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Abstract: In response to the challenge of limited model availability for predicting the lifespan of
super-high arch dams, a hybrid model named EMD-PSO-GPR (EPR) is proposed in this study. The
EPR model leverages Empirical Mode Decomposition (EMD), Gaussian Process Regression (GPR),
and Particle Swarm Optimization (PSO) to provide an effective solution for super-high arch dam
stress prediction. This research focuses on three strategically selected measurement points within the
dam, characterized by complex stress conditions. The predicted results from the EPR are compared
with those from GPR, Long Short-Term Memory (LSTM), and Support Vector Regression (SVR), using
actual stress data measured at research points within a super-high arch dam in Southwest China.
The findings reveal that the proposed EPR model attains a maximum mean absolute error (MAE) of
0.02916 and a maximum root mean square error (RMSE) of 0.03055, surpassing the compared models.
As a result, the EPR model introduces an innovative computational framework for stress prediction
in super-high arch dams, excelling in handling stress data characterized by high vibration frequencies
and providing more accurate predictions.

Keywords: super-high arch dam; stress prediction; GPR; EMD; PSO

1. Introduction

A critical component of dam safety monitoring is the development of a suitable math-
ematical model. This model is employed to compare observed data with predicted values,
enabling the detection of deviations. This methodology expedites the assessment of possi-
ble unusual trends and enables the selection of appropriate corrective actions [1]. Currently,
the construction of super-high arch dams is advancing towards increased heights while
reducing thickness, underscoring the importance of carefully choosing relevant param-
eters to establish accurate mathematical models. Numerous engineering practices and
associated studies affirm a prevailing consensus that the monitoring of extensive defor-
mation and displacement is inherently more intuitive and effective [2–14]. Deformation,
fundamentally, manifests as stress followed by strains across diverse structural sections in
response to applied loads. The primary integral of strain corresponds to rotation angles,
and the secondary integral yields displacement [15]. Deformation displacement, stemming
from multifaceted influences, encompasses various incongruous components. Notably,
temperature effects exert substantial influence, with the temperature deformation of con-
crete arch dams constrained by both structural boundaries and the concrete’s properties.
Consequently, temperature-induced stress emerges, and unconstrained free temperature
deformation remains notably significant [15]. This emphasizes that a significant portion
of deformation does not necessarily correlate with elevated stress levels, nor can it be
construed as an indicator of dam failure.
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Conversely, stress and strain exhibit heightened sensitivity and effectiveness. Struc-
tural cracking and deterioration invariably initiate when stress levels surpass prescribed
thresholds. Should tensile stress exceed these limits, the dam structure may fracture; simi-
larly, surpassing shear stress limits could lead to dam body slippage. Instances of localized
dam failure consistently correspond to anomalous data within stress–strain monitoring
datasets [16]. Evidently, stress–strain monitoring assumes paramount importance for con-
crete arch dams. However, the vast majority of current work by scholars has focused
on the study of dam deformation [7,17–19]. Even when focusing on stress analysis, the
majority of scholars set the research object as stress analysis of dam bodies under seismic
loading [20,21]. There are fewer studies that completely set the research object as the stress
analysis of arch dams under normal operation.

Concrete stress–strain monitoring serves the purpose of comprehending the precise
stress distribution within the dam and identifying the location, magnitude, and orienta-
tion of peak stress. This process aids in gauging the dam’s strength and safety, thereby
furnishing essential insights for dam operation and reinforcement strategies. Additionally,
stress observation outcomes play a role in evaluating the validity of design calculation
methodologies, thereby fostering potential enhancements and advancing the state of scien-
tific and technological understanding [22]. Consequently, in practical engineering research,
a stress-centric approach becomes imperative, necessitating the development of a fitting
stress prediction model grounded in measured data.

Zhou et al. [23] devised an innovative approach by amalgamating monitoring data
and finite element analysis to introduce a hybrid prediction model for dam behavior. This
model integrates real-time monitoring data with comprehensive simulations of the dam’s
entire process, facilitating the inclusion of dam deformation and pivotal stress indicators.
The resultant early warning index system furnishes distinct thresholds for deformation
and stress across various dam segments. Li et al. [8] proposed a numerical analysis method
for decoupling the thermal structure of the dam–water–foundation system considering the
viscoelastic properties of the material and the internal and external thermal loads, and, from
the results, the stress-hazardous area during the first storage period of the extra-high arch
dam is mainly concentrated in the heel region of the dam. In another study, Zhang et al. [24]
presented a stress–strain model founded upon an Artificial Neural Network (ANN) to pre-
dict the behavior of concrete columns under concentric compression, specifically focusing
on pressure and related force characteristics. Notably, the field of dam stress prediction
remains relatively unexplored. Consequently, this paper also compiles diverse research
methodologies for stress prediction across varied structural contexts. Fan et al. [25], for
instance, combined chaos theory and backpropagation (BP) neural networks to establish a
chaotic time series prediction model. Their model incorporated engineering data and en-
abled stress prediction and segmental structural analysis by analyzing chaotic data patterns.
Similarly, Ma et al. [26] applied finite element numerical simulation to analyze the stress
distribution of an underground comprehensive pipe gallery project, establishing a predic-
tive model linking structural stress and ground fissure displacement. Zhang et al. [27], in
a different context, introduced a Kriging-based approach to predict the assembly stress
of sealing rings. Their method, combining finite element simulations with machine learn-
ing, was demonstrated to be suitable for online prediction of assembly stress, revealing
correlations between assembly condition parameters and sealing ring stress distribution.

In conclusion, research on stress prediction for super-high arch dams remains limited.
Most scholars have relied on conventional statistical models and finite element analyses.
However, challenges persist within these traditional approaches: 1. The parameters within
traditional statistical and finite element models remain static and lack the ability to dynami-
cally adapt to changing calculation conditions. 2. Both the traditional statistical models and
finite element analyses tend to oversimplify the research subject into a “black box” scenario
with a fixed internal structure. 3. The presentation format of calculation outcomes lacks the
warning capability provided by interval bands, failing to convey the uncertainty associated
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with the results. These shortcomings highlight the need for more advanced and adaptable
methodologies in stress prediction for super-high arch dams.

To gain a deeper understanding of the operational behavior of super-high arch dams,
the development of stress prediction models capable of adapting to external environmental
changes is of paramount importance. Consequently, this paper proposes a novel stress
prediction model denoted as EMD + PSO + GPR (referred to as EPR model), building upon
previous research efforts.

The model primarily takes advantage of the EMD model’s ability to handle high-
frequency data and the minimum hyperparameters of the GPR model and is optimized by
the PSO model to ensure better compatibility with current engineering problems.

In summary, this paper’s innovations are highlighted as follows:

1. Introduction of a stress prediction framework, the EPR model, tailored to ultra-high
arch dams.

2. Incorporation of deep learning models into the realm of stress prediction for super-
high arch dams.

The paper’s organizational structure is as follows. The Section 2 outlines the principles
and methodologies underlying the model’s construction. The Section 3 offers an illustrative
example, validating the model’s efficacy using a super-high arch dam in Southwest China.
Subsequently, the Section 4 presents the model’s computational outcomes. Finally, the
Section 5 encapsulates the paper’s core conclusions.

2. Proposed Model

The EPR model has been intricately designed to facilitate stress predictions tailored
to super-high arch dams. Section 2.1 meticulously outlines the comprehensive procedure
governing the inception and structure of the EPR model. Simultaneously, Section 2.2
offers an insightful explanation of the data preprocessing phase, shedding light on the
complex mechanisms involved in converting strain data into accurate stress data. In
concise narratives, Sections 2.3 and 2.4 further elaborate on the key components of the
EPR model—Empirical Mode Decomposition (EMD) and Gaussian Process Regression
(GPR), respectively.

2.1. EPR Stress Prediction Model
2.1.1. EPR Stress Prediction Modeling

In this study, we establish a hybrid model by connecting the EMD and GPR models
in sequence. It is worth noting that the distribution of the measured stress and strain
data series may not strictly adhere to a Gaussian distribution. Consequently, employing
the maximum likelihood function for direct parameter estimation may not always yield
optimal results. To address this issue, we incorporate an additional PSO model to optimize
these parameters. The procedural steps for the developed EPR stress prediction model are
depicted in Figure 1.

In this paper, the main stress is predicted, and the results are evaluated using the
main tensile stress intensity criterion. The main tensile stress intensity criterion is shown in
Equation (1) [28].

σ1 ≤ [σ] (1)

where σ1 represents the maximum principal stress and [σ] represents the permissible stress.
The implementation steps for the proposed stress prediction model for high arch dams

outlined in this paper are as follows:

1. Data collection: real-time monitoring data from extra-high arch dams are organized
based on historical deformation, water level, temperature, and other relevant factors.

2. Stress–strain data solution: utilizing the approach detailed in Section 2.1, strain
monitoring data is transformed into corresponding stress values.
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3. Data set classification and parameter initialization: the processed dataset is input
into the model, and the data are partitioned into training and validation sets. The
training set comprises 75% of the dataset.

4. Model training and prediction: the stress solution data are fed into the EMD model
for decomposition. High-frequency data are transformed into low-frequency data to
ensure a greater number of sub-series adhere to standard function distributions. The
low-frequency data are subsequently fed into the GPR model individually, with the
PSO model being employed for parameter optimization. The predictions from the
sub-series are then combined to produce the final model prediction series.

5. Model results evaluation: model performance is assessed using relevant evaluation
indices. The model results are output once the values of the model evaluation indices
meet predetermined criteria.
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2.1.2. Model Inputs

According to the theory of Wu Zhongru et al. [29–32], the stresses in concrete dams are
mainly related to water pressure, temperature, self-weight, and aging. The mathematical
expression is shown in the form of Equation (2) [29–32].

σ = σH + σT + σG + σθ (2)

where σH is the water pressure component; σT is the temperature component; σG is the
self-weight component; and σθ is the aging component. The water pressure component
(σH) is expressed as a polynomial in the head component (H), as shown in Equation (3) [29].

ΣH = ∑4
i=1 aiHi (3)

where H indicates the water depth.

1. σT temperature component:

This component is expressed using the average temperature of the strain gauge set, as
shown in Equation (4) [29].

σT = dT (4)

where T denotes the average temperature of the strain gauge set.

2. σG self-weight component:
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σG is constant when the height of the dam is a given. For extra-high arch dams, this is
generally calculated using Equation (5) [29].

σG = ∑3
i=1 biWi (5)

W is the thickness of the concrete poured above the measuring point.

3. σθ aging component:

The aging component reflects the change in stress due to concrete creep, dry shrinkage,
and wet expansion, and is generally calculated by Equation (6) [29].

σθ = c0 + c1t + c2ln t (6)

where t is the age of the concrete, calculated from the starting point of the analysis period.
In summary, the input variables for the model can be categorized into four types

of influencing factors as derived from Equations (2)–(6): water level factors (H, H2, H3,
H4), temperature factor (T), self-weight factors (W, W2, W3), and time factor (t, ln(t)). As
components of the prediction model’s input, these eight factors collectively impact dam
displacement and can be concisely represented by Equation (7).

input = (x1, x2, x3, x4, x5, x6, x7, x8) =
(

H, H2, H3, H4, T, W, W2, W3, t, lnt
)

(7)

2.2. Stress Computation from Strain Monitoring Data

This paper aims to utilize the deformation method, a widely adopted approach for
addressing strain monitoring results. The deformation method involves dividing the
uniaxial strain timeline into discrete periods. Drawing upon the principles of creep behavior,
the stress increment from previous periods induces creep deformation within the current
period. The cumulative effect of this creep deformation, combined with instantaneous
elastic deformation, contributes to the overall deformation [33]. An essential aspect of
this approach is considering stress increments from earlier periods when retrospectively
calculating along the time axis. The specific calculation process is outlined as follows:

(1) Division of time periods: the uniaxial strain process is divided into n time intervals,
which can be either uniformly or non-uniformly distributed. Shorter intervals are preferred
during periods with significant early stress increments, while longer intervals are used
when stress changes are minimal later on. Starting from a zero-observation point, the
first recorded observation marks the first point, along with the corresponding time period.
Subsequently, the second observation signifies the second point, and the interval between
it and the first point constitutes the second time period. This pattern continues, defining
successive time intervals. The beginning and end moments (ages) for each interval are
as follows:

τ0, τ1, τ2, . . . , τi−1, τi, . . . , τn−1, τn

(2) Calculation of total deformation process line: The total deformation process line
is established for each time interval based on the loading age. This can be achieved by
utilizing data from creep tests or by referring to a table that correlates effective modulus and
total deformation with the midpoint age, following the stress increment age. Alternatively,
a function that characterizes the degree of creep in relation to loading age and duration can
be developed, assisting in further conversion of the effective modulus.

(3) Calculation of incremental stress for the current period: The measured strain at a
specific moment encompasses both the elastic deformation resulting from the incremental
elastic stress at that point and the cumulative deformation resulting from previous stresses
up to that moment. Therefore, when calculating the incremental strain for that specific
moment, this cumulative deformation should be subtracted. The cumulative deformation
effect preceding the calculated time interval is referred to as “pre-strain” and can be
estimated using Equation (8) [33].
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εh =
n−1

∑
i=0

∆σi

[
1

E(τi)
+ c(τn, τi)

]
(8)

where εh is the forward strain before τn−1 ∼ τn (the current time period) and τn = τn−1+τn
2

is the age at the midpoint of the time period.
The stress increment at the current age should be

∆σn = Es(τn, τn−1)

{
ε′n(τn)−

n−1

∑
i=0

∆σi

[
1

E(τi)
+ c(τn, τi)

]}
(9)

where Es(τn, τn−1) is the reciprocal of the total deformation per unit stress continuously
applied to τn at the age of loading with τn−1, i.e., the effective modulus of elasticity at the
moment of τn; εn′(τn) is the uniaxial strain value at the moment of τn on the uniaxial strain
process line.

(4) Calculation of true stress:

σn =
n

∑
i=0

∆σi (10)

2.3. Empirical Mode Decomposition

Empirical Mode Decomposition (EMD) is a signal processing technique in the time–
frequency domain that relies on the inherent time-scale characteristics of the data, devoid
of any predefined basis functions [34]. This method excels even with a high signal-to-
noise ratio [35]. Central to this approach is the empirical mode decomposition, which
dissects intricate signals into a finite set of intrinsic mode functions (IMFs). Each IMF
component encapsulates details about the local attributes of the original signal across
various time scales.

EMD decomposes the input signal into multiple intrinsic mode functions and a resid-
ual component composed according to Equation (11) [34].

I(n) = ∑M
m=1 IMFm(n) + ResM(n)I(n) (11)

Here, I(n) represents the input signal, IMFm(n) represents the mth intrinsic mode
function, and ResM(n) represents the residuals.

The procedure for extracting an IMF is referred to as sifting, and the sifting process
encompasses the following steps:

(1) Identify the local extreme value points.
(2) Connect the upper envelope using cubic spline interpolation through the extreme

value points and likewise for the lower envelope.
(3) Determine the mean value (m1 ) of the upper and lower envelopes.
(4) Subtract the calculated mean value of the upper and lower envelopes from the

input signal.
X(t)−m1 = h1X(t)−m1 = h1 (12)

One iteration of the above process does not guarantee that h1 is an eigenmode function
(IMF), and the above process needs to be repeated until h1 is an eigenmode function (IMF).

A single iteration of the aforementioned process does not guarantee that h1 qualifies as
an intrinsic mode function (IMF). Hence, the procedure must be reiterated until h1 indeed
satisfies the conditions of an eigenmode function (IMF).

The stopping criterion governs the number of sifting iterations undertaken to yield an
intrinsic mode function (IMF). Within this paper, the sifting process halts once the standard
deviation (SD) [36,37] falls below a predetermined threshold. The computation of SD
adheres to the principles delineated in Equation (13) [36,37].

SDk = ∑T
t=0
|hk−1(t)− hk(t)|2

h2
t−1(t)

(13)
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2.4. Gaussian Process Regression

Gaussian Process Regression (GPR) is a non-parametric model employed for regression
analysis of data, utilizing the Gaussian process (GP) prior [38].

GPR’s model assumptions encompass both noise (regression residuals) [38] and Gaus-
sian process [39] priors, which are resolved through Bayesian inference [38]. Without
imposing constraints on the kernel function’s form, GPR stands theoretically as a versatile
approximation for continuous functions within a confined space. Additionally, GPR can of-
fer a posterior for prediction outcomes, and this posterior possesses an analytical structure
when the likelihood follows a normal distribution. Thus, GPR emerges as a probabilistic
model boasting versatility and resolvability.

Gaussian Process Regression, or GPR, is commonly used in scenarios where there are
limited and low sample sizes. However, more advanced algorithms have been developed to
handle larger datasets and high-dimensional contexts [40,41]. In the domain of regression
prediction, the usual goal is to predict a single-point value. What sets GPR apart is its
unique ability to provide probabilistic predictions. This enhances the informative value
of predictions by not only providing a precise point prediction but also upper and lower
prediction bounds, giving a range of likely outcomes. The Gaussian process regression is
outlined in Equation (14) [38].

f (x) ∼ N
(
µ(x), k

(
x, x′

))
(14)

µ(x) denotes the mean function and k(x, x′) denotes the covariance function. The
covariance function is expressed in the form shown in Equation (15) [38].

k
(
x, x′

)
= θ2

0exp

(
− (x− x′)2

2θ2
1

)
+ σ2δij (15)

δij is the Dirac function, with δij = 1 when i = j and 0 otherwise.
It is evident that the GPR model features just two hyperparameters, θ0 and θ1, and the

prediction process can be executed by solving for these values. The detailed operational
process of the GPR model is outlined below:

1. Hypothesizing that the observed data, denoted as discrete data (xo, yo), and assum-
ing that yo and f (x) adhere to a joint Gaussian distribution, the expression for the joint
probability density is provided by Equation (16) [39].[

f (x)
yo

]
∼ N

([
µ f
µy

]
,

[
K f f K f y
KT

f y Kyy

])
K f f=k(x, x), K f y=k(x, xo), Kyy=k(xo, xo) (16)

x is the predicted independent variable and xo is the known observed independent
variable.

2. Equation (17) can be derived from the Bayesian probability expression.

f ∼ N
(

KT
f y + µ f , Kyy − KT

f yK−1
f f K f y

)
(17)

3. The predicted mean and error matrices are shown in Equations (18) and (19) [39–41].

ymean = KT
f yK−1

f f yo (18)

yσ = Kyy − KT
f yK−1

f f K f y (19)

4. Optimise the hyperparameters in the maximum likelihood expression case. The
maximum likelihood expression is shown in Equation (20) [39–41].

Logp(y|θ0, θ1 ) = log N
(
0, Kyy(θ0, θ1) = −1

2
yTK−1

yy −
1
2

log
∣∣Kyy

∣∣− 1
2

log(2π) (20)
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2.5. Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a significant population-based intelligence algo-
rithm introduced by Kennedy and Eberhart in 1995. It draws inspiration from simulating
bird flock behaviors and has evolved into a crucial branch of evolutionary algorithms.
The algorithm commences by initializing a population of random particles, where each
particle symbolizes a prospective solution. Over iterations, each particle is guided towards
both its own optimal position and the best position within the entire population. Notably,
the algorithm is characterized by its intuitive nature, straightforward implementation,
and efficient execution [42]. The equations governing the particle’s velocity and position
updates are detailed in Equations (21) and (22) [42].

vk+1
id = ωvk

id + c1r1

(
pk

id − zk
id

)
+ c2r2

(
pk

gd − zk
id

)
(21)

zk+1
id = zk

id + vk+1
id (22)

where zid is the d dimensional position vector of the ith particle; vid is the flight velocity
of the particle; pid is the optimal position of the particle searched so far; ω is the inertia
weight, indicating the degree of influence of the previous particle’s velocity on the current
particle; r1, r2 are random numbers between [0, 1]; and c1, c2 are learning factors.

3. Data Collection and Pre-Analyses
3.1. Engineering Background

This paper validates the proposed methodology using monitoring data collected from
the XLD super-high arch dam situated in Southwest China. The XLD dam, a super-high
arch dam in the 300 m class category, plays a pivotal role as a critical water storage, flood
control, and power generation facility in China. The top arch center line of the XLD super-
high arch dam spans a length of 681.51 m. Figure 2 provides a comprehensive overview of
the XLD dam.
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Figure 2. Panoramic view of the XLD dam.

3.2. Data Collection and Pre-Processing

The XLD super-high arch dam is equipped with a sophisticated intelligent structural
safety monitoring system. This system has been meticulously designed to continuously
monitor the safety condition of critical components, including the dam body, adjacent
bank rock masses, bedrock, and other vital structures. Additionally, it provides real-time
monitoring of various factors such as deformation patterns, temperature fluctuations,
seepage characteristics, and other relevant loads and their impacts. For the purposes of this
study, our focus is primarily on stress data associated with the dam body. As outlined in
Section 2.1.2, the inputs for the high arch dam stress prediction model encompass variables
such as water level, temperature, self-weight, and aging factors.
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Given the inherent material property of concrete, which has a limited tensile capacity,
and the heightened risk of crack propagation due to tensile stresses near the dam’s heel
region [38], our study concentrates on three strategically positioned strain gauges: S67-1,
S616-4, and S622-5. These gauges are strategically located in the heel areas of three distinct
dam sections, namely 7#, 16#, and 22#. These selections have been made to effectively
demonstrate the efficiency of our methodology. Figure 3 provides a clear illustration of
the precise locations of these measurement points. Among these sections, 7# and 22# are
positioned on the bank slope dam sections, while section 16# is situated on a riverbed dam
section and an arch crown beam dam section. Analyzing stress distribution within the dam
section’s heel across various transverse river directions allows us to explore stress variation
mechanisms. This approach contributes significantly to an improved understanding of the
comprehensive stress attributes of the high arch dam’s heel region.
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Figure 3. Diagram showing the exact location of the study measurement points.

To portray the spatial stress–strain condition at the designated study site, a six-way
strain gauge has been selected for this study. Figure 4 shows a schematic diagram of the
6-way strain gage and a construction drawing of the field burial.
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Figure 4. Schematic diagram of the six-direction strain gauge and on-site construction drawings.
(a) Diagram of a six-way strain gauge; (b) site construction layout plan.

Figure 5 presents a time-series curve that showcases the variation in strain at the
designated measurement point, along with the temperature of the dam body at that spe-
cific location. Blue-black square lines represent dam temperature, red squares represent
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1-direction strain, blue circular lines represent 2-direction strain, light blue triangular lines
represent 3-direction strain, pink inverted triangular lines represent 4-direction strain,
purple rhombic lines represent 5-direction strain, and green arrow-shaped lines represent
6-direction strain. The graph reveals that during the construction phase, the strain of the
dam body is significantly influenced by the temperature of the dam body. Subsequently,
during the operational phase, there is a noticeable hysteresis effect in the relationship
between the dam body’s strain and its temperature. From the figure, it can be seen that after
the temperature of the dam concrete stabilizes, the strain of the dam body itself gradually
becomes cyclic.
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Figure 6 displays a plot detailing the temporal evolution of strain concerning the up-
stream water level at the designated measurement points. Blue-black square lines represent
upstream water levels, red squares represent 1-direction strain, blue circular lines represent
2-direction strain, light blue triangular lines represent 3-direction strain, pink inverted
triangular lines represent 4-direction strain, purple rhombic lines represent 5-direction
strain, and green arrow-shaped lines represent 6-direction strain. As the graph illustrates,
there exists a positive correlation between the strain experienced by the dam body and
the water level upstream. Variations in the water load upstream lead to fluctuations in the
strain encountered by the dam body. From the figure, it can be seen that after the dam
enters the operation period, the strain of the dam body itself shows a periodic change with
the upstream water level.

Figure 7 presents the outcomes of the stress solution observed at the specified mea-
surement points. Conforming to the pertinent principles outlined in Section 2.1, the strains
are translated into stresses in six distinct directions. In this particular investigation, the
focus is directed towards the positive stress in the σyy direction. From the figure, it can be
seen that the stress increases sharply during the construction period, and the stress change
tends to stabilize after entering the operation period and shows certain periodic changes.

The XLD dam has undertaken precise real-time monitoring of crucial parameters such
as temperature, water level, and strain, accumulating a substantial volume of valuable
data. This abundance of data makes it feasible to establish a stress prediction model for
high dams. In this study, a total of 3416 data points were selected, covering the period
from 9 November 2012 to 22 March 2022 for model construction. Out of these, 2562 data
points were allocated for model training, spanning from 9 November 2012 to 8 November
2019. Subsequently, data from 9 November 2019 to 22 March 2022 were set aside for
model validation.
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Given the diverse data scales present in various types of monitoring data, normaliza-
tion is applied using Equation (23) [43].

Z =
xi − µ

σ
(23)

where µ is the mean and σ is the standard deviation.
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Figure 6. Study of strain–upstream water level time-series processes at measurement points. (a) S67-1
measurement point strain–upstream water level time course curve; (b) S616-4 measuring point strain–
upstream water level time course curve; (c) S622-5 measuring point strain–upstream water level time
course curve.
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at measurement point; (b) S616-4 stress solution results for measurement points; (c) S622-5 stress
solution results at measurement points.

3.3. Model Evaluation Indicators

To validate the efficacy of the proposed model, this study employs two widely utilized
statistical evaluation metrics: the mean absolute error (MAE) [44–46] and the root mean
square error (RMSE) [47–49]. These indicators serve as benchmarks for assessing the
model’s performance. The precise calculation formulas for MAE and RMSE are provided in
Equation (24) [44–46] and Equation (25) [47–49]. Smaller values for both MAE and RMSE
indicate closer proximity to 0, signifying enhanced model accuracy.

MAE =
1
n

n

∑
i=1
|yi − ŷi| (24)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (25)

where n is the total number of samples to be evaluated and yi and ŷi are the measured and
predicted displacement values.

4. Results and Discussions

In this section, we conduct a comprehensive comparison between the outcomes
derived from various contrasting models and our proposed EPR model. Additionally,
we present a detailed analysis of the stress data decomposition accomplished by the
EMD model.

4.1. EMD Model Stress Data Decomposition Results

Stress data often exhibits characteristics such as nonlinearity, pronounced randomness,
and susceptibility to significant noise interference, which can make direct prediction less
effective. To address these challenges, this study employs the Empirical Mode Decomposi-
tion (EMD) method to decompose stress data into distinct intrinsic mode functions (IMFs)
and a residual component, thereby mitigating nonlinear effects.

For the stress data associated with the specified measurement points, this paper utilizes
the EMD approach to break them down into multiple IMFs with varying frequencies. In
total, seven IMFs are extracted through this process. These decomposed IMFs are visually
represented in Figure 8.
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Figure 8. EMD decomposition results of research point stress data. (a) S67-1 stress decomposition 
results; (b) S616-4 stress decomposition results; (c) S622-5 stress decomposition results. 

The outcomes of the Empirical Mode Decomposition (EMD) unveil distinct fre-
quency characteristics within the seven decomposed intrinsic mode function (IMF) se-
quences. If each individual component were directly input into the subsequent computa-
tional network, it might not comprehensively capture the data features. To address this, 
the decomposed IMFs are categorized into two groups: high-frequency and low-fre-
quency data. More precisely, IMF1–IMF4 make up the high-frequency components, while 
IMF5–IMF7 constitute the low-frequency components. This categorization is intended to 
enhance feature extraction and improve prediction outcomes. 

4.2. EPR Model Results 
Figure 9a–f provide a side-by-side comparison of the forecasted stress values for the 

extra-high arch dam as projected by the trained EPR model and the actual measured val-
ues. In these figures, the measured values are indicated by the black line, while the 
model’s predicted values are represented in red. The observations from Figure 9 confirm 
the EPR model’s proficiency in predicting stress levels for the dam body of extra-high arch 
dams. Moreover, the model consistently exhibits strong performance across the prediction 
of dam sections 7#, 16#, and 22#, highlighting its stability and reliability. 

Figure 8. EMD decomposition results of research point stress data. (a) S67-1 stress decomposition
results; (b) S616-4 stress decomposition results; (c) S622-5 stress decomposition results.

The outcomes of the Empirical Mode Decomposition (EMD) unveil distinct frequency
characteristics within the seven decomposed intrinsic mode function (IMF) sequences.
If each individual component were directly input into the subsequent computational
network, it might not comprehensively capture the data features. To address this, the
decomposed IMFs are categorized into two groups: high-frequency and low-frequency data.
More precisely, IMF1–IMF4 make up the high-frequency components, while IMF5–IMF7
constitute the low-frequency components. This categorization is intended to enhance
feature extraction and improve prediction outcomes.

4.2. EPR Model Results

Figure 9a–f provide a side-by-side comparison of the forecasted stress values for the
extra-high arch dam as projected by the trained EPR model and the actual measured values.
In these figures, the measured values are indicated by the black line, while the model’s
predicted values are represented in red. The observations from Figure 9 confirm the EPR
model’s proficiency in predicting stress levels for the dam body of extra-high arch dams.
Moreover, the model consistently exhibits strong performance across the prediction of dam
sections 7#, 16#, and 22#, highlighting its stability and reliability.

Table 1 offers a comprehensive summary of the results, demonstrating that the EPR
model attains a maximum RMSE value of 0.216171 and a maximum MAE value of 0.29167
within the research point prediction dataset. These results highlight the model’s capability
to provide accurate predictions that align with the acceptable engineering standards. This
outcome further solidifies the effectiveness and practicality of the EPR approach for stress
prediction in super-high arch dams.

In conclusion, based on the outcomes of our model, it is evident that the EPR model
stands as a powerful and competitive tool for forecasting stress levels in the dam bodies of
super-high arch dams.
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Table 1. EPR model evaluation index (unit: Mpa).

Points
MAE RMSE

Training Set Testing Set Training Set Testing Set

S67-1 0.01568 0.01229 0.02619 0.019378
S616-4 0.01666 0.02916 0.02665 0.216171
S622-5 0.01678 0.01070 0.03055 0.016792

4.3. Multi-Model Comparison Results

In this section, we have utilized standard GPR, LSTM, and SVR models as benchmark
comparisons against our proposed EPR model. The evaluation of these models is based
on the MAE and RMSE metrics, providing a means to assess the effectiveness of the EPR
model presented in this study.

Figure 10a–f present a comparative analysis involving standard GPR, EPR, and mea-
sured values. In these visualizations, the measured values are represented in black, the EPR
model’s predictions in red, and the GPR model’s predictions in blue. Notably, these figures
highlight that the utilization of decomposed stress data significantly improves prediction
accuracy within the model. Furthermore, the integration of the PSO model appears to yield
favorable enhancements in parameter optimization outcomes.
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Figure 10. Comparison chart of EPR model and GPR model results. (a) S67-1 stress training set 
model results; (b) S67-1 stress prediction set model results; (c) S616-4 stress training set model re-
sults; (d) S616-4 stress prediction set model results; (e) S622-5 stress training set model results; (f) 
S622-5 stress prediction set model results. 
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model results; (b) S67-1 stress prediction set model results; (c) S616-4 stress training set model results;
(d) S616-4 stress prediction set model results; (e) S622-5 stress training set model results; (f) S622-5
stress prediction set model results.

To further validate the effectiveness of our model, this section conducts a compar-
ison between the results obtained from the widely used LSTM and SVR models, both
commonly employed in time series forecasting, and the results from our proposed EPR
model. Figure 11 illustrates the results of the calculations. The illustration showcases the
comparative results of the LSTM, SVR, and EPR models. The color scheme designates
black for the measured values, red for the EPR’s predictions, blue for the SVR’s predictions,
and green for the LSTM’s predictions. A clear observation from the illustration is that the
predictive capability of the EPR model outperforms both the LSTM and SVR models.

Table 2 presents the evaluation indices of different models at the three research points.
A noteworthy observation from the table is that the proposed EPR model exhibits the small-
est index values. Furthermore, the non-optimized GPR model performs quite well when
compared to traditional time series models. This observation underscores the suitability of
GPR for processing high-frequency data such as stress monitoring data. The incorporation
of EMD and PSO further enhances the competence of GPR in handling high-frequency and
high-noise data.
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Table 2. Evaluation index values of different models.

Points Models
MAE RMSE

Training Set Testing Set Training Set Testing Set

S67-1

EPR 0.015681 0.012295 0.02619 0.019378
GPR 0.017645 0.013530 0.032534 0.023581
SVR 0.110314 0.093430 0.133079 0.110845

LSTM 0.027909 0.015469 0.047819 0.023698

S616-4

EPR 0.016662 0.029167 0.026659 0.216171
GPR 0.017858 0.046568 0.033340 0.299895
SVR 0.120232 0.193641 0.147590 0.215437

LSTM 0.03212 0.018291 0.052172 0.035915

S622-5

EPR 0.016785 0.010702 0.030551 0.016792
GPR 0.018956 0.012213 0.038120 0.022059
SVR 0.137680 0.118263 0.165617 0.143403

LSTM 0.032729 0.015945 0.058211 0.023396
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However, the performance of the SVR model is lackluster. This can be primarily
attributed to the fact that SVR is data-driven, and its fitting calculations for stress values in
super-high arch dams rely on linear principles that inadequately account for the inherent
nonlinearity in the stress patterns of super-high arch dams. Fixed parameters and static
calculations further misalign with the operational principles of super-high arch dams,
resulting in significant errors.

5. Conclusions

In conclusion, this paper has introduced and investigated the EPR model as an effective
method for stress prediction in super-high arch dams. The key findings and contributions
of this study can be summarized as follows:

Advantages of the EPR model: the proposed EPR model combines the strengths of
GPR and EMD models. It decomposes high arch dam stress data into components with
varying frequencies, effectively handling nonlinearity, randomness, and noise in the data.
This enhances the GPR model’s ability to analyze stress data from high arch dams. On the
same test set, the EPR model’s accuracy is maximally improved by 87% compared to the
comparison model. This further indicates that the EPR model proposed in this paper has a
better capability in dealing with high arch dam strain data and can be better adapted to
engineering problems.

Role of PSO model: the inclusion of the PSO model plays a critical role in parameter
optimization when processing stress data with the GPR model. Given that stress data may
deviate from a strict Gaussian distribution and high-frequency EMD components lack a
precise functional distribution, traditional maximum likelihood estimation for parameter
estimation falls short. The PSO model helps identify optimal model parameters, thereby
improving prediction accuracy.

Dynamic learning aspect: The EPR model distinguishes itself from static baseline
models by introducing dynamic learning. It can adapt to changing parameters and the
inherent nonlinearity in super-high arch dam stress monitoring data. This incorporation
of dynamic features strengthens the model’s predictive capabilities. The introduction of
dynamic modeling remains crucial for the development of the field of hydraulic monitoring
since the real working environment of extra-high arch dams as well as their own parameters
are changing all the time.

Robustness and applicability: the EPR model’s success in predicting stress across
different sections of the dam demonstrates its robustness. This suggests that the proposed
model can be extended to address stress prediction challenges in other ultra-high arch dams.

Looking forward, future research will focus on integrating spatial dimension informa-
tion learning into ultra-high arch dam monitoring data. This will tailor the model to the
unique characteristics of extra-high arch dams, further enhancing prediction accuracy. The
EPR model represents an innovative approach to developing stress prediction models for
high arch dams.
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