to the mine’s hydrogeological structure. Other
mines can refer to this model and formulate specific suitable indicators and early-warning
thresholds according to their own conditions.

2. Methods Section
2.1. Field Monitoring

The parallel network electricity method with an arrangement of Wenner « (Figure 1)
was adopted in this study for the collection of apparent resistivity. A unipolar power
supply was used (Equations (1) and (2)).

" AU
s =K — (1)
k* =2ma ()

where ps is apparent resistivity; AU is the voltage; a is the spacing of the electrode
(2= AM =MN = NB).
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Figure 1. Schematic diagram of Wenner o.

Brilliouin optical time domain reflectometer (BOTDR) is used for optical fiber moni-
toring. Equation (3) gives the relationship between the strain on the optical fiber and the
axial Brillouin frequency drift [32].

dyg (€)
de

vp(e) = vp(0) + € 3)

where vg(¢) is the Brillouin frequency drift when the fiber is subjected to strain ¢; vg(0) is

the Brillouin frequency drift when the optical fiber is free in the test environment; gg(e) is

the strain coefficient; and ¢ is the axial strain of optical fiber.

2.2. Sensitivity Analysis

One of the strategies widely used to examine uncertainty is sensitivity analysis. The
influence degree of different factors on the output results can be derived by evaluating the
regular pattern and the influence of factors on the output results, and then the capacity
of a project to tolerate risks can be judged [33]. If a slight change in a parameter causes a
substantial change in an index, that parameter is a sensitive factor of the index; otherwise,
it is a non-sensitive factor on the index. The sensitive factors of water inrush can be
successfully identified via sensitivity analysis. Varying panels in various coal mines have
different effect indices [34]. Indices should be determined according to the geological and
hydrogeological conditions of the study area. The sensitivity indicators chosen for this
water inrush early-warning model differed slightly from traditional sensitivity factors,
which are appropriate for diverse conditions. The traditional sensitivity analysis highlights
the impact of variables on the output outcomes [35]. Water inrush is affected by factors such
as the thickness of the mining coal seam and the availability of water in the aquifer. Under
the same conditions, the higher the thickness of the coal seam, the greater the likelihood
of water inrush. The water inrush-sensitive indicators considered at this time were those
sensitive to water inrush but which could not anticipate or affect its occurrence. When
water inrush occurred, however, these signs were easier to observe, and their response
(change) was faster.

]/(xlf cee Xio1, X+ A, Xitls--- ,Xk) — y(X)
A

di(X) = @)

The elementary effect of the i-th parameter is described as Equation (4) for a given
X = (x1, x2, ..., x), where d isa valuein1/(p — 1),...,1 —1/(p — 1) and p is the number of
levels [36].

In the actual mining process, indicators should be chosen based on various hydrogeo-
logical conditions. Concerning the risk of water inrush, F is regarded as a function of each
factor x; (Equation (5)). The sensitivity degree (Equation (6)) can be obtained by analyzing
the sensitivity of each parameter to determine the grading mode.

F :f(Xl/X2/X3r' o an> (5)

S; = [ W (6)
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The determination of monitoring indicators via sensitivity analysis is a relatively
complicated process. First, it is important that whenever we obtain information about a
mining area, we also receive a lot of information on engineering geology and hydrogeology,
such as strata, rock and soil strength, water level, water inflow, and so on. Some of these
parameters can be used to evaluate or predict the danger of water inrush in this mining
area, such as formation strength, mining depth, coal thickness, and so on, but they are not
suitable for early warning. There are still some parameters that cannot determine whether
water inrush occurs or not, but carry disaster precursor information, so we can realize
disasters and receive an early warning through these ‘sensitive’ parameters.

There are two ways to screen monitoring indicators via the sensitivity analysis method.
The first way (Equations (5) and (6)) is to analyze the variation range in each parameter
when a water inrush disaster occurs in similar mining areas. For example, a water inrush
accident occurred in the Taoyuan coal mine in 2014, and the Ordovician limestone water
level dropped by about 2 m within 5 h [20]. In addition, in the Zhaoxian coal mine studied
in this paper, before the disaster, the water level went down continuously, which triggered
the threshold and issued an early warning. By analyzing the sensitivity of precursor
information contained in different parameters to disasters, we can determine monitoring
indicators. We should also note that different precursor indicators show different changes
in the same disaster. For example, if the water level drops by only a few meters, a change of
0.5 °C in water temperature can reflect a major flood accident while the water inflow needs
to be doubled [20]. Therefore, we put forward two modes, the variable value and variable
amplitude, to evaluate the monitoring indicators, respectively. The second method uses
the Sobol sensitivity analysis method. Its basic principle is based on Equation (4). We need
to determine the monitoring indicators by evaluating the Sobol indices of each parameter
through the mathematical model of mine water disaster prediction. If the mathematical
model is not perfect, the monitoring index can also be determined using sensitivity analysis
combined with machine learning. This paper mainly determines the monitoring index via
the first method.

2.3. Stochastic Oscillator

The stochastic oscillator, invented by George C. Lane in the late 1950s, is a momentum
indicator that indicates the closing value in relation to its value range over time. This
method was originally employed for future market analysis [37], and it is now frequently
utilized for stock market short- and medium-term trend research [38]. The stochastic
oscillator is formed from the statistical theory of integrating the notions of momentum,
the strength index, and moving average while calculating the Row Stochastic Value (RSV)
through the maximum, minimum, and final value of a period. This method aims to predict
the turning point of the monitoring index by comparing the current value of the monitoring
index with its fluctuation interval [39]. Because stochastic is simply a concept of random
fluctuation, the trends of the K, D, and | lines can be used to make short-term and medium-
term forecasts. The stock and futures markets also follow natural laws, meaning that it is
possible to predict the price trend of the market using mathematical techniques rather than
relying on random fluctuations. We can determine when the stock price will be adjusted
back and what price it will be adjusted back to using these trading orders [40]. The main
body of the stock market is humans, while the main body of mining disasters is nature.
Humans are frequently more complex than nature. Humans utilize data to mislead their
opponents, and the information released by natural disasters is always accurate. We strove
to combine this method with the early-warning model, according to its principles, to obtain
a more accurate early warning of mine water inrush.

_ C—Ia
RSV = ;— - < 100 @)

Ki = (2Kj—1 +RSV;)/3 (8)
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D; = (2Di-1 +K;)/3 ©)

Ji = 3K; — 2D; (10)

where C is the value at the end of a monitoring period, Ly, is the minimum value in n days,
H,, is the maximum value in n days, Kj, Dj, and RSVj, respectively, represent the K value, D
value, and RSV value of the day, K;_; represents the K value of the previous day, and if
there is no K value in the previous day, it is replaced by 50 as well as D;_;.

2.4. Development of the Early-Warning Model

The monitoring process of precursor indicators is the monitoring procedure of the
early warning model. In conjunction with the geological background of the research region
and the current monitoring tools, the following five monitoring indicators were chosen for
the early warning of mine water inrush: microstrain, apparent resistivity, water level, mine
water inflow, and water temperature.

The model was separated into two stages based on whether or not the panel reached
the effective monitoring distance, which was determined to be 50 m. The first stage occurred
when the panel was not mined to the effective monitoring distance, which is primarily
determined by the optical fiber, and the parallel network electricity method was used to
monitor and judge the location of the water-conducting fractured zone and the water-rich
abnormal area. Stage 2 comprises two sub-models when the panel was mined to the
effective monitoring distance: the real-time identification of water-conducting fractured
zones and real-time monitoring of sensitive indicators. Figure 2 shows the flow chart of an
early-warning system.

Historical warning data set ] [ Real-time data set of panels ]
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Figure 2. Flow chart of an early-warning model.

Five indicators, including the strain of optical fiber, apparent resistivity, groundwater
level, mine water inflow, and mine water temperature, were selected.
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The median absolute deviation (MAD) was adopted to evaluate the strain of optical
fiber (Equation (11)). MAD is a measure of statistical dispersion and a robust statistic,
which is more suitable for outliers in the data set than the standard deviation. Five, seven,
ten, fifteen, and twenty times were used as the boundaries of the abnormal, low, medium,
high, and extremely high-risk warnings.

MAD = 1.4826(median(|e¢; — median(e)|)) (11)

where ¢; is the real-time monitoring value of the microstrain.

In the event of a mining water inrush, the increase in mine water inflow could exceed
more than 23 times the warning reference value. The variable amplitude mode was adopted
to evaluate the anomaly of mine water inflow and apparent resistivity in this work.

Normally, the variation in water temperature does not exceed 0.5 °C within
15 days [20], but it clearly changes during water inrush. The variable value mode is
adopted to warn the indicator of water temperature, as well as the groundwater level. In
the typical case of water inrush in the coal mine adjacent to the study area, the ground-
water level does not drop more than 20 m within six hours after the occurrence of water
disasters [41].

The essence of a grading warning is to calibrate the normal interval of indicators and
the threshold based on monitoring data. Variable value and variable amplitude modes are
proposed based on each monitoring indicator’s sensitivity to water inrush. Using water
temperature and inflow as an example, the monthly average water temperature in the
study area changes and does not exceed 1 °C according to monitoring data. If the water
temperature varies by 0.5 °C in a short period of time (within 24 h), there is a high likelihood
of water inrush. The water inflow tends to multiply before the water inrushes into the mine.
For example, during the water inrush disaster at panel N1201 in the Ningtiaota coal mine,
the water inflow increased from 45 to 179 m3/h, and water inflow increased from 50 to
200 m?/h during the water inrush disaster at the Ciyaowan coal mine. That is, the water
inflow was less responsive to mine water inrush than the water temperature.

The factors that caused the mine water inrush were complicated; their dimensions
were different, and some of them were qualitative, while others were quantitative [42].
Hazard sources are graded and produce an early warning by analyzing the fluctuation
of data. For the convenience of defining the severity of disasters, the signal of warning is
divided into five levels, namely anomaly warning, low-risk warning, medium-risk warning,
high-risk warning, and extremely high-risk warning.

2.4.1. Multi-Source Monitoring

The height of the caving and fractured zone of the overburden and the rock resistivity
of the water-rich rock and soil layer can be obtained according to the mining situation
of the previous panels. According to the on-site monitoring data from optical fiber and
electrical methods, combined with the previous water-rich situation of rock and soil layers,
the geophysical anomaly area can be identified. A geophysical anomaly area refers to an
area that is inconsistent with the previous water-rich situation of the rock and soil layers.
The empirical value must be used to determine whether the water-conducting fractured
zone connects with the geophysical anomaly area, and if so, an early warning of the water
inrush risk should be issued. Figure 3 shows the flow chart of the multi-source monitoring
model. In addition, the on-site monitoring results show that when the mining position of
the panel was more than 50 m away from the monitoring borehole, the monitoring data
were not affected. Therefore, monitoring boreholes here should be laid more than 50 m
away from the mining position to ensure the effectiveness of early warning.
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2.4.2. Real-Time Early-Warning Model
a. Model for real-time identification of the water-conducting fractured zone

The coupling analysis of the optical fiber and parallel network electricity method
findings can provide a real-time judgment of the growth of the water-conducting fractured
zone. If the height of the water-conducting fracture zone exceeds the threshold (the height
of historical experience), the water inrush risk alert is given directly without dividing the
warning level. Figure 4a shows the flow chart.

b  Model for real-time monitoring of water-sensitive indicators

On-site monitoring indicators are determined using the actual hydrogeological condi-

tions of coal mines. During mining, a number of variables, such as the water level, pressure,

and inflow, are monitored in real-time. Risk levels are computed based on their fluctuation,
providing an early warning. Figure 4b depicts the flow chart.
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Figure 4. Flow chart of the real-time early-warning model.

[ Encryption monitoring

2.5. Development of Multi-Indicators Early-Warning Model

Based on the characteristics of the variable value and variable amplitude, the weight
of each factor is determined by the analytic hierarchy process [43]. The evaluation matrix
of the variable value mode is taken as an example to describe the process of development.
The results are shown in Tables 1 and 2.
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Table 1. Results of AHP for variable value.

Factor Eigenvector = Weight Characteristic Value CI
Statistical values 0.8736 0.2493
Short-time variable value 2.0801 0.5936 3.0536 0.0268
Long-time variable value 0.5503 0.1571

Table 2. Results of AHP for variable amplitude.

Factor Eigenvector =~ Weight Characteristic Value CI
Statistical values 0.7937 0.2535
Short-time variable amplitude 1.4938 0.4771 3.0037 0.0018
Long-time variable amplitude 0.8434 0.2694

The risk value RK (Equations (12)—(14)) is offered to quantify multi-indicator
risk levels.

The multi-indicator early-warning model is divided into five levels to distinguish it
from the single-factor early-warning model as follows: white, blue, yellow, orange, and red
warning. This corresponds to an abnormal warning, low risk, medium risk, high risk, and
extremely high risk, respectively (Table 3). Table 4 summarizes the real-time early-warning
model of sensitive indicators.

RK =Y fi(x) (12)

fe(x) = Sta(x)

fos(x) = Vas(x)

£i(x) = 0.24935ta(x) + 0.5936Vas (x) + 0.1571Vay(x) (13)
folx) = 0.25355ta(x) + 0.4771Ras(x) + 0.2694Raj (x)

f7(x) = 0.2493Sta(x) + 0.5936Vas(x) + 0.1571Va; (x)

White warning, 0 < RK <3
Blue warning, 3<RK<S8
Level(RK) = Yellow warning, 8 < RK <13 (14)
Orange warning, 13 < RK <18
Red warning, RK > 18

where RK is the risk value of monitoring indicators, Va(lue) refers to the variable value
mode, Vg is a short-time value-changing mode, Va; is a long-time value-changing warning,
Ra(nge) refers to amplitude warning, in which Rag is the short-term amplitude-changing
warning, Raj is the long-term amplitude-changing warning, and level (RK) is the final
risk level.

Table 3. Classification of multi-indicators model.

Risk Level Riskless White Blue Yellow Orange Red
Classification RK=0 0<RK<3 3<RK<8 8 <RK<13 13 <RK <18 RK > 18
all indicators do . >1/2 monitoring ~ >1/2 monitoring  >1/2 monitoring v 2 monitoring
<1/2 monitoring o o o indicators
RK =Y fi(x) not show any . indicators indicators indicators . .
indexes abnormal . - . high-risk or
abnormal abnormal low-risk medium-risk
above
. Ask water
. Investigate the . .
Monitor Stop working prevention
Countermeasure . . cause of . .
intensively . immediately experts for
abnormality

analysis.
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Table 4. Real-time early-warning model of sensitive indicators.
Medium-Risk Extremely
Grading of Single Indicator Riskless Abnormal Warning Low-Risk Warning um High-Risk Warning High-Risk
Warning Warning
Morfltormg Warning parameters Calculation 0 1 2 3 4 5
indicators
Fiber strain ¢ MAD . 14826 x . el <5MAD SMAD <el <7MAD 7MAD<el <10MAD 10MAD <el <15MAD 15MAD <e¢l < 20MAD el >20MAD
(median(|e; — median(e)|))
Apparent Short-time variable _
resistivity (Q-m) amplitude los — ps|/ps psI(n) <1 1<psI(n) <2 2<psl(n) <3 3<psl(n) <4 4<psl(n) <5 psI(n) >5
Within the
Statistical |T — (pe + 20) | confidence 01<TI<0.2 02<TI<0.3 03<TI<0.5 05<TI<1 TI>1
interval
Groundwater - -
temperature (°C) Sho“'t;’;‘ﬁl ‘e’a“able T - T4 0<TI<0.1 01<TI<02 02<TI<03 03<TI<05 05<TI<1 TI>1
Long-time variable ‘T — Tl} 0<TI<0.1 01<TI<0.2 02<TI<03 03<TI<0.5 05<TI<1 TI>1
Within the
Statistical |Q — (pq +20q)| confidence 0<QI<1 1<QI<?2 2<QI<3 3<QI<4 Ql>4
interval
Mine water " - 1
inflow (m?/h) S Of;‘rig‘lizgrelab € |Q-Qs|/Qs 0<QI(n) <05 05<QI(n) <1 1<QI(n) <2 2<QI(n) <3 3<QI(n)<4 QI(n)>4
Long-time variable [e=enlen 0<QI(n)<05  05<QI(n) <1 1<QI(n) <2 2<QI(n) <3 3<QlI(n) <4 QI(n) >4
amplitude
Within the
Statistical |Z — (py +20,)] confidence 0<ZI<1 1<Z1<2 2<ZI<5 5<ZI1<10 Z1>10
interval
Water level (m) Short-time variable — < < < < <
value {Z7Zs| 0<ZI<05 05<ZI<1 1<ZI<2 2<ZI<5 5<ZI<10 ZI>10
Long-time variable |Z -2y 0<Z1<05 05<ZI<1 1<Z1<2 2<7I<5 5<71<10 Z1>10

value
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3. Hydrogeological and Geological Engineering Conditions
3.1. The Yanghuopan Coal Mine

The Yanghuopan coal mine is located in Shenmu City, Yulin City, Shaanxi Province,
in the northern part of the loess plateau (Figure 5). The geomorphic unit belongs to the
loess hilly and gully region. The research area’s topography has an elevation range of
1100-1250 m and a relative height difference of 150 m, with a tendency to be higher in the
northeast and lower in the southwest. Figure 1 shows the study field, which covers an area
of approximately 378,390 m?.

(b) N

Study area

.

Shaanxi is::e
%

Figure 5. Location of the study area and field photo. (a) Shaanxi province. (b) Study area.
(c) field photo.

Two monitoring boreholes were set up at the study panel. The boreholes contained
electrodes and optical fibers. An 80 m long optical fiber and 48 electrodes spaced 2.2 m
each apart were installed in monitoring borehole No. 1. The optical fiber measured 95 m
in length in monitoring borehole No. 2, and 54 electrodes were spaced 1.8 m apart. From
26 February 2022 to 7 April 2022, there was a 51-day field monitoring period. A total of
115 sets of stress—strain data and 37 sets of apparent resistivity data were gathered.

3.2. Lithology and Hydrogeology

The strata in the study area consist of the Quaternary, Neogene, Jurassic, and Triassic,
respectively. Among them, the coal-bearing stratum is the Jurassic Yan’an Formation. The
thickness of overburden of seam No. 3 ranges from 16.51 to 91.26 m. Furthermore, the
thickness of Jurassic coal seam No. 3 is 1.94 m, with a dip angle between 0° and 2°. Figure 6
shows the stratigraphy of monitoring boreholes, and Figure 7 shows the geological profile
of the panel.

Roof sandstone fissure water is the primary water source in the research region, with a
worn bedrock thickness of 11.05 m, a water input of 0.014 L/s, salinity of 0.616 g/L, annual
average precipitation of 434.4 mm (1957-2015), and yearly precipitation of 108.6 mm in the
dry season (1965). The yearly precipitation in the dry season is 108.6 mm (1965), while it is
819.0 mm in the rainy season (1967). The yearly precipitation distribution is quite unequal,
with rainstorms accounting for approximately 68 percent of the annual precipitation, and
the precipitation differs dramatically between years.

Groundwater in roof sandstone, burnt rocks, and goaf are commonly encountered in
the Ordos and surrounding coal mining areas. The local area of panel 30302 is covered with
water-rich rock strata and the water-accumulated goaf of seam No. 2. Water inrush is a
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problem that jeopardizes the safety production of the mine. Based on the means of existing
monitoring in the study area, combined with optical fiber, the parallel network electrical
method, etc., are synthetically executed to realize the early warning of water inrush.

Average | Total Average Total
System |Formation |Column| thickness| thickness Lithology Sy Formation|Column| thi i Lithology
(m) (m) (m) (m)
Quaternary | Lishi X 3.05
3.05 Loess Quaternary|  Lishi 10.50 | 10.50 Loess
Neogene | Baode 4.95 8.00 Clay
Neogene Baode 12.50 23.00 Clay
9.10 17.10 Mudstone
4.50 21.60 Muddy siltstone 9.20 32.20 Mudstone
Medium-grained
4. 26.20
60 sandstone 440 | 3660 Muddy siltstone
2.00 28.20 Coal seam No. 2 Medium-grained
444 41.04 sandstone
Jurassic | Yan'an 792 | 3612 Siltstone 201 | 43.05 Coal seam No. 2
3.70 39.82 Fine-grained sandstone 7.82 50.87 Siltstone
Jurassic | Yan'an 3.60 54.47 |Fine-grained sandstone
Medium-grained Medium-grai
19.45 59.27 edium-grained
sandstone 19.55 | 74.02 sandstone
2.71 61.98 Siltstone
278 Coal seam No. 3 2.69 76.71 Siltstone
. 64.76 : 2.86 79.57 Coal seam No. 3
15.24 | 80.00 Siltstone 15.43 95.00 Siltstone

(a)

Figure 6. Stratigraphy in the Yanghuopan coal mine (a) Borehole No. 1. (b) Borehole No. 2.
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Figure 7. Geological profile of panel 30302 in the Yanghuopan coal mine.

4. Results

The numerical simulation discrete element method (DEM) is a numerical analysis
method first put forward by PA Cundall and applied to the stability analysis for rock
and soil masses. The three-dimensional distinct element program adopts the discrete



Water 2023, 15, 3910 12 of 23

element method from discontinuous mechanics theory to solve discontinuous problems in
geotechnical engineering.

The length, width, and height of the model are 400 m, 600 m, and 150 m, respectively
(Figure 8). The damage in the material is simulated by the Mohr-Coulomb criterion, and
the mined area is simulated by the excavate element. The model includes 232 block units
and 308,195 zone units.

Block Group

Quaternary loess

Neogene clay

Jurassic mudstone

Jurassic Mid-fine grained sandstone
Jurassic Coal seam No. 2

Jurassic Mid grained sandstone
Jurassic Coal seam No. 3

Jurassic Siltstone

],

Figure 8. Model of the study area 4.1 identification of water-conducting fractured zone.

Figure 9a shows the plastic diagram of the mined panel 30302, where the caving
production ratio of panel 30302 is 5 times (10 m), and the ratio of the height of the water-
conducting fractured zone to the mining height is 25 times (50 m) without the mining
of panel 20202. Affected by mining, obvious cracks developed in the loose layer of the
Quaternary system on the surface. Figure 9b shows the plastic diagram of mined panels
30302 after panel 20202 was mined; the overlying strata were affected by multiple mining
disturbances, resulting in a higher water-conducting fractured zone.

Block State
None
shear-n shear-p
shear-n shear-p tension-p
shear-p
shear-p tension-p
tension-n
tension-n shear-p tension-p
tension-n tension-p
tension-p

(@)

Block State
None
shear-n shear-p
shear-n shear-p tension-p
shear-p
shear-p tension-p
tension-n shear-p tension-p
tension-n tension-p
tension-p

Joint Plane Uniform

Scale (1,0,1)

None

(b)

Figure 9. Simulation of mining in panel 30302. (a) Without mining panel 20202. (b) After mining
panel 20202.
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On-Site Monitoring

Figure 10 shows optical fiber monitoring data. It was obvious that the maximum
microstrain increased when panel 30302 was excavated. Furthermore, when the mining
point in panel 30302 approached the monitoring of boreholes, the microstrain increased
dramatically (Figure 10a-Trail No. 11 and Figure 10b-Trial No. 5). Moreover, due to the
growth of the water-conducting fractured zone, the fiber was damaged when the mining
position went through the monitoring borehole. (Figure 10b-Trail No. 8).

(a)
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1000 N

Microstrain (pg)
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A/ 4
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Figure 10. Optical fiber monitoring of panel 30302. (a) Monitoring borehole No. 2. (b) Monitoring
borehole No. 1.
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Figure 11a shows that the depth of the first peak from the bottom to the top of optical-
fiber monitoring is 91 m, 11 m away from the roof of panel 30302; therefore, it can be judged
that the caving zone of panel 30302 at monitoring borehole No. 2 is 11 m. The maximum
tensile strain is located at a depth of 50 m, 52 m away from the roof of panel 30302, which
is considered the boundary of the water-flowing fractured zone of panel 30302. In addition,
the depth of 22 m is the boundary of the superimposed water-flowing fractured zone of
panels 20202 and 30302. Similarly, the height of the caving zone at monitoring borehole
No. 1is 14 m. The depth of the boundary of the water-conducting fractured zone in
monitoring borehole No. 1 is 51 m. The depth of 20 m is the boundary of the superimposed
water-flowing fractured zone of panels 20202 and 30302 at monitoring borehole No. 1
(Figure 11b).
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-800 0 800° 1600 2400 3200 -1500 0 1500 3000 4500 6000
I T T T T 1 I I I T T 1
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- 20 | Superimposed water-conducting fractured zone
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Figure 11. Analysis of optical fiber monitoring data. (a) Borehole No. 2. (b) Borehole No. 1.
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The optical fiber data of monitoring boreholes No. 1 and No. 2 suggest that the height
of the caving zone in panel 30302 is 11-14 m, the height of the water-flowing fractured zone
is 51-52 m, and the superimposed water-flowing fractured zone is 70-80 m.

The MAD at 36 m of monitoring borehole No. 1 (Table 5) is 1559, while it is 887 at
56 m of monitoring borehole No. 2 (Table 6). Monitoring boreholes No. 1 and No. 2 had
maximum values of 6367 (4.1 MAD) and 4159 (4.7 MAD), respectively, both of which are
less than 5 MAD.

Table 5. Partial monitoring data of borehole No. 1.

Trail No.

Depth (m) 1 2 3 4 5 6 7 8
35.7 —1018 —1016 —1016 —644 —322 —301 7 77
35.8 —1024 —1027 —1035 —634 —310 —273 34 110
35.9 —1022 —1045 —1040 —628 —308 —257 56 130

36 —1046 —1057 —1046 —616 —297 —245 82 139
36.1 —1034 —1047 —1026 —610 —271 —233 95 162
36.2 —1043 —1035 —1039 —596 —267 —233 91 174
36.3 —1042 —1041 —1022 —583 —271 —204 120 193

9 10 11 12 13 14 15 16
35.7 555 689 1427 1457 2962 3295 5494 6168
35.8 592 725 1463 1469 2986 3339 5511 6195
359 627 744 1501 1486 3017 3344 5540 6208

36 628 764 1502 1525 3031 3379 5566 6248
36.1 640 785 1528 1541 3055 3390 5601 6290
36.2 667 793 1549 1563 3104 3418 5634 6323
36.3 659 824 1575 1586 3117 3451 5690 6367

Table 6. Partial monitoring data of borehole No. 2.
Trail No.

Depth (m) 1 2 3 4 5 6 7 8
49.7 —1050 —1156 —1086 —1136 —1103 —843 —810 —625
49.8 —1077 —1159 —1086 —1127 —1093 —825 —797 —625
49.9 —1068 —1172 —1098 —1128 —1100 —833 —782 —630

50 —1099 —1183 —1094 —1136 —1087 —835 —783 —615
50.1 —1100 —1151 —1090 —1100 —1086 —837 —793 —640
50.2 —1065 —1177 —1085 —1107 —1091 —811 —771 —620
50.3 —1084 —1159 —1083 —1100 —1086 —829 —786 —637

9 10 11 12 13 14 15
49.7 —422 947 1187 4376 4563 4256 4175
49.8 —464 954 1202 4409 4614 4225 4150
49.9 —438 986 1218 4461 4637 4195 4116

50 —483 977 1219 4494 4674 4170 4105
50.1 —434 1008 1261 4533 4718 4128 4151
50.2 —428 1035 1286 4561 4735 4121 4111
50.3 —408 1047 1297 4592 4763 4106 4159

According to the monitoring results of the parallel network electrical method
(Figure 12), there was no geophysical anomaly in the monitoring area, and the height
of the water-flowing fractured zone during mining was within the normal range. As a
result, there was no danger of water inrush.
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Figure 12. Profile of apparent resistivity in monitoring borehole No. 1.

5. Discussion
5.1. Re-Verification of Modelling

Panel 1304 of the Zhaoxian coal mine in Shaanxi Province was chosen to test the
applicability of the early warning-model because there was no water inrush during the
study period at the Yanghuopan coal mine [41]. Its stratum was comparable to that of the
study area, and the mined coal seam was also Jurassic coal seam No. 3. G3's observation
well was 424 m away from the panel’s water inrush position, while G4’s was 1116 m. Water
inrush began at 11 a.m. on 28 March 2020, with a water inflow of 3 m®/h. The water
inflow reached 40 m3/h at 2 p.m. on the 29th, with a maximum of 280 m?/h. Figure 13
shows water level monitoring data from G3 and G4 observation wells. The two water
level observation wells” water levels started to decline quickly after 22 March, as seen in
Figure 13.

—— —— Y
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T 1235 | 0
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- |
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Date

Figure 13. Water level in observation wells of G3 and G4.

Table 7 displays the analysis results of a real-time early-warning model in a single
indicator with short-time mode. Only the indicators for monitoring water levels were
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gathered on-site; it was evident that if a single-factor early-warning system was used, a
series of anomalous signals would be sent, such as from 9 March to 17 March, but many
factors also showed that there was no concern. Even if there was only a water level
monitoring indication, the multi-indicator monitoring system provided a white warning
on 24 March and a blue alert on 25 March until the water inrush on 28 March.

Table 7. Monitoring data and warning grade of G3 and G4.

Date(y/m/d) Water Level )ZfZ_ Single Water Level ‘ZfZ_ Single Multiple
of G3 S Indicator of G4 s Indicator Indicators
2020/3/8 1248.61 0.30 Riskless 1243.78 0.41 Riskless Riskless
2020/3/9 1248.52 0.33 Riskless 1243.62 0.52 Abnormal Riskless
2020/3/10 1248.42 0.35 Riskless 1243.23 0.81 Abnormal Riskless
2020/3/11 1248.41 0.28 Riskless 1243.2 0.71 Abnormal Riskless
2020/3/12 1248.33 0.29 Riskless 1243.12 0.69 Abnormal Riskless
2020/3/13 1248.14 0.41 Riskless 1242.81 0.81 Abnormal Riskless
2020/3/14 1248.04 0.41 Riskless 1242.51 0.91 Abnormal Riskless
2020/3/15 1247.95 0.40 Riskless 1242.29 0.89 Abnormal Riskless
2020/3/16 1247.85 0.41 Riskless 1241.99 0.98 Abnormal Riskless
2020/3/17 1247.81 0.35 Riskless 1241.86 0.88 Abnormal Riskless
2020/3/18 1247.76 0.32 Riskless 1242.27 0.27 Riskless Riskless
2020/3/19 1247.66 0.32 Riskless 1242.27 0.14 Riskless Riskless
2020/3/20 1247.57 0.32 Riskless 1242.33 0.04 Riskless Riskless
2020/3/21 1247.48 0.33 Riskless 124251 0.29 Riskless Riskless
2020/3/22 1247.38 0.35 Riskless 1242.4 0.18 Riskless Riskless
2020/3/23 1246.91 0.73 Abnormal 1242.27 0.04 Riskless Riskless
2020/3/24 1242.96 4.55 Medium-risk 1241.05 1.22 Low-risk White
2020/3/25 1239.57 7.25 High-risk 1232.67 9.49 High-risk Blue
2020/3/26 1238.16 7.49 High-risk 1226.72 14.07 Extremely Blue
’ ’ ’ ’ high-risk
2020/3/27 1237.4 6.89 High-risk 122321 15.35 ]i’ftrem.ely Blue
igh-risk
2020/3/28 1236.37 6.47 High-risk 1220.68 15.15 ]i’ftrem.ely Blue
igh-risk
2020/3/29 1234.11 7.14 High-risk 1218.52 14.19 Eh’i;’ri‘liz’ Blue
2020/3/30 1234.2 5.15 High-risk 1217.12 12.18 ]i’ftrem.ely Blue
igh-risk
2020/3/31 1233.61 3.93 Medium-risk 1215.92 9.79 High-risk Blue
2020/4/1 1233.42 2.78 Medium-risk 1215.28 6.84 High-risk Blue

Then, a stochastic oscillator was used to analyze the monitoring data of the water
level. Before applying this method, the set value of the calculation period was first defined
in order to calculate the raw stochastic value (RSV). Because this was the first time the
Stochastic oscillator was applied to mining water hazard analysis, determining the right
value was impossible; thus, it is evaluated in 3, 5, 7, 10, 15, and 20 days (Figures 14 and 15).
When the three lines connected, it usually implied that the present water level trend was
about to change. When the value of the ] line broke through 100, it meant that the water level
would suddenly drop, indicating a high possibility of water inrush. By comparing different
periods, the indicator was more sensitive to water level data when the computation period
was less than 7 days, such as 3 or 5 days (Figure 15a, b), even resulting in unnecessary false
alarms. When the period exceeds 10 days, such as 15 or 20 days, the indicator becomes
insensitive to the data and could even overlook the early-warning signal. Furthermore, a
7-day period was best suited to the conditions of the study region.
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Figure 14. Stochastic oscillator of water level in observation well G3 in the following periods:
(a) 3 days, (b) 5 days, (c) 7 days, (d) 10 days, (e) 15 days, and (f) 20 days.
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Figure 15. Stochastic oscillator of water level in observation well G4 in the following periods:
(a) 3 days, (b) 5 days, (c) 7 days, (d) 10 days, (e) 15 days, and (f) 20.

As shown in Figure 13, the water levels in the two observation wells plummeted after
water inrush, but when combined with Figures 14 and 15, it was clear that, while the water
source at the position of observation well G3 had always shown a downward trend, the
water source at the position of observation well G4 was more closely related to the mining
water inrush, which can provide an effective early warning through the Stochastic oscillator
for this disassembly of the mining water.

We can deduce that panel 1304 experienced bed separation during mining on about
16th March. The water near the water inrush point (G3) began gathering in the bed
separation, affecting the water source near the observation well G4. During this time, the
single-factor early-warning system already sent an “Abnormal’ alert due to an abnormal
decline in the water level in observation well G3. A certain amount of water was gathered
in the bed separation on 24 March. When the J-line dropped and the three lines connected
(Figure 15c¢), the water contained at that time progressively reached the bearing limit of bed
separation. In conjunction with the current water level variations in two monitoring wells,
our multi-factor early warning-system also issued a ‘White’ early warning at this time and
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gradually increased the early-warning level. It can be inferred from (Table 7) that there was
a substantial probability that mine water inrush could occur.

After the accident investigation, it was confirmed that the water inrush was indeed
a water disaster in the bed separation. Using this early-warning model, early-warning
information could be received three days before the occurrence of this water disaster
accident, reducing water disaster losses and even checking the hidden threats of the
accident in advance to avoid disasters.

5.2. Monitoring Indicators

The damage range and degree of overlying strata in the panel directly determine
the safety of coal mining. It is a necessary condition for mine water inrush whether the
water-conducting fractured zone can conduct the overlying aquifer. The method of parallel
network electricity and Brilliouin optical time domain reflectometer is adopted to identify
water-conducting fracture zones in real-time. The degree of hazard and risk posed by an
inrush is usually proportional to the amount of water, the water pressure, and the pumping
capacity of the mine [44]. The rock mass temperature near the water passage and the water
temperature of the coal seam fissure water are abnormal when the water from the coal seam
roof enters the water-resisting layer through the fissure, so the temperature clearly changes
in the early stage of water inrush. By monitoring the water temperature of the overlying
aquifer, the possibility of water inrush can be predicted. In addition, mine hydrochemistry
can also warn of a water inrush. Especially in the process of coal mining under the thin
bedrock and thick loose layer, the water quality in the loose layer is different from that in
the coal aquifer. As a result, monitoring mine water quality can provide a foundation for
determining water inrush. The early-warning model adopts optical fiber, the electricity
method, water temperature, and water level as early-warning monitoring factors. Then, it
can be decided whether to add a hydrochemical indicator according to the application of
the model.

During this model’s development, we believed that the multi-indicator early-warning
model was not an upgrade over a single-factor early-warning model but rather a perfection
of the single-factor early-warning model. A single-factor warning only selects a single
factor for monitoring, although it has been subdivided into short-time and long-time modes.
It is not coupled with other factors for monitoring, compared with multi-indicators, which
leads to its weak anti-interference performance, while multiple monitoring indicators are
comprehensively considered in the multi-indicator early-warning model. The mutual
verification of many parameters can lessen the alert triggered by the unintended fluctuation
of a single factor in the early-warning model and increase its accuracy.

Additionally, the forecast grade should be the average value or the value that is more
closely connected if the same factor comprises several monitoring data, such as multiple
monitoring boreholes in the monitoring site.

5.3. Development of Early-Warning Platform

The objectives of the water inrush warning platform are as follows: master the real-
time monitoring information of each monitoring index, such as microstrain, apparent
resistivity, water level, water quantity, and water temperature; generate various hydrologi-
cal monitoring data reports and automatically calculate short-term and long-term averages;
evaluate the current risk level by comparing the real-time monitoring values with the
threshold parameters; finally, according to the warning level, a real-time response can be
made to give an alarm to guide people to avoid risks.

The initial development of the early-warning platform is divided into four parts
(Figure 16), namely the graphical user interface (GUI) design, data input, analysis, and
output. GUI, as a graphical user interface for computer operation, is a dialogue interface
between the computer and its users. In data acquisition, the platform should be able
to identify and remove data with accidental errors. Then, the platform can display the
monitoring curve, calculate the threshold in real-time, and obtain the current state of the
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panel. The final quantitative output of the early-warning model is the risk value (RK),
obtained according to the abnormal situation of the monitoring values of each index.

Graphical User Interface
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Figure 16. Framework of the early-warning platform.

The platform was initially created utilizing the Python programming language and
the early-warning model creation method. To actualize the platform’s functionality, the
platform’s code incorporates third-party Python libraries such as Matlotlib, numPy, time,
xlrd, csv, and so on. At the moment, the platform can analyze data based on its countdown
data and make recommendations on water inrush risk. Figure 17 depicts the interface
platform as well as some source codes.
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Figure 17. “‘Warning Mine’ program.

5.4. Limitations and Further Study

Because of the relentless and continual changes in the ground and subsurface con-
ditions caused by mining, the occurrence of water inrushes is a dynamic process. Water
inrushes are difficult to predict with 100 percent confidence in terms of timing and ex-
tent [39]. There is a paucity of data to adequately identify the threshold due to the short
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monitoring and tracking times in the study area. Obtaining adequate data after applying
the model can make the early-warning model’s threshold more acceptable for the mining
location. The thresholds and boundary values of the above models are only based on exist-
ing data at present and still need to be improved by collecting and supplementing relevant
monitoring data to improve the accuracy and effectiveness of the early-warning model.
The monitored indicators are constrained by the available monitoring conditions in the
mining region. Based on their mining characteristics and the established model framework,
the other mining locations can select relevant monitoring indicators. Furthermore, we aim
to also keep improving the platform and enriching its features.

Along with the early-warning model, we also tested the stochastic oscillator’s capacity
for early warning in mine water disasters. The stochastic oscillator, a statistical technique
used in the financial sector, shows its applicability in early warning of mine water inrush.
However, in order to be more suitable for early warning of mine water inrush, to achieve
more precise, sensitive, and objective early warning, and to escort mine production safety,
it must be further improved in accordance with the characteristics of coal mine disasters.
This will be the focus of future research.

6. Conclusions

The main conclusions and findings are summarized as follows:

(1) An early-warning model of water inrush is established, which is dominated by the dis-
tance between the mining position and the monitoring borehole. The model mainly in-
cludes three parts as follows: the development and identification of a water-conducting
fracture zone, the early warning of multi-indicators, and a stochastic oscillator.

(2) Inthe dependence of sensitivity analysis, the monitoring indicators are obtained, and
the warning modes are determined. The indicators of water level, temperature, and
apparent resistivity adopt variable value mode, and water inflow adopts a variable
amplitude mode.

(3) The model was applied in the Yushen mining areas” panel 30302 of the Yanghuopan
coal mine and panel 1304 of the Zhaoxian coal mine. The results show that the model
can provide a reference for the early warning of water inrush, especially for the water
disaster in bed separation.
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