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Abstract: Root-zone soil moisture (RZSM) plays a key role in the hydrologic cycle and regulates
water–heat exchange. Although site observations can provide soil profile moisture measurements,
they have a restricted representation. Satellites can determine soil moisture on a large scale, yet
the depth of detection is limited. RZSM can be estimated on a large scale using the soil moisture
analytical relationship (SMAR) and surface soil moisture (SSM). However, the applicability of the
SMAR to different deep-root zones and covariate sources is unclear. This paper investigates the
applicability of the SMAR in the Shandian River Basin, upstream of the Luan River in China, by
combining site and regional soil moisture, soil properties, and meteorological data. In particular,
we first compared the estimation results of the SMAR at different depths (10–20 cm; 10–50 cm) and
using covariates from different sources (dataset, SMAR-P1; literature, SMAR-P2) at the site in order
to generate SMAR calibration parameters. The parameters were then regionalized based on multiple
linear regression by combining the SMAR-P1, SMAR-P2, and SMAR calibration parameters in the
10–50 cm root zone. Finally, the Shandian River RZSM was estimated using regional surface soil
moisture and the aforementioned regionalized parameters. At the site scale, diffusion coefficient b
obtained in the 10–20 cm root zone at the same depth as the surface layer exceeded the upper limit
of the SMAR by one. This is not fit an environment within the site context, and thus the SMAR
is not applicable at this particular depth. The opposite is observed for the 10–50 cm root zone. In
addition, SMAR-P1 (RMSE = 0.02) outperformed SMAR-P2 (RMSE = 0.04) in the estimation of the
RZSM at 10–50 cm. Parameter regionalization analysis revealed the failure of SMAR-P2 to pass the
significance test (p > 0.05) for building a multivariate linear model, while SMAR-P1 successfully
passed the significance test (p < 0.05) and finished the parameter regionalization process. The median
RMSE and median R2

adj of the regional RZSM results were determined as 0.12 and 0.3, respectively.
The regional RZSM agrees with the spatial trend of the Shandian River. This study examines the
suitability of the SMAR model in varying deep-root zones and with diverse covariate sources. The
results provide a crucial basis for future utilization of the SMAR.

Keywords: SMAR; genetic algorithm; parameter regionalization; root-zone soil moisture

1. Introduction

Root-zone soil moisture (RZSM) is the soil moisture below the surface layer that
reaches the root layer of vegetation. It plays a key role in the hydrologic cycle and regulates
the terrestrial–atmosphere water–heat exchange [1]. It also plays an important role in
water resource management, crop yield estimation, evapotranspiration estimation, drought
assessment, and flood variability [2–6]. With the advancement of remote sensing technology,
numerous multi-scale surface soil moisture products have been developed, including
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those from the European Space Agency Climate Change Initiative (ESA-CCI) [7], the Soil
Moisture and Ocean Salinity (SMOS) [8] and Soil Moisture Active and Passive (SMAP) [9]
satellites. In contrast, research on root-zone soil moisture (RZSM) is relatively lacking due
to the corresponding technological restrictions and the complexity of the environment and
deep layers. Vegetation root systems can absorb water from varying depths of the soil and
facilitate the acquisition of nutrients [10]. Estimating RZSM can enhance our understanding
of water and nutrient movement within the soil profile.

Numerous studies have employed surface soil moisture (SSM) products to estimate
RZSM, the majority of which have developed models based on the coupling of SSM
and RZSM, making great research advancements [11,12]. Commonly utilized methods
include data assimilation [13,14], machine learning [15–17], exponential filtering (ET
method) [18,19], and the soil moisture analytical relationship (SMAR method) [20–22].
The assimilation of SSM products such as SMOS and SMAP during model simulation can
effectively improve the estimation of RZSM, outperforming model simulations alone [13,14].
However, data assimilation presents challenges due to its high computational demands
and limited applicability for nonlinear models [23–25]. Machine learning can identify
trends and characteristics via mining data for information. For example, artificial neural
networks (ANNs) can accurately estimate RZSM by detecting nonlinear variations in soil
profile moisture. ANNs can compensate for data assimilation, yet their interpretation of
water movement is limited [16,17]. The ET method, developed by Wagner using surface
and deep-water balance modeling, has since been improved by Albergel [19]. The model
uses T, characteristic time, as the sole parameter. Compared to machine learning, ET is
computationally simple and has an improved interpretation, yet the physical meaning of
parameter T is unclear [26,27]. In contrast, the SMAR infiltration model, which is inspired
by the ET method and features physically consistent parameters, presents an objective
approach for the analysis of soil water movement. Through its ability to overcome the
limitations of previous models, it provides a more efficient estimate of RZSM by decoupling
the water balance [20].

The SMAR model has been validated and applied at the point scale in North America,
the Middle East, East Asia, and Africa. Faridani et al. [21] investigated the nonlinear
movement of soil moisture and enhanced the SMAR moisture loss parameter to improve
the simulation accuracy of RZSM (5–135 cm) at the African site and RZSM (10–90 cm) at
the North American site. Farokhi et al. [28] estimated RZSM (10–100 cm) by combining
ASMR2 and downscaled AMSR2 soil moisture data using SMAR, with the latter reducing
RMSE by 20%. Gheybi et al. [29] investigated the influence of input data on the estimation
of RZSM (10–50 cm) in SMAR. The authors compared the performance of different SSM
inputs, including site and image elements, and found that the spatial difference between
the two inputs caused notable discrepancies in the estimation results. The aforementioned
SMAR studies focus on a single root layer, while the root layer at different depths is less
considered. Soil moisture transport varies with the root zone depth. Therefore, examining
the soil moisture in multiple root systems can offer insights into the spatial and temporal
variability of RZSM and its response to vegetation across different root depths [30].

The SMAR model has been adopted in several regional-scale studies. Du [23] and
Zhuang [31] estimated RZSM in the Laohahe River Basin and Tibetan Plateau using the
SMAR model. They combined several data types for parameter estimation to achieve results
that closely match the actual environment. Baldwin et al. [32] employed satellite data and
the SMAR in the Eastern United States for parameter calibration and to generate regional
parameters, estimating regional RZSM with an average RMSE of less than 0.06 m3·m−3. The
uncertainty in SMAR parameter regionalization presents a challenge for the generalization
of the SMAR model from the point to the regional scale. Parameter regionalization requires
soil data as covariates. Differences in the covariates can affect the estimation of regional
RZSM. Covariates are primarily sourced from two domains, namely, existing products such
as the Harmonized World Soil Database (HWSD) [33] and soil texture data [34]. However,
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current studies typically adopt a single covariate source for the estimation of regional
RZSM and do not consider variations in the applicability of different sources in the SMAR.

The main objective of this study was to regionalize the use of the SMAR model in the
Shandian River Basin and to explore, for the first time, the effects of different root zone
depths and covariates on the model. The Shandian River is situated in the upper reaches of
the Luan River, a region designated for water conservation that is vital for the water supply
of Beijing, Tianjin, and Hebei. It covers extensive agricultural, pastoral, and forest areas
that intertwine harmoniously [35]. Integrated remote sensing experiments conducted in the
basin can provide improved data support for the water cycle and energy balance [35–37].
The rest of this paper is structured as follows: Section 2 outlines the data obtained for the
study area and the methodology used to analyze the data. Sections 3 and 4 present and
discuss the results, respectively, and Section 5 concludes the paper.

2. Materials and Methods
2.1. Datasets

The Shandian River spans across Hebei Province and the Inner Mongolia Autonomous
Region, extending a total of 877 km. The river is situated in a temperate continental climate
with a seasonal permafrost zone (Figure 1). Rainfall occurs mainly during summer, with the
typical yearly precipitation averaging between 300 and 500 mm across most regions [38].
The study area generally exhibits mountainous topography, along with pre-mountain and
river plains. Land cover types include grasslands in the north, croplands in the south, and
woodland in the east, in addition to some scrublands.
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Figure 1. Study area overview. (a) Measuring sites in the study area and climate zoning. (b) Land
use categories in the study area. (c) Elevation of the study area.

2.1.1. In Situ Data

The datasets were obtained from the 2019–2020 Soil Temperature and Moisture Mea-
surement Dataset of the Integrated Remote Sensing Experiment on Water Cycle and Energy
Balance in the Shandian River Basin [35]. The study area includes 34 stations at different
scales (large, 100 km; medium, 50 km; and small, 10 km) to enable a multi-scale investi-
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gation. Soil moisture and temperature were quantified at five depths (3 cm, 5 cm, 10 cm,
20 cm, and 50 cm) at every designated area. Soil moisture was measured with a 5TM
sensor at an accuracy of ± 3% m3·m−3 and a data logging interval of 10–15 min. The
systematic errors contained in the raw data were calibrated using the calibration formula
in [35], described as:

SMCV = 1.0614 × SMC5TM + 0.0134, (1)

where SMCv (m3·m−3) and SMC5TM (m3·m−3) are the calibrated and original volumetric
soil moisture, respectively. The stratified data were combined into the RZSM at 10–20 cm
and 10–50 cm, as required for this study, as follows:

RZSM10−i =
θ1 × Zr1 + θ2 × Zr2 + · · ·+ θi × Zri

Zr1 + Zr2 + · · ·+ Zri
, (2)

where i is the soil layer; RZSM10−i is the RZSM of the 10−i cm layer; Zri is the soil layer
depth; and θi is the soil moisture in the i-th layer. Following the preprocessing of the
measured data, 22 stations with a relatively complete time series were selected and the
corresponding hourly data were converted to a daily scale (Table S1).

2.1.2. Auxiliary Data

The SMAR parameters were obtained from the China Soil Hydraulic Parameters
Dataset, the China Soil Characterization Dataset, the China Depth to Bedrock (DtB) map
from the Land-Air Interaction Research Group at Sun Yat-sen University, China
(http://globalchange.bnu.edu.cn/research/data, accessed on 22 December 2022) [39,40],
and potential evapotranspiration data. Hydraulic and characterizing parameters were mea-
sured at various depth intervals (0–0.045 m, 0.045–0.091 m, 0.091–0.166 m, 0.166–0.289 m,
0.289–0.493 m, 0.49–0.829 m, and 0.829–1.383 m), with a spatial resolution of approximately
1 km. Soil characterization parameters included porosity, bulk density (BD), and soil texture
(sand, clay, silt). Soil hydraulic parameters included the site capacity (θ33) and wilting point
(θ1500). The China DtB (m) Map was derived from the random forest and gradient boosting
tree algorithms, as well as soil, climate, and vegetation factors [41]. The dataset is accessible
in three versions, with resolutions of 100 m, 1 km, and 10 km, respectively. This study
selected the 1 km resolution version. Potential evapotranspiration (PET) was obtained
from the China 1 km monthly dataset on potential evapotranspiration (2019–2020) with a
spatial resolution of 0.00833◦ [42]. The soil attribute, hydraulic parameter and potential
evapotranspiration data were extracted using ArcMap 10.8 (Esri). Auxiliary data were
resampled temporally and spatially according to the measured data stratification. The
formats of all data were unified.

2.1.3. SSM Dataset

The 1 km global daily surface soil moisture dataset (GD-SSM) is the first seamless
global surface soil moisture and humidity dataset at a 1 km resolution for the period
2000–2020 [43]. It combines the current highly accurate remote sensing product ESA-CCI
with reanalyzed data from ERA5, resulting in a continuous dataset. The downscaling model
was constructed using ISMN (International Soil Moisture Network) site data and machine
learning techniques, leading to a high-resolution and spatio-temporally continuous dataset
of surface soil moisture [44]. The product was validated using ISMN site data, improving
its feedback with an R of 0.89 and an unbiased root mean square error (ubRMSE) of
0.045 m3·m−3. For this study, we selected the regional SSM as the input for 2020. The
ISMN site dataset included soil moisture observations from the Soil Moisture Temperature
Wireless Sensor Network in the Shandian River Basin (SMN-SDR), established from 18 July
2018 to 28 September 2018 [35]. The accuracy of this product has been verified. The mean
simulated and observed values are 0.165 m3·m−3 and 0.166 m3·m−3, respectively, both of
which have a bias of −0.001 m3·m−3 and ubRMSE of 0.032 m3·m−3, with an R value of
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0.91. The site data and ancillary parameter data were combined and used as the input for
the SMAR regional application.

2.2. Methods

In this study, the surface layer was set at a depth of 0–10 cm, while the depths of
10–20 cm and 10–50 cm were designated to the root zone. The 10–20 cm root layer enabled
investigation into the viability of the SMAR model at equivalent depths for both surface and
root layers. The 10–20 cm and 10–50 cm layers were used to analyze the differences in the
SMAR model across root zones. First, we optimized the model parameters of 10–20 cm and
10–50 cm using the SMAR model and a genetic algorithm (GA) to assess soil moisture esti-
mations in the root zone. The SMAR model inputs include SSM and model parameters, as
well as two covariates, namely, porosity and root zone field capacity (Section 2.2.1). The co-
variates were obtained from: (i) the soil property and soil hydrology datasets (Section 2.1.2),
denoted as P1; and (ii) the soil texture dataset and previous research [34] (Table S2) denoted
as P2. By combining P1 and P2 with their equivalent SMAR parameters as SMAR-P1
and SMAR-P2, respectively, we compared the applicability of the two parameter sets. We
then analyzed the significance of the model, soil, and climate parameters. Based on the
findings, we evaluated the constructed multiple regression model. Finally, the developed
multivariate model was adopted to scale the SMAR model parameters from the point to
the regional scale and subsequently compute soil moisture in the root zone (Figure 2).
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2.2.1. SMAR Model

The SMAR model classifies soil into surface and subsurface layers, with the water
between the two layers connected by infiltration. The subscripts 1 and 2 in the following
equations denote the first and second layers, respectively. During a rainfall event, according
to the Green–Ampt method [45], any excess water from the surface layer above the field
capacity will flow into deeper layers. Rapid penetration occurs from the surface to deeper
levels within a short timeframe. This can be described as follows:

n1Zr1y(t) = n1Zr1y[s1(t), t] = n1Zr1

{
(s1(t)− sc1), s1(t) > sc1

0, s1(t) > sc1
, (3)
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where y(t)[-] represents the fraction of soil saturation infiltrating into the root-zone soil; n1
is the soil porosity of the surface layer; Zr1 is the depth of the topsoil layer; s1(θ1/n1)[–] is
the relative saturation of the surface soil; and Sc1[–] is the relative saturation of the surface
field capacity.

The soil water balance in the deep layer is controlled by two main factors, namely,
infiltration and soil water loss. Loss of water and diffusion can be expressed in terms of the
normalized coefficients a and b, defined as:

a =
V2

(1 − sw2)n2Zr2
, b =

n1Zr1

(1 − sw2)n2Zr2
, (4)

where Sw2[-] is the relative saturation of the root zone wilting point; n2 is the soil porosity
of the root zone layer; Zr2 is the depth of the root zone layer; and V2 [LT−1] is the root-zone
soil water loss coefficient (ET and percolation losses).

By combining Equations (3) and (4), the soil water balance equation becomes:

dx2(t)
dt

= by(t)− ax2(t), (5)

The initial condition assumes that the relative saturation x2(t) is equal to zero, and
thus the analytical solution of this equation can be derived as:

x2(t) =
∫ t

0
bea(w−t)y(w)dw, (6)

or in discrete form as:
x2
(
tj
)
= ∑j

i=0 bea(ti−tj)y
(
tj
)
∆t, (7)

Expanding Equation (7) and setting ∆t = tj − ti, the expression for deep soil moisture is:

x2
(
tj
)
= x2

(
tj−1

)
e−a(tj−tj−1) + by(t j

)(
tj − tj−1

)
, (8)

this can be written as s2:

s2
(
tj
)
= sw2 +

(
s2
(
tj−1

)
− sw

)
e−a(tj−tj−1) + (1 − sw2) by(t j

)(
tj − tj−1

)
. (9)

The parameters Sw2, Sc1, a, and b can be calculated with reference to real data (soil
depth, field capacity, and soil water loss). Due to the wide parameter range setting, the
RZSM may exceed 1 at times. For such cases, we set RZSM to 1.

2.2.2. SMAR Parameters Optimization

MATLAB R222b(MathWorks) was used for the GA modeling platform, with the initial
population and number of iterations set as 100 and variance rate as 0.9. GA models were
constructed for various parameter (SMAR-P1 and SMAR-P2) and root zone (10–20 and
10–50 cm) combinations. A warm-up period was established to correct the error resulting
from the discrepancy between the model’s initial state (Sc2) and the actual state. The
preheating periods for the 10–20 cm and 10–50 cm layers were 5 and 20 days, respectively,
and the results of the preheating periods were removed. The calibration period spanned
from 6 January 2019 to 6 January 2020 and from 21 January 2019 to 21 January 2020 while
the validation period ranged from 7 January 2020 to 31 December 2020 and from 22 January
2020 to 31 December 2020. Following this, we selected the RMSE between the measured
and estimated RZSM as the objective function for the parameter optimization. We then
established the model parameter constraints. More specifically, the constraints for Sw2,
Sc1, a, and b were [0,1], while that of V2 was set to [0,2.5] based on previous research and
practical scenarios [20]. The model constraints could vary between 10 and 20 cm, and
optimization could not be performed when b was set to [0,1], resulting in the absence of
conditional constraints on b. Please refer to Section 4.1 for more details on the analysis.
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2.2.3. Multiple Linear Regression

Multiple linear regression analysis explores the relationship between one dependent
variable and several independent variables. The regression is expressed as follows:

y = c + a1x1 + a2x2 + · · ·+ anxn, (10)

where a1, a2, · · · , an is the regression coefficient, c is a constant, x is the independent variable,
and y is the dependent variable.

In this study, we developed a multiple linear regression model that integrates the
SMAR parameters optimized by GA with soil, vegetation, and climate factors, to enable
the regionalization of the SMAR parameters. The relationships between the soil property
data and soil hydraulic parameters, as well as the SMAR model parameters, lacked clarity.
Thus, we employed put-back sampling to selected soil and climatic factors together with
the SMAR model and establish binary, ternary, and quadratic linear regression models.
The multiple regression modeling process involves the process of weighing two essential
indicators: the coefficient of determination R2 and the p-value (p-v). The construction
success of the model is determined by the p-v, while R2 indicates the explanatory power
of the auxiliary variables of the SMAR model parameters. Therefore, we identified the
combination with the highest R2 value while ensuring that the significance level (p-v < 0.05)
is met. The SMAR model parameters, which were optimized by the GA, were selected
from population values. To minimize parameter uncertainty, we generated 20 sets of SMAR
parameters using MATLAB loops and calculated the mean values to analyze the variation
of the p-v. The final model was created using the parameter means with reference to the
p-value test.

2.2.4. Evaluation Metrics

The RMSE, Nash–Satcliffe efficiency (NSE), and corrected coefficient of determination
(R2

adj) were employed to evaluate the results. These indicators are defined as follows:

RMSE =

√
1
N ∑N

i=1(SMest − SMobs)
2, (11)

NSE = 1 − ∑N
i=1
(
SMobs − SMest

)2

∑N
i=1
(
SMobs − SMobs

)2 , (12)

R2
adj = 1 −

(
1 − R2)(N − 1)

N − p − 1
, (13)

where SMest and SMobs denote the relative soil moisture estimates and relative soil moisture
measurements, respectively; N is the number of water measurements; and p is the number
of characters.

3. Results
3.1. In-Site Simulation Results

The SMAR was implemented at a daily temporal resolution for all stations. Figure 3
presents the SMAR parameter optimization results for the study site using the collected
data. Sw2, Sc1, a, and b all decreased with the increasing soil depth, yet Sw2 and Sc1 were
much less sensitive to soil depth compared to a and b. The soil depth in the root zone did
not directly impact the Sc1 and Sw2 calculations, resulting in negligible effects on both
variables. The root zone played a key role in the calculation of a and b, directly impacting
the obtained values. A considerable disparity was observed in the depth between the root
zones of 10–20 cm and 10–50 cm, resulting in marked differences. SMAR-P1 and SMAR-P2
exhibited inconsistent a and b values at the 10–20 cm depth. The median values of a for
both SMAR-P1 and SMAR-P2 exceeded 0.4, with a high water loss. This is inconsistent
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with results from similar environments [20,23]. Moreover, the most suitable value of b
ranged within [0,1]. SMAR-P1 and SMAR-P2 were significantly anomalous, with b values
exceeding one. The SMAR model parameters were inconsistent for the case of the root
zone depth equal to the surface layer depth, which reduced the accuracy of the water
movement model results. Therefore, the 10–20 cm root zone depth was not examined in
subsequent analyses.
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Figure 4a–c presents the simulation and evaluation of RZSM based on site-measured
data. The soil moisture results from the validation period of SMAR-P1 and SMAR-P2
(R2

adj = 0.74 and 0.67, respectively) were lower than those from the calibration period
(R2

adj = 0.89 and 0.89, respectively) (Figure 4b,c). However, the overall accuracy was
similar, indicating that the model calibration parameters were able to accurately estimate
future root-zone soil moisture. The SMAR-P1 (R2

adj = 0.82) estimates were more accurate
than those of SMAR-P2 (R2

adj = 0.79). This indicates that the soil information acquired
using SMAR-P1 can model root-zone soil moisture better than that of SMAR-P2 (Figure 4a).
Figure 4d–f displays the NSE, R2

adj, and RMSE results for each individual site, respectively.
The results indicate that the estimation accuracy of SMAR-P1 is higher than that of SMAR-
P2 (Figure 4a–c). The median NSE values for SMAR-P1 and SMAR-P2 were determined
as 0.53 and −0.65, while the median RMSE values were 0.02 and 0.04, and the median
R2

adj values were 0.58 and 0.63, respectively. The spatially averaged results were consistent
with the single site results. In particular, SMAR-P2 could reflect the RZSM trend in the
point-scale environment, yet its simulation accuracy and trend response were lower than
those of SMAR-P1.
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3.2. Results of SMAR Parameters Regionalization

The complete validation of the SMAR for the point to the regional scale requires region-
alization of the model parameters. Figure 5 presents the p-v results for the 20 optimization
parameter sets used for SMAR-P1 and SMAR-P2, as well as a set of mean parameters in
the multivariate model construction process. SMAR-P1 exhibits superior p-v results across
all three parameter sets, with the exception of Sw2. In particular, SMAR-P1 p-v values
exceed 0.05 for just one set of optimization parameters, while the SMAR-P2 p-v values are
greater than 0.05 for all parameter sets. This indicates that the water loss coefficient under
SMAR-P2 is not significantly correlated with soil and climatic factors; therefore, it cannot
be used to construct a regression equation.
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Figure 6 illustrates the difference between the estimated and calibrated parameters of
the multivariate model. Greater accuracies were determined for parameters a (RMSE = 0.06)
and b (RMSE = 0.07) compared to Sw2 (RMSE = 0.13) and Sc1 (RMSE = 0.18). Both a and b
are directly impacted by porosity, and there is a correlation between the variables chosen
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for the model construction and porosity. As a consequence, the simulation accuracies of
a and b are better than those of Sw2 and Sc1. This demonstrates that the SMAR model
parameters are affected by soil and climate factors, and the model can accurately capture
their relationship.
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The multiple regression exhibited a satisfactory overall interpretability, with a mini-
mum R2 of 0.4. The p-v of the four parameters were close to the highly significant level,
indicating that soil and climate factors offer a high degree of explanation for these pa-
rameters (Table 1). The DtB was employed in the construction of the regression model
for all four SMAR parameters, demonstrating that this factor is strongly associated with
all SMAR parameters. PET, as the only climate factor, participates in the regression of b,
indicating that evapotranspiration is correlated with b, which is consistent with existing
studies [23,46]. A significant positive correlation was observed between BD and Sw2, with
higher BD increasing soil water retention in the root zone. Silt influenced porosity and
played a significant role in the Sc1 regression, revealing a close relationship between poros-
ity and soil moisture diffusion. In summary, the set of multiple linear regression equations
identifies the relationship between SMAR parameters and soil and climate factors, allowing
for the regionalization of SMAR model parameters.

Table 1. Multiple regression models used in the analysis.

Multivariate Linear Regression Function R2 p-v

Sw2 −0.15 + 0.2 * BD10–50 + 0.003 * DtB 0.40 0.007
Sc1 −0.22 + 0.007 * DtB − 0.01 * silt 0–10 + 0.02 * silt 10–50 0.56 0.002
a 0.85 − 1.68 * BD0–10 + 1.07 * BD10–50 − 0.002 * DtB + 0.002 * sand10–50 0.63 0.001
b −0.43 + 0.12 * BD10–50 + 0.001 * DtB + 0.006 * PET 0.52 0.002

Figure 7 presents the regionalization parameters. High Sw2 values are observed at
medium elevations and low values at both high and low elevations. This difference can be
attributed to the presence of river plains and floodplains with high water tables at middle
elevations, while high and low elevations are typically shallow bedrock with thin soil layers
and poor water-holding capacity. The topsoil in the midstream area has a high sand content,
a high capacity for water infiltration and low Sc1 values. The spatial distribution of b is
generally consistent with potential evapotranspiration; the greater the evapotranspiration,
the faster the soil moisture spreads. Moreover, there is a correlation between the diffusion
coefficient and DtB. A decreasing trend loss coefficient(a) is observed from the southeast to
the northwest of the study area. This is attributed to the combined effect of soil texture and
bedrock depth.
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3.3. Regional Estimation of RZSM

The 2020 RZSM results for the Shandian River Basin at 1 km resolution were obtained
based on the GD-SSM (1-day temporal resolution) and SMAR model domain parameters.
Figure 8b depicts the RMSE and R2

adj of the regional SMAR-estimated RZSM results versus
the corresponding measured RZSM. The median RMSE and R2

adj were determined as 0.1
and 0.29, respectively. The regional RZSM simulation exhibits a better accuracy than the
site-specific simulations, yet the overall performance is weaker for the former. The reason
for this is two-fold: (i) the GD-SSM still presents errors despite the high site accuracy, and
(ii) despite the successful SMAR parameter regionalization, the selected variables did not
fully explain the parameters. Figure 8a presents the average relative RZSM for 2020. The
results demonstrate substantial spatial variation in RZSM in the Shandian River Basin,
with high values occurring in the northern region and at lower elevations, and low values
occurring at higher elevations.
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4. Discussion
4.1. Applicability of the SMAR Model at Different Root Depths

Soil moisture correlates significantly with precipitation, evapotranspiration, soil depth,
topography, and the type of vegetation present [47–49]. The depth of a plant’s root system
reflects the soil moisture and groundwater changes. Plant species with deep roots are
frequently present in well-drained regions, such as mountains. In contrast, species with
shallow roots are mostly found in lowland areas with shallow water tables, such as river
plains [50]. The Shandian River Watershed exhibits high elevation, rolling topography,
diverse land cover, and significant variations in the rooting depth of vegetation. The
applicability of the SMAR model varies across different depths of rooting layers. In this
study, two groups of root layers were identified based on their depth: 10–20 cm and
10–50 cm. The delineation was performed in conjunction with site moisture stratification
and root depth to investigate the suitability of the SMAR model at varying root layer depths.
The results indicate that the SMAR model is effective at a root zone depth of 10–50 cm, yet
this is not the case for the 10–20 cm depth. This is due to abnormalities in the calibration
parameters (a and b) within the 10–20 cm range, which do not reflect the true rate of soil
moisture diffusion and loss. The root depth at 10–20 cm equals the surface depth, with a
depth ratio of one between the two layers. The effective water content of the surface layer
is 1, whereas the effective water content of the root zone is 1-Sw2. Moreover, the residual
water in the saturated surface soil surpasses the water capacity of the root zone, which
contradicts the assumptions made in the SMAR model (Section 2.2.1). This may explain the
lack of research on soil root-zone moisture at varying depths, with soil moisture in the root
zone generally estimated at a single depth.

4.2. Multivariate Modeling Analysis

SMAR-P1 and SMAR-P2 were employed to estimate and parameterize the regional
distribution of soil moisture in the root zone at depths ranging from 10 to 50 cm. The spatial
analysis method effectively captures the spatial variation characteristics of environmental
factors [51]. This paper discusses the parameter regionalization results of SMAR-P1 and
SMAR-P2 in relation to this methodology. Figure 5 reveals that parameter a in SMAR-P2
could not complete the parameter regionalization due to the inability to construct a re-
gression equation with a significant correlation. This may be attributed to the complex
spatial distribution of parameter a, including both the soil properties and evapotranspi-
ration [21]. In contrast, SMAR-P2 solely considers the soil property parameters, while
evapotranspiration is ignored.

There was a notable disparity in the spatial arrangement of the two sets of parameter
values (Figure 9a–d). SMAR-P1 was obtained based on physicochemical data and soil
functions, and the spatial distribution of the data is relatively dispersed. This is consistent
with the geospatial complexity of the Shandian River Basin. SMAR-P2 is an empirical
value derived from soil texture. It generally corresponds to the spatial characteristics
of the Shandian River, but yields unsatisfactory results at the local scale. Moreover, the
data used for both SMAR-P1 and SMAR-P2 were collected following similar methods,
resulting in the same parameter distributions. The graphs of the distributions in the
upper left corner of Figure 9 are based on the overall spatial statistics of the corresponding
parameters. The SMAR-P2 root zone field capacity (0.17–0.78) and porosity (0.4–0.48) were
highly concentrated and exhibited more homogeneity compared to the SMAR-P1 root
zone field capacity (0.13–0.39) and porosity (0.43–0.6), which were relatively dispersed
and more heterogeneous. At the watershed scale, the spatial distribution of soil moisture
can be influenced by multiple factors, including elevation, topography, vegetation, soil
type, and climate. Thus, SMAR-P2 may have a weaker response to soil moisture based on
soil texture, potentially hindering its ability to create accurate regression equations in the
multivariate model compared to SMAR-P1. Thus, regionalizing the parameters was not
possible. Furthermore, the insufficient number of measured stations may prevent the full
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characterization of the SMAR-P2 parameter set, thereby rendering the construction of the
model unfeasible.
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4.3. Regional RZSM Error Analysis

In this study, the applicability of the SMAR model is discussed based on the data
for root zones with different depths and covariates with different sources, and the opti-
mal combination is selected to estimate the regional RZSM (Figure 8). The high values
are mainly distributed near the river channel and in the northern floodplain, while the
low values are concentrated in the upland area. This trend in the simulation results is
consistent with the spatial variation of the watershed. The soil moisture within the root
zone is evaluated using the collaborative computation of the surface soil moisture, SMAR
parameters, and the model. The errors in the estimation results originate from three sources.
The downscaled soil moisture utilized in this study has been validated in the Lightning
River Basin for 2018–2019, but not for the 2020 study period selected for this study [44].
Consequently, unknown errors in surface soil moisture are superimposed on the RZSM
estimates with the model. Second, although the SMAR model parameters are calibrated,
they still exhibit errors (Figure 3). In addition, the calibrated model parameters and co-
variates can be used to construct a multiple regression model, yet it is difficult to obtain
a high-precision parameter regionalization map from the multiple model. The error in
the parameter regionalization process accumulates in the final RZSM result. Third, the
SMAR model is a simplified physical model that does not consider lateral soil moisture
transport and capillary movement, which may result in systematic errors in the model [20].
Future work will compare and select different methods and data to reduce the uncertainty
of RZSM estimations.

5. Conclusions

In this study, we utilized site data to estimate and assess soil moisture within the root
zone at various depths and for different parameter groups. The applicability of the SMAR
model at various root zone depths was discussed. Second, based on the root-zone soil
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moisture estimations and obtained calibration parameters, the results of different parameter
groups in parameter regionalization were compared. Following this, we were able to
determine the 2020 RZSM for the Shandian River at a resolution of 1 km and 10–50 cm
depth. According to the results, the following research conclusions were obtained:

At the site scale, diffusion coefficient b at the 10–20 cm root zone, coinciding with the
surface layer depth, exceeded the upper limit of the SMAR by one. This is not consistent
with the site context, and the SMAR is not applicable at this particular depth. However,
this is not the case for the 10–50 cm root zone, where the opposite was observed. In
addition, SMAR-P1 (RMSE = 0.02) outperformed SMAR-P2 (RMSE = 0.04) in the 10–50 cm
RZSM estimations.

SMAR-P1 combines soil and climate factors to create multiple regression models that
are statistically significant, thereby regionalizing parameters. In contrast, SMAR-P2, which
also combines soil and climate factors, did not pass the significance test.

The RZSM results obtained from the regional SMAR model in the Shandian River
watershed are consistent with spatial trends, and the spatial distribution of RZSM was
significantly influenced by elevation and river discharge.

In summary, the SMAR model is able to effectively estimate soil moisture in the
root zone for root zone depths that surpass the surface soil depth. Second, the process
of parameter regionalization should determine whether the parameters exhibit similar
heterogeneity to soil moisture. The generated high-resolution RZSM can provide data
support for agricultural production and drought assessments. Note that the regional
RZSM in this study was estimated using downscaled surface soil moisture data and
regionalized parameters; thus, the RZSM inherits uncertainties in surface soil moisture
and regionalized parameters. The estimation results are consistent with the overall spatial
characteristics of the watershed, but the quality of the estimates varies when considering
site-specific factors. Therefore, our future work will involve comparing the discrepancies
among distinct parameter regionalization techniques and surface soil moisture data. We
will also select suitable entities for the estimation of regional root-zone soil moisture to
reduce uncertainties.
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SMAR modeling.

Author Contributions: Conceptualization, W.Z. and A.L.; methodology, W.Z.; software, Y.L.; vali-
dation, T.L.; formal analysis, Y.L.; investigation, Y.L. and T.L.; resources, W.Z.; data curation, A.L.;
writing—original draft preparation, Y.L.; writing—review and editing, W.Z. and A.L.; visualization,
Y.L. and T.L.; supervision, W.Z. and A.L.; project administration, A.L.; funding acquisition, A.L. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the National Key Research and Development Program of
China (2021YFC3000201).

Data Availability Statement: This study’s data is publicly available in this article.

Acknowledgments: We would like to thank the editors and anonymous reviewers for their con-
structive comments and suggestions. We also thank the teams at SMELR, the Land-Air Interaction
Research Group at Sun Yat-sen University and TPDC, who have made their datasets available for free.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Pablos, M.; González-Zamora, Á.; Sánchez, N.; Martínez-Fernández, J. Assessment of Root Zone Soil Moisture Estimations from

SMAP, SMOS and MODIS Observations. Remote Sens. 2018, 10, 981. [CrossRef]
2. El Hajj, M.; Baghdadi, N.; Zribi, M.; Belaud, G.; Cheviron, B.; Courault, D.; Charron, F. Soil moisture retrieval over irrigated

grassland using X-band SAR data. Remote Sens. Environ. 2016, 176, 202–218. [CrossRef]

https://www.mdpi.com/article/10.3390/w15234133/s1
https://doi.org/10.3390/rs10070981
https://doi.org/10.1016/j.rse.2016.01.027


Water 2023, 15, 4133 15 of 16

3. Rigden, A.J.; Rigden, N.; Mueller, N.; Holbrook, N.; Pillai, P.; Huybers, P. Combined influence of soil moisture and atmospheric
evaporative demand is important for accurately predicting us maize yields. Nat. Food 2020, 1, 127–133. [CrossRef] [PubMed]

4. Seneviratne, S.; Corti, T.; Davin, E.; Hirschi, M.; Jaeger, E.; Lehner, L.; Orlowsky, B.; Teuling, A. Investigating soil moisture-climate
interactions in a changing climate: A review. Earth-Sci. Rev. 2010, 99, 125–161. [CrossRef]

5. Sheffield, J.; Wood, E. Global trends and variability in soil moisture and drought characteristics, 1950–2000, from observation-
driven simulations of the terrestrial hydrologic cycle. J. Clim. 2008, 21, 432–458. [CrossRef]

6. Wasko, C.; Nathan, R. Influence of changes in rainfall and soil moisture on trends in flooding. J. Hydrol. 2019, 575, 432–441.
[CrossRef]

7. Dorigo, W.; Wagner, W.; Albergel, C.; Albrecht, F.; Balsamo, G.; Brocca, L.; Chung, D.; Ertl, M.; Forkel, M.; Gruber, A.; et al. ESA
CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sens. Environ. 2017,
203, 185–215. [CrossRef]

8. Kerr, Y.H.; Waldteufel, P.; Richaume, P.; Wigneron, J.P.; Ferrazzoli, P.; Mahmoodi, A.; Bitar, A.A.; Cabot, F.; Gruhier, C.; Juglea, S.E.;
et al. The SMOS soil moisture retrieval algorithm. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1384–1403. [CrossRef]

9. Das, N.N.; Entekhabi, D.; Dunbar, R.S.; Colliander, A.; Chen, F.; Crow, W.; Jackson, T.J.; Berg, A.; Bosch, D.D.; Caldwell, T.; et al.
The SMAP mission combined active-passive soil moisture product at 9 km and 3 km spatial resolutions. Remote Sens. Environ.
2018, 211, 204–217. [CrossRef]

10. Yang, F.; Huang, M.; Li, C.; Wu, X.; Guo, T.; Zhu, M. Changes in soil moisture and organic carbon under deep-rooted trees of
different stand ages on the Chinese Loess Plateau. Agric. Ecosyst. Environ. 2022, 328, 107855. [CrossRef]

11. Liu, S.; Xing, B.; Yuan, G. Relationship analysis between soil moisture in root-zone and top-most layer in China. Chin. J. Plant Ecol.
2013, 37, 1–17. (In Chinese) [CrossRef]

12. Mahmood, R.; Littell, A.; Hubbard, K.G.; You, J. Observed data-based assessment of relationships among soil moisture at various
depths, precipitation, and temperature. Appl. Geogr. 2012, 34, 255–264. [CrossRef]

13. Sun, L.; Seidou, O.; Nistor, I.; Goïta, K.; Magagi, R. Simultaneous assimilation of in situ soil moisture and streamflow in the SWAT
model using the Extended Kalman Filter. J. Hydrol. 2016, 543, 671–685. [CrossRef]

14. Seo, E.; Lee, M.I.; Reichle, R.H. Assimilation of SMAP and ASCAT soil moisture retrievals into the JULES land surface model
using the Local Ensemble Transform Kalman Filter. Remote Sens. Environ. 2021, 253, 112222. [CrossRef]

15. Liu, J.; Rahmani, F.; Lawson, K.; Shen, C. A multiscale deep learning model for soil moisture integrating satellite and in situ data.
Geophys. Res. Lett. 2022, 49, e2021GL096847. [CrossRef]

16. Grillakis, M.; Koutroulis, A.; Alexakis, D. Regionalizing root-zone soil moisture estimates from ESA CCI Soil Water Index using
machine learning and information on soil, vegetation, and climate. Water Resour. Res. 2021, 57, e2020WR029249. [CrossRef]

17. Ebrahim, B.; Sidike, P.; Nahian, S.; Devabhaktuni, V.; Markus, T. Estimation of root-zone soil moisture from ground and remotely
sensed soil information with multi-sensor data fusion and automated machine learning. Remote Sens. Environ. 2021, 260, 112434.

18. Wagner, W.; Lemoine, G.; Rott, H. A Method for Estimating Soil Moisture from ERS Scatterometer and Soil Data. Remote Sens.
Environ. 1999, 70, 191–207. [CrossRef]

19. Albergel, C.; Rüdiger, C.; Pellarin, T. From near-surface to root-zone soil moisture using an exponential filter: An assessment of
the method based on in-situ observations and model simulations. Hydrol. Earth Syst. Sci. 2008, 12, 1323–1337. [CrossRef]

20. Manfreda, S.; Brocca, L.; Moramarco, T. A physically based approach for the estimation of root-zone soil moisture from surface
measurements. Hydrol. Earth Syst. Sci. 2014, 18, 1199–1212. [CrossRef]

21. Faridani, F.; Farid, A.; Ansari, H. A modified version of the SMAR model for estimating root-zone soil moisture from time-series
of surface soil moisture. Water SA 2017, 43, 492–498. [CrossRef]

22. Wang, Y. Root-Zone Soil Moisture Retrieval Based on Surface Soil Moisture Observations. Master’s Thesis, Hebei GEO University,
Shijiazhuang, China, 2022. (In Chinese).

23. Du, X.; Fang, X.; Wang, W. Estimation of soil moisture in root-zone of semiarid area based on SMAR model. Res. Soil Water
Conserv. 2020, 27, 119–127+133. (In Chinese)

24. Das, N.; Mohanty, B.; Cosh, M. Modeling and assimilation of root-zone soil moisture using remote sensing observations in Walnut
Gulch Watershed during SMEX04. Remote Sens. Environ. 2008, 112, 415–429. [CrossRef]

25. Lv, H.; Yu, Z.; Zhu, Y. Dual state-parameter estimation of root-zone soil moisture by optimal parameter estimation and extended
Kalman filter data assimilation. Adv. Water Resour. 2011, 34, 395–406.

26. Tian, J.; Han, Z.; Bogena, H. Estimation of subsurface soil moisture from surface soil moisture in cold mountainous areas. Hydrol.
Earth Syst. Sci. 2020, 24, 4659–4674. [CrossRef]

27. Reichstein, M.; Camps-Valls, G.; Stevens, B. Deep learning and process understanding for data-driven Earth system science.
Nature 2019, 566, 195–204. [CrossRef] [PubMed]

28. Farokhi, M.; Ansary, H.; Faridhosseini, A. Estimation of Soil Moisture using Downscaling Soil Moisture Method of Microwave
Sensor and the SMAR Model (A Case Study: Rafsanjan Plain). JWSS-Isfahan Univ. Technol. 2020, 24, 133–144.

29. Gheybi, F.; Paridad, P.; Faridani, F.; Farid, A.; Pizarro, A.; Fiorentino, M.; Manfreda, S. Soil moisture monitoring in Iran by
implementing satellite data into the root-zone SMAR model. Hydrology 2019, 6, 44. [CrossRef]

30. Fan, J.; Wang, Q.; Wang, Y. Simulated effects of texture and rooting depth on soil moisture sensor placement. J. Drain. Irrig. Mach.
Eng. 2013, 31, 70–74. (In Chinese)

https://doi.org/10.1038/s43016-020-0028-7
https://www.ncbi.nlm.nih.gov/pubmed/37127990
https://doi.org/10.1016/j.earscirev.2010.02.004
https://doi.org/10.1175/2007JCLI1822.1
https://doi.org/10.1016/j.jhydrol.2019.05.054
https://doi.org/10.1016/j.rse.2017.07.001
https://doi.org/10.1109/TGRS.2012.2184548
https://doi.org/10.1016/j.rse.2018.04.011
https://doi.org/10.1016/j.agee.2022.107855
https://doi.org/10.3724/SP.J.1258.2013.00001
https://doi.org/10.1016/j.apgeog.2011.11.009
https://doi.org/10.1016/j.jhydrol.2016.10.040
https://doi.org/10.1016/j.rse.2020.112222
https://doi.org/10.1029/2021GL096847
https://doi.org/10.1029/2020WR029249
https://doi.org/10.1016/S0034-4257(99)00036-X
https://doi.org/10.5194/hess-12-1323-2008
https://doi.org/10.5194/hess-18-1199-2014
https://doi.org/10.4314/wsa.v43i3.14
https://doi.org/10.1016/j.rse.2006.10.027
https://doi.org/10.5194/hess-24-4659-2020
https://doi.org/10.1038/s41586-019-0912-1
https://www.ncbi.nlm.nih.gov/pubmed/30760912
https://doi.org/10.3390/hydrology6020044


Water 2023, 15, 4133 16 of 16

31. Zhuang, R.; Zeng, Y.; Manfreda, S. Quantifying Long-Term Land Surface and Root-Zone Soil Moisture over Tibetan Plateau.
Remote Sens. 2020, 12, 509. [CrossRef]

32. Baldwin, D.; Manfreda, S.; Lin, H.; Smithwick, E. Estimating Root-Zone Soil Moisture Across the Eastern United States with
Passive Microwave Satellite Data and a Simple Hydrologic Model. Remote Sens. 2019, 11, 2013. [CrossRef]

33. Fischer, G.; Nachtergaele, F.; Prieler, S.; Van Velthuizen, H.T.; Verelst, L.; Wiberg, D. Global Agro-Ecological Zones Assessment for
Agriculture (GAEZ 2008); IIASA: Laxenburg, Austria; FAO: Rome, Italy, 2008.

34. Rawls, W.J.; Ahuja, L.R.; Brakensiak, D.L.; Shirmohammadi, A. Infiltration and Soil Water Movement. In Handbook of Hydrology;
McGraw-Hill Education: New York, NY, USA, 1993.

35. Zhao, T.; Shi, J.; Lv, L. Soil moisture experiment in the Luan River supporting new satellite mission opportunities. Remote Sens.
Environ. 2020, 240, 111680. [CrossRef]

36. Zheng, J.; Zhao, T.; Lv, H.; Shi, J.; Cosh, M.H.; Ji, D.; Jiang, L.; Cui, Q.; Lu, H.; Yang, K.; et al. Assessment of 24 soil moisture
datasets using a new in situ network in the Shandian River Basin of China. Remote Sens. Environ. 2022, 271, 112891. [CrossRef]

37. Zhao, T.; Shi, J.; Xu, H.; Sun, Y.; Chen, D.; Cui, Q.; Jia, L.; Huang, S.; Niu, S.; Li, X.; et al. Comprehensive remote sensing
experiment of water cycle and energy balance in the Shandian river basin. Natl. Remote Sens. Bull. 2021, 25, 871–887. (In Chinese)
[CrossRef]

38. Nadeem, A.A.; Zha, Y.; Shi, L.; Ran, G.; Ali, S.; Jahangir, Z.; Afzal, M.M.; Awais, M. Multi-Scale Assessment of SMAP Level 3 and
Level 4 Soil Moisture Products over the Soil Moisture Network within the ShanDian River (SMN-SDR) Basin, China. Remote Sens.
2022, 14, 982. [CrossRef]

39. Dai, Y.; Shangguan, W.; Duan, Q. Development of a China Dataset of Soil Hydraulic Parameters Using Pedotransfer Functions for
Land Surface Modeling. J. Hydrometeorol. 2013, 14, 869–887. [CrossRef]

40. Shangguan, W.; Dai, Y.; Liu, B. A China Dataset of Soil Properties for Land Surface Modeling. J. Adv. Model. Earth Syst. 2013, 5,
212–224. [CrossRef]

41. Yan, F.; Shangguan, W.; Zhang, J.; Hu, B. Depth-to-bedrock map of China at a spatial resolution of 100 meters. Earth Syst. Sci.
Data Discuss. 2018, 1–27, preprint.

42. Peng, S. 1-km Monthly Potential Evapotranspiration Dataset in China (1990–2021); National Tibetan Plateau Data Center: Beijing,
China, 2022.

43. Zheng, C.; Jia, L.; Zhao, T. Global Daily Surface Soil Moisture Dataset at 1-km Resolution (2000–2020); National Tibetan Plateau/Third
Pole Environment Data Center: Beijing, China, 2022. [CrossRef]

44. Zheng, C.; Jia, L.; Zhao, T. A 21-year dataset (2000–2020) of gap-free global daily surface soil moisture at 1-km grid resolution. Sci.
Data 2023, 10, 139. [CrossRef]

45. Heber Green, W.; Ampt, G. Studies on Soil Phyics. J. Agric. Sci. 1911, 4, 1–24. [CrossRef]
46. Baldwin, D.; Manfreda, S.; Keller, K.; Smithwick, E.A.H. Predicting root zone soil moisture with soil properties and satellite

near-surface moisture data across the conterminous United States. J. Hydrol. 2017, 546, 393–404. [CrossRef]
47. Xu, X.; Guan, H.; Skrzypek, G.; Simmons, C.T. Root-zone moisture replenishment in a native vegetated catchment under

Mediterranean climate. Hydrol. Processes 2019, 33, 2394–2407. [CrossRef]
48. Jia, Y.; Shao, M.; Jia, X. Spatial pattern of soil moisture and its temporal stability within profiles on a loessial slope in northwestern

China. J. Hydrol. 2013, 495, 150–161. [CrossRef]
49. Jia, J.; Fu, Z.; Chen, H. Effect of irregular bedrock topography on the soil profile pattern of water content in a Karst hillslope. Chin.

J. Appl. Ecol. 2016, 27, 1708–1714.
50. Fan, Y.; Miguez-Macho, G.; Jobbágy, E.G.; Jackson, R.B.; Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl.

Acad. Sci. USA 2017, 114, 10572–10577. [CrossRef]
51. Rahardjo, H.; Nistor, M.M.; Gofar, N.; Satyanaga, A.; Qin, X.; Chui Yee, S.I. Spatial distribution, variation and trend of five-day

antecedent rainfall in Singapore. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 2020, 14, 177–191. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/rs12030509
https://doi.org/10.3390/rs11172013
https://doi.org/10.1016/j.rse.2020.111680
https://doi.org/10.1016/j.rse.2022.112891
https://doi.org/10.11834/jrs.20219401
https://doi.org/10.3390/rs14040982
https://doi.org/10.1175/JHM-D-12-0149.1
https://doi.org/10.1002/jame.20026
https://doi.org/10.11888/RemoteSen.tpdc.272760
https://doi.org/10.1038/s41597-023-01991-w
https://doi.org/10.1017/S0021859600001441
https://doi.org/10.1016/j.jhydrol.2017.01.020
https://doi.org/10.1002/hyp.13475
https://doi.org/10.1016/j.jhydrol.2013.05.001
https://doi.org/10.1073/pnas.1712381114
https://doi.org/10.1080/17499518.2019.1639196

	Introduction 
	Materials and Methods 
	Datasets 
	In Situ Data 
	Auxiliary Data 
	SSM Dataset 

	Methods 
	SMAR Model 
	SMAR Parameters Optimization 
	Multiple Linear Regression 
	Evaluation Metrics 


	Results 
	In-Site Simulation Results 
	Results of SMAR Parameters Regionalization 
	Regional Estimation of RZSM 

	Discussion 
	Applicability of the SMAR Model at Different Root Depths 
	Multivariate Modeling Analysis 
	Regional RZSM Error Analysis 

	Conclusions 
	References

