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Abstract: The potential of water supply systems for renewable electrical energy production is
frequently utilised by a small-scale hydropower unit (SHPU) that utilises the surplus water or
pressure. However, fluctuating demand on an hourly and daily basis represents a significant challenge
in operating such devices. To address this issue, a control strategy based on demand forecast is
implemented, adjusting the SHPU’s inflow based on current demand conditions. Thus, individual
days are categorised into control categories with similar flow conditions, and control is optimised
for each category using a simplified evolutionary optimisation technique. Coupled with demand
forecasts, the SHPU controller evaluates on a daily basis which set of water levels to utilise for the
next day to optimise energy production. This approach is implemented in an alpine municipality,
and its economic feasibility is evaluated through a long-term simulation over 10 years. This approach
resulted in an annual profit increase compared to the reference status based on well-informed
expert knowledge. However, it is worth noting that the approach has limited suitability for further
improvements within the case study. Nonetheless, SHPUs also contribute to improving water quality
and, if the electrical energy generated is directly used to operate the water supply, enhance resilience
to grid failures.

Keywords: control; optimisation; renewable electrical energy; water distribution network; water–energy
nexus; water surplus

1. Introduction

The sustainable development and operation of water supply systems require the
involvement of the water–energy nexus, as these complex systems exhibit high interdepen-
dence [1–3]. For instance, energy is required for the abstraction, treatment, and distribution
of drinking water in water supply systems, contributing to 3% of the total electricity
consumption and 1% of greenhouse gas emissions [2,4].

In this context, the potential of water distribution networks as a source of renew-
able electrical energy is increasingly recognised [5,6]. A decentralised and small-scale
hydropower unit (SHPU) is installed to utilise the surplus pressure and/or inflow between
elevation tanks and lower-lying supply areas for electricity generation. Consequently,
SHPUs provide a viable alternative to pressure reduction valves for energy dissipation [7].
These units can be implemented using traditional machines, such as Francis, Pelton, or
crossflow turbines, or adapted machines, such as pumps, as turbines or tubular propellers
designed specifically for water supply purposes [8]. Global assessments of the potential
and economic feasibility of SHPUs have been conducted worldwide, including Austria [9],
Brazil [10], Italy [11,12], Iran [13–15], Israel [16], Portugal [17,18], South Africa [19], and
Switzerland [20]. As the literature shows, the generated electrical energy is, thereby,
strongly influenced by the location of the SHPU [9,21–23], and therefore, the spatial posi-
tioning of these devices represents an important criterion for installation.

Water 2023, 15, 3998. https://doi.org/10.3390/w15223998 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w15223998
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0003-3968-4684
https://orcid.org/0000-0003-1093-6040
https://doi.org/10.3390/w15223998
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w15223998?type=check_update&version=1


Water 2023, 15, 3998 2 of 14

However, a significant challenge in operating such devices arises from a highly variable
environment characterised by daily and hourly fluctuations in water demand and absolute
prioritisation of demand coverage. Consequently, the availability of water and pressure
surpluses changes rapidly. One potential solution proposed by Monteiro, Delgado, and
Covas [18] and Brady, et al. [24] is the implementation of two or more SHPUs in parallel to
maximise electrical energy production during periods of high variability in water flow and
pressure. Additionally, to structural measures, the real-time control of SHPUs represents
another innovative approach to address these fluctuations by considering current system
states [25–28].

To tackle this challenge, Sitzenfrei and von Leon [29] introduced a simple control
strategy based on the filling depth of storage tanks to increase electrical energy produc-
tion. Three operating levels, corresponding to specific depths in the tank, were defined,
and their heights were determined based on expert knowledge. In a subsequent study,
Sitzenfrei, et al. [30] investigated the effectiveness of different parameter sets for these oper-
ating levels by optimising them with an evolutionary algorithm and long-term simulation
of the water supply system. However, optimising the three operating levels showed min-
imal improvement due to the highly volatile input involved in optimising 365 different
daily consumption cycles.

The above-described real-time control strategies are based on current system condi-
tions; to the best of the authors’ knowledge, the potential of demand forecasts to optimise
the electrical energy production of SHPUs has not been investigated in detail so far. There-
fore, this study proposes that water consumption correlates with various external parame-
ters (e.g., the day of the week), enabling prediction of the next day’s water consumption. By
optimising the SHPU control for a smaller input set, e.g., only the highest and lowest water
demand days of the year, it is assumed that more suitable water levels can be obtained,
leading to increased electrical energy production. With the aid of a daily forecast, the SHPU
controller can then reassess and determine the optimal water levels for the following day
to maximise electrical energy production.

2. Materials and Methods

The control strategy developed by Sitzenfrei and von Leon [29] is designed to op-
timise the operation of a small-scale hydropower unit (SHPU) in a water distribution
network characterised by a highly variable environment (e.g., daily fluctuations in water
consumption, flow, and pressure conditions). This strategy is to maximise the utilisation of
surplus water for electrical energy production while ensuring a consistent water supply.
The controller is implemented as a rule-based controller by adjusting the nozzle area of a
Pelton turbine based on the current water level in the storage tank.

Figure 1 provides an overview of the developed control strategy. There are three
defined water levels in the storage tank (H1, H2, and H3), which serve as operating levels
for control actions:

• Maximum flow operation: When the storage tank is approximately full and the water
level is above H2, the SHPU operates at maximum flow.

• Normal flow operation: When the water level is between H1 and H2, the turbine
operates with the current settings.

• Flow reduction: If the water level falls between H1 and H3, the control strategy
involves gradually reducing the turbine’s flow rate by 1/8 of the maximum flow rate.
This reduction in flow rate aims to restore the water level in the subsequent simulation
time step. However, if the water level in the storage tank continues to decrease despite
the flow rate reduction, the turbine’s flow rate is further reduced.

• SHPU shutdown: If the water level falls below H3, the control strategy involves
completely shutting off the turbine to ensure an adequate water supply is reserved for
firefighting.

• Resuming maximum flow operation: Once the water level rises above H2 again, the
control strategy sets the turbine back to maximum flow.
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Figure 1. Overview of the control strategy reused from [29] and [30] with permission from Elsevier,
whereby the demand and spring forecasting as an extension of this work is highlighted in colour.

As mentioned in the introduction, the objective of this work is to further enhance the
operation and increase the amount of energy generated by incorporating forecasts for the
next day into the control strategy. To achieve this, the aforementioned control strategies
are extended with an additional control rule (highlighted in colour in Figure 1), which is
executed at 11 pm for the following day. Forecasts are made for water availability and
total water demand, and based on these predictions, the control category for the next day
is selected. Subsequently, the operating levels H1, H2, and H3 are determined through
a previously optimised process for each control category. A detailed explanation of this
procedure is provided in the following subchapter.

2.1. Optimisation of the Control Strategy
2.1.1. Control Categories

The objective of the control categories is to classify the input data (e.g., water avail-
ability and demand) into groups, where the values within each category exhibit similar
flow conditions. These control categories aim to provide optimal input sets for prediction
and the enhancement of electrical energy production. Therefore, statistical evaluations of
water availability and demand are carried out, and based on that, these data are categorised
into different control categories. In this work, one and six control categories are chosen
for comparison (for more information on the control categories, refer to the corresponding
subchapter in the results section).

2.1.2. Optimisation of Operating Levels

After defining the control categories, the operating levels H1, H2, and H3 are optimised
for each category. The aim of this process is to maximise electrical energy production by
determining the optimal operating levels using a simplified evolutionary optimisation
technique, where the next generation is created with a Monte Carlo sampling technique [31]
within the best solutions of the previous generation. Thereby, the best solutions are selected
based on the electrical energy generation, and the operation levels H1, H2, and H3 are
determined. In the next step, the operation levels for the offspring are randomly selected
between these values, meaning that all H1 of the new generation are between H1,min and
H1,max of the previous generation. The simplified evolutionary optimisation technique
is developed and described in more detail in Sitzenfrei and Rauch [32], whereas in the
following, the process is briefly explained.

In the first step, value ranges are established for each operating level based on the
physical limits imposed by the storage tank’s geometry. Dependencies among the operating
levels, such as the requirement for H2 to be greater than H1 and H1 to be greater than H3,
are defined, and random values are assigned to them. Specifically, H1 is selected randomly
within the range of 1.5 m and 3.5 m using a uniform distribution. Next, H2 is chosen



Water 2023, 15, 3998 4 of 14

randomly between H1 and the maximum water level of the storage tank. H3 is selected
randomly between the minimum water level in the storage tank and 2.5 m using a uniform
distribution. If H3 is larger than H1, H3 is set to H1 minus 0.1 m.

In the second step, 100 different sets of operating level triples are generated, conducting
a long-term simulation for each set to calculate the electrical energy produced. For the
long-term simulation, the same numerical model of the case study (for more information,
refer to Section 2.3.2) is applied. The simulation period corresponds to the number of days
within the corresponding control category. This assumption neglects certain dynamics of
inflow and demands over a longer period. However, inflows and demands are, in general,
quite similar over the longer term (for more information, refer to Section 2.3.1), and changes
in other control categories occur less frequently than days with similar values.

Subsequently, the top 10% of triples with the highest energy production are further
evaluated based on their operating levels. In the second generation, 100 new random
triples are generated, but the values of H1, H2, and H3 are restricted to fall within the range
of the previous best 10%. If any random selection violates the defined dependencies, the
values are adjusted to be 0.01 m below or above the neighbouring level. This process is
repeated for each subsequent generation, resulting in the convergence of the operating
levels towards their respective optima for maximum electrical energy production.

Due to the rapid convergence of the applied method [32], the maximum number
of generations is set to 10. Furthermore, two stopping criteria are defined to reduce the
optimisation process runtime in the case of minor changes. The optimisation process stops
when either the differences in electrical energy production among the 100 different triples
are less than 100 kWh or the differences between each operating level are less than 0.1 m.
Additionally, it is evaluated that the availability of sufficient water and hydraulic heads
meet the required water demand within the network throughout the entire investigation
period. The water pressure is assessed at three control nodes, and if the hydraulic head falls
below a specified threshold, the corresponding triple is removed from further consideration.

2.1.3. Forecasting of Control Categories

After optimising the individual control categories, the optimal operating levels for
operating the SHPU for the next day are determined for each category. At 11 p.m., the future
spring discharge and total water demand for the case study scheduled for the following day
are forecasted. The day is subsequently categorised into one of the six control categories.
The optimal operating levels for this specific category are then retrieved and integrated
into the turbine’s control. The following forecasting approaches are investigated:

• Perfect forecast: Assumes a perfect forecast where the predicted control categories
match the actual conditions with 100% accuracy, representing the maximum potential
of the forecast.

• Tomorrow like today: Assumes that the spring discharge and total water demand will
be the same as the current day.

• Tomorrow like last week: Assumes that the spring discharge and total water demand
will be the same as the corresponding weekday last week.

• False forecast: Examines the effect of an incorrect forecast as the worst-case perfor-
mance scenario. The correct control category is disregarded, and the control category
for the next day is randomly selected from the remaining categories.

2.2. Profitability Analysis

For comparison, the yearly profit is determined by subtracting operational and capital
costs from the benefit. Therefore, the calculation of Sitzenfrei and von Leon [29] is adopted,
which can be summarised as follows.

In the first step, the yearly benefit B (€/a) is determined with Equations (1) and (2):

EP =
1

1000
∗

tsim

∑
t=0

∗ ηG ∗ ηT,t ∗ Qt ∗ Ht ∗ ρ ∗ g ∗ t (1)
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B =
ET ∗ p

tsim
(2)

in which EP is the energy production (kWh), ηG is the efficiency of the generator and other
plant components (-), ηT,t is the efficiency of the Pelton turbine (-), Qt is the flow (m3/s),
HT is the hydraulic head (m) at the installation place of the Pelton turbine, ρ is the density
of water (kg/m3), g is the earth acceleration (m/s2), t is the simulation time step (h), tsim is
the total simulation period (a), and p is the energy tariff (€/kWh).

The total investment costs I (€) are calculated as follows:

I = IPelton ∗ DP + IAddtional (3)

in which IPelton is the investment costs for the SHPU (€/kW), DP is the design performance,
and IAdditional is the additional costs for installation. Based on the investment costs, the oper-
ational costs OC (€/a) and capital costs CC (€/a) are estimated with Equations (4) and (5):

OP = 0.03 ∗ I (4)

CC = AF ∗ I (5)

in which AF is the annuity factor (-). Finally, the profit per year is determined with the
following equation:

Pro f it = B − OP − CC (6)

2.3. Case Study

The case study is a water distribution network of an alpine municipality in Austria
supplying 2.500 inhabitants. The network includes a storage tank with a capacity of
1.440 m3 to balance daily water fluctuations and to provide the necessary demand for
firefighting. The storage tank is filled by a hillside spring, and it is positioned approximately
30 to 90 m above the supply area (Figure 2). The water distribution network is fully gravity
driven, ensuring sufficient hydraulic pressures even during peak flow periods. For security
reasons, the real layout is not depicted here in Euclidean space; instead, a distorting function
from NetworkX [33] is utilised for illustration.

Water 2023, 15, x FOR PEER REVIEW 6 of 15 
 

 

 
Figure 2. The hydraulic model showing the pressure at maximum flow according to [20]. The posi-
tion of the hydropower station and the control points are highlighted with red and orange circles. 

2.3.1. Water Surplus 
For the case study, the data on inflow and outflow of the storage tank are available 

at a daily resolution over a 10-year period from 2003 to 2012. These data correspond to 
both the spring discharge and the total water demand of the case study, respectively. As 
shown in Figure 3a, the spring exhibits significant fluctuations with higher levels observed 
during the spring and summer months and lower levels in winter. On average, the spring 
discharge is 1.180 m3/day. Similarly, total water demand experiences seasonal variations 
throughout the year with peak demand occurring during the summer due to irrigation. 
The average daily total water demand is approximately 704 m3/day. The difference be-
tween the spring discharge and total water demand, which is represented by the grey area 
in Figure 3a, results in a water surplus. The water surplus has an average value of 476 
m3/day. For more information, Figure 3b provides the cumulative distribution function of 
the water surplus over the investigation period. Currently, the water surplus is discharged 
into a nearby receiving water in close proximity to the tank. However, there is the poten-
tial to utilise the water surplus for the implementation of an SHPU and discharge it further 
downstream to the receiving water, thereby utilising the additional height difference for 
energy production. 
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2.3.1. Water Surplus

For the case study, the data on inflow and outflow of the storage tank are available
at a daily resolution over a 10-year period from 2003 to 2012. These data correspond to
both the spring discharge and the total water demand of the case study, respectively. As
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shown in Figure 3a, the spring exhibits significant fluctuations with higher levels observed
during the spring and summer months and lower levels in winter. On average, the spring
discharge is 1.180 m3/day. Similarly, total water demand experiences seasonal variations
throughout the year with peak demand occurring during the summer due to irrigation. The
average daily total water demand is approximately 704 m3/day. The difference between
the spring discharge and total water demand, which is represented by the grey area in
Figure 3a, results in a water surplus. The water surplus has an average value of 476 m3/day.
For more information, Figure 3b provides the cumulative distribution function of the water
surplus over the investigation period. Currently, the water surplus is discharged into a
nearby receiving water in close proximity to the tank. However, there is the potential
to utilise the water surplus for the implementation of an SHPU and discharge it further
downstream to the receiving water, thereby utilising the additional height difference for
energy production.
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2.3.2. Numerical Model

The analysis employs a calibrated numerical model described in [29], consisting of
243 nodes and 269 pipes, and is implemented in EPANET 2.2 [34]. The Python EPANET
toolkit provided by Open Water Analytics (https://github.com/OpenWaterAnalytics/
epanet-python/tree/dev/epanet-module, accessed on 14 August 2019) is applied for the
extended period simulation covering the 10-year timeframe. The simulation accounts for
water demand fluctuations by incorporating hourly and daily patterns derived from the
empirical data. Additionally, three control nodes (marked as orange circles in Figure 2) are
selected to ensure a minimum hydraulic head is always maintained. As the actual one-time
minimum pressure without an SHPU in the network is approximately 21 m, the limit is set
at 20 m, capturing significant deteriorations in the system without falsely eliminating the
actual state. Further details on the case study can be found in [29].

2.3.3. Small Hydropower Unit

The SHPU is implemented in the EPANET model as a Pelton turbine, and its modelling
involves setting the emitter coefficient during simulation. The optimal location for the
SHPU (marked as a red circle in Figure 2) and its design performance of 3 kW were
determined by Sitzenfrei and von Leon [29] and Sitzenfrei, von Leon, and Rauch [30].
These parameters are adopted in this work.

For the profitability analysis, assumptions from [29] are used for comparison: the
generator efficiency ηG is assumed to be 0.95, and the device efficiency curve for the selected
Pelton turbine is shown in Figure 4. The energy tariff is 0.1055 €/kWh, while the investment

https://github.com/OpenWaterAnalytics/epanet-python/tree/dev/epanet-module
https://github.com/OpenWaterAnalytics/epanet-python/tree/dev/epanet-module
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costs for the Pelton turbine and the additional expenses are assumed to be 3123 €/kW and
11,000 €, respectively. Furthermore, an annuity factor of 0.084 is applied, assuming an
amortisation period of 15 years and a real interest rate of 3%.
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3 kW according to [20].

3. Results and Discussion
3.1. Optimisation with One Control Category

The optimisation is first carried out with one control category. Subsequently, the
optimal operating levels are determined for the whole dataset, including water availability
and demand (no further subdivision). Figure 5 illustrates the convergence of the 100 sets of
operating levels across generations towards the optimal configuration for achieving the
highest possible electrical energy production. The boxplot represents the range of profits
achieved in the different generations, while the line plots display the depth in the storage
tank for the three operating levels. In this case, it took only seven generations out of a
maximum of ten to reach a stable state with minimal changes in the produced electrical
energy and ranges of the operating levels. Despite the wide range of annual profits and
operating levels in the second generation, the profits are already close to the optimum.
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The robustness of the solution is further demonstrated in Figure 6, which showcases
the relationships between annual profit and the magnitude of the operating levels for the
best 100 solutions. The blue markers represent the operating levels of the reference scenario
based on the empirical data. The x-axis is fixed according to the possible depths in the
storage tank: h1 ranges from 1.5 to 3.5 m, h2 ranges from 1.5 to 3.63 m, and h3 ranges
from 1.0 to 2.5 m. As observed in Figure 6b,c, a relatively high profit can be achieved
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without precise knowledge of the optimal ranges for H2 and H3. In contrast, H1 shows
a tighter clustering of profitable settings between 2.0 and 2.7 m (Figure 6a) compared to
the broader range of values for H2 and H3. Consequently, the selection of the filling depth
from where the turbine inflow is gradually reduced has a greater impact on the results than
the switch-off point or the switch-on point after water level regeneration.
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3.2. Optimisation with Six Control Categories

In this chapter, water availability and demand are categorised into six control cate-
gories to achieve better control conditions. Subsequently, the operating levels are optimised
within this control category, resulting in a total of 18 optimised operating levels for the
whole dataset.

Therefore, the daily spring discharge and total water demand from the case study
are used to classify the data into six control categories. First, the daily water demand is
divided into three consumption categories based on the 33.33 and 66.67% percentiles. Since
the daily water demand over the 10-year period follows a normal distribution (as shown
in Figure 7), the values in the middle third are more concentrated, while the values in the
outer thirds cover a wider range, including outliers.

Water 2023, 15, x FOR PEER REVIEW 9 of 15 
 

 

3.2. Optimisation with Six Control Categories 
In this chapter, water availability and demand are categorised into six control cate-

gories to achieve better control conditions. Subsequently, the operating levels are opti-
mised within this control category, resulting in a total of 18 optimised operating levels for 
the whole dataset. 

Therefore, the daily spring discharge and total water demand from the case study are 
used to classify the data into six control categories. First, the daily water demand is di-
vided into three consumption categories based on the 33.33 and 66.67% percentiles. Since 
the daily water demand over the 10-year period follows a normal distribution (as shown 
in Figure 7), the values in the middle third are more concentrated, while the values in the 
outer thirds cover a wider range, including outliers. 

 
Figure 7. Distribution of total water demand from 10 years with a subdivision into the correspond-
ing control category. 

Next, the spring discharges associated with daily consumption are considered for 
each consumption category. By calculating the median of these inflows, the items within 
a consumption category can be divided into two final categories that represent the upper 
and lower halves of the inflows along with their associated consumptions. As a result, the 
control categories are classified as follows: 
• Category 1: Low water demand with low spring discharge; 
• Category 2: Low water demand with high spring discharge; 
• Category 3: Medium water demand with low spring discharge; 
• Category 4: Medium water demand with high spring discharge; 
• Category 5: High water demand with low spring discharge; 
• Category 6: High water demand with high spring discharge. 

Figure 8 provides additional information by displaying the range of daily spring dis-
charge (inflow) and total water demand (demand) for each control category as coloured 
light blue and light red boxes, respectively (secondary y-axis). Thereby, the average daily 
inflow is between 13 and 16 L/s for high spring discharge (categories 2, 4, and 6) and be-
tween 4 and 14 L/s for low spring discharge (categories 1, 3, and 5). In contrast, the water 
demand is between 3 and 7.5 L/s for low water demand (categories 1 and 2), between 7.5 
and 8.5 L/s for medium water demand (categories 3 and 4), and between 8.5 and 17.0 L/s 
for high water demand (categories 5 and 6). As the water demand is roughly normally 
distributed, the range for water consumption for the medium water demand is relatively 
narrow compared with other categories. Additionally, the optimisation results for the 
three operating levels are represented as boxplots for each control category, indicated by 
green, blue, and black colours for H1, H2, and H3, respectively (primary y-axis). The box-
plots show the results of the best 100 different triples, whereas the values for H1 vary be-
tween 1.55 and 3.25 m, for H2 vary between 2.10 and 3.30 m, and for H3 vary between 1.05 
and 2.10 m within these triples. For more details, the correlations of the different operating 

Figure 7. Distribution of total water demand from 10 years with a subdivision into the corresponding
control category.

Next, the spring discharges associated with daily consumption are considered for
each consumption category. By calculating the median of these inflows, the items within a
consumption category can be divided into two final categories that represent the upper
and lower halves of the inflows along with their associated consumptions. As a result, the
control categories are classified as follows:

• Category 1: Low water demand with low spring discharge;
• Category 2: Low water demand with high spring discharge;
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• Category 3: Medium water demand with low spring discharge;
• Category 4: Medium water demand with high spring discharge;
• Category 5: High water demand with low spring discharge;
• Category 6: High water demand with high spring discharge.

Figure 8 provides additional information by displaying the range of daily spring
discharge (inflow) and total water demand (demand) for each control category as coloured
light blue and light red boxes, respectively (secondary y-axis). Thereby, the average daily
inflow is between 13 and 16 L/s for high spring discharge (categories 2, 4, and 6) and
between 4 and 14 L/s for low spring discharge (categories 1, 3, and 5). In contrast, the
water demand is between 3 and 7.5 L/s for low water demand (categories 1 and 2), between
7.5 and 8.5 L/s for medium water demand (categories 3 and 4), and between 8.5 and
17.0 L/s for high water demand (categories 5 and 6). As the water demand is roughly
normally distributed, the range for water consumption for the medium water demand is
relatively narrow compared with other categories. Additionally, the optimisation results for
the three operating levels are represented as boxplots for each control category, indicated
by green, blue, and black colours for H1, H2, and H3, respectively (primary y-axis). The
boxplots show the results of the best 100 different triples, whereas the values for H1 vary
between 1.55 and 3.25 m, for H2 vary between 2.10 and 3.30 m, and for H3 vary between
1.05 and 2.10 m within these triples. For more details, the correlations of the different
operating levels for the best 100 results per category are illustrated in Figure 9. Figure 9a
for H1 and H2; Figure 9b for H1 and H3; and Figure 9c for H2 and H3).
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As can be concluded, there is a clear difference in the performance of the SHPU under
high and low spring discharges in Figures 8 and 9. Interestingly, H1 has the highest values
in the categories 1, 3, and 5, which are associated with a low discharge flow, and is just
below the operating level H2. This indicates that the SHPU flow is reduced very early
within these categories, and it is mainly operated with a reduced flow rate to achieve the
highest electrical energy production. Furthermore, there is no correlation between H3 and
H1 or H2 for these categories, and the switch-off point (H3) has a strong variation between
the optimised trigger level, showing no correlation to the other two operating levels, H1
and H2.
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In contrast, the ranges of H1 and H2 for the top 100 solutions are clearly distinguishable
for high spring discharge (categories 2, 4, and 6). For example, category 2, representing
optimal turbine operation with a low water demand and high spring discharge, has the
lowest values for all three operating levels. The turbine operates at maximum flow already
at a water level of 2.2 m (H2), whereas the turbine flow is continuously reduced only below
a water level of approximately 1.6 m (H1). Therefore, the influence of the two operating
levels H1 and H2 on the switch-off point is small, as H3 shows a small bandwidth.

Additionally, the optimisation results for most categories show the widest range for
H3 among the three operating levels. This suggests that the operating levels for reduction
(H1) and full load (H2) have a greater impact on the produced electrical energy than the
switch-off point H3.

3.3. Economic Evaluation

For the economic evaluation, a total of five scenarios were considered and compared
to the reference state of Sitzenfrei and von Leon [29], who implemented the control system
based on empirical knowledge. Table 1 provides an overview of the simulation results,
comparing the annual profit changes relative to the reference state, which had an annual
profit of 807.64 €. In the first scenario, with a single category and no forecast, the operating
levels were optimised, and the annual profit was increased to 812.42 €, corresponding to
a 0.6% increase. Furthermore, using a perfect forecast with six control categories led to a
profit increase of +1.1% or approximately 9 € compared to the reference state. Implementing
six control categories with the forecast “tomorrow as today” (assuming tomorrow to be
identical as today) or “tomorrow as last week” (assuming tomorrow to be identical to the
same day of the previous week) resulted in an increase of 1.1% and 0.9%, respectively.
Interestingly, even with a completely incorrect forecast, the annual profit only decreased by
−3.1% to approximately 783 €.

Table 1. Results of different scenarios.

Scenario Profit (€/a) Change (%)

Reference state 1 807.64 -
One category—Without forecast 812.42 +0.6
Six categories—Perfect forecast 816.78 +1.1
Six categories—Tomorrow as today 816.19 +0.9
Six categories—Tomorrow as last week 811.31 +0.5
Six categories—False forecast 782.65 −3.1

Note: 1 The profit of the SHPU with operating levels based on local experiences and without forecast [20] was
assumed to be the reference state.
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3.4. Limitations and Future Research Directions

Based on the simulation results, it can be concluded that, even using an unrealistically
“perfect” forecast, the increases in electrical energy production and annual profit are only
marginal. The optimisation performed with the previous control categorisation and a
perfect forecast showed a yearly profit increase of +1.0%, approximately twice as high as
the optimisation without categorisation (+0.59%). However, considering the effort required
to implement advanced control strategies (e.g., data acquisition, modelling, optimisation,
prediction, and the corresponding design and operation of the SHPU), an additional annual
profit of +9 €/a (+1.1%) appears to be minimal. Nevertheless, the proposed control scheme
with the operating levels was found to be very robust in terms of maximising electrical
energy production.

Therefore, further improvements and optimisation of the control strategy compared
to the reference state with well-chosen expert values are only partially suitable for this
case study. However, from the authors’ perspective, a prediction model could be useful
if the efficiency curve deviates from the plateau-like shape used in this work or if other
(temporal) aspects are considered, which could be addressed in future research. For
example, if a pump as turbine (PAT) with a steep and narrow device efficiency curve is used,
larger increases in efficiency can be expected from the optimisation process. Furthermore,
an application potential is observed with a fluctuation in electricity prices, allowing for
temporally optimised electrical energy generation at high feed-in tariffs. Additionally,
prediction models could be applied to coordinate the operation of multiple installed SHPUs
by optimising their operating times. However, due to the design of elevation tanks as daily
balance tanks with a required fire-fighting water reserve, considering an optimisation over
multiple days appears to be less effective.

3.5. Further Discussion

A positive side-effect of implementing an SHPU is the improvement of water quality.
The increased water demand due to the SHPU reduces the residence time of water in the
network, resulting in a positive effect on water quality in (parts of) the network. Figure 10
presents a comparison of water age at the three control nodes located throughout the
network. As shown, the SHPU can reduce the peak water age by up to 72 h at the beginning
of the investigation period. On average, a reduction of approximately 24 h in water age is
achieved in the long-term.
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Additionally, disturbances in water and energy networks are closely interconnected.
For example, a power grid outage can lead to pump or treatment plant failures, potentially
resulting in emergency operations in the water supply system. A water distribution network
typically consists of different pressure zones that require a pressure increase or reduction
depending on topological conditions. Additionally, water can be sourced from groundwater
wells or higher altitude sources. If the energy generated with an SHPU is directly used
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by the operators (e.g., for a treatment after the SHPU or to direct it to a low-pressure zone
to increase pressure [16]), it can further enhance the resilience of water supply systems.
This application potential is particularly significant in mountainous regions like the alpine
area due to greater altitude differences. Furthermore, these findings will be integrated into
our current research project ‘RESIST’, where the aim is to improve the resilience of water
distribution systems against multiple failures, including a power outage.

4. Conclusions

A small hydropower unit (SHPU) installed in a water distribution network operates
in a highly variable environment characterised by pressure and demand fluctuations over
short periods, which can impact their electrical energy production. Sitzenfrei and von
Leon [20] developed a simple control strategy to adjust the inflow to the SHPU based on the
water level in the storage tank. However, further optimisation of the control strategy did
not yield significant improvements due to the highly volatile input into the optimisation
task [21].

In this work, demand forecasts are integrated into the control strategy to address
this limitation, and the optimisation potential for electrical energy generation is evaluated.
Therefore, input data, such as water availability and demand, were categorised based on
similar flow conditions. Subsequently, the SHPU control was optimised for each control
category to obtain more suitable operating levels for different system conditions. The
operating levels were optimised using a simplified evolutionary optimisation technique
developed by Sitzenfrei and Rauch [32], where the next generation is created with a Monte
Carlo sampling technique within the best solutions of the previous generation. The SHPU
controller was integrated with various types of daily forecast to predict the category
of the next day and to set optimal water levels to further enhance the electrical energy
potential. The implementation of the SHPU was carried out in an alpine municipality,
and the economic feasibility was evaluated through a 10-year long simulation. The main
conclusions drawn from the obtained results are as follows:

• Incorporating demand forecasts and adjusting controls for different flow conditions
can improve the electrical energy potential of an SHPU;

• However, it is worth noting that the controls in the reference state were already based
on well-reasoned expert knowledge, making improvements marginal compared to the
effort required for more complex control strategies in this specific case study;

• The prediction approach shows potential when dealing with devices that have a steep
and narrow device efficiency curve, such as pump as turbines, or when considering
fluctuating electricity prices;

• Additionally, an SHPU can significantly improve the quality of drinking water due to
higher abstraction volumes, and if the generated electrical energy is directly used to
operate the network, it also increases the resilience of the water supply system against
outages of the power grid.
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