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Abstract: Rainfall event separation is mainly based on the selection of the minimum inter-event
time (MIET). The traditional approach to determining a suitable MIET for estimating the probability
density functions is often using the frequency histograms. However, this approach cannot avoid arbi-
trariness and subjectivity in selecting the histogram parameters. To overcome the above limitations,
this study proposes a kernel density estimation (KDE) approach for rainfall event separation and
characterization at any specific site where the exponential distributions are suitable for characterizing
the rainfall event statistics. Using the standardized procedure provided taking into account the
Poisson and Kolmogorov–Smirnov (K-S) statistical tests, the optimal pair of the MIET and rainfall
event volume threshold can be determined. Two climatically different cities, Hangzhou and Jinan
of China, applying the proposed approach are selected for demonstration purposes. The results
show that the optimal MIETs determined are 12 h for Hangzhou and 10 h for Jinan while the optimal
event volume threshold values are 3 mm for both Hangzhou and Jinan. The KDE-based approach
can facilitate the rainfall statistical representation of the analytical probabilistic models of urban
drainage/stormwater control facilities.

Keywords: rainfall event separation; minimum inter-event time; exponential distribution; rainfall
characteristics; kernel density estimation

1. Introduction

Rainfall is one of the most important input variables in hydrologic models. Consid-
ering the behavior of rainfall intermittency [1], many hydrologic studies on modelling
and analysis adopt the use of rainfall events [2]. Event-based modelling techniques are
widely applied in the urban drainage design which requires the rainfall event statistics as
the input of the hydrologic model [3]. As rainfall event characteristics are key factors in
the hydrologic analysis and design of urban drainage system [4], the statistical analysis
of rainfall events plays an important role in the urban stormwater management [5]. The
partition of rainfall series into events is of vital importance for the characterization of
rainfall events, which may further affect the accuracy of the simulated/derived hydrologic
variables [6] or the sizing of the stormwater control infrastructures [7].

The analytical probabilistic approach is a useful method in the urban drainage system
design [8,9] in addition to the continuous simulation [10,11] and the design storm event-
based simulation [12,13]. The analytical probabilistic approach can not only integrate the
merits of the probabilistic reliability of continuous simulations and simplicity of design
storm methods [14], but also trade off the model complexity and performance [15]. The
wide applications of analytical probabilistic models in urban drainage system analysis
involve the fields of the frequency analysis of runoff volumes [6] and flood peaks [12],
evaluation of water quality control performance [8], hydrologic design of the end-of-pipe
storage facilities [16], sizing of low impact development facilities [9,14,17], etc. All the
above-described studies employing the analytical probabilistic approach are dependent
upon proper rainfall event characterization. Therefore, the approach to rainfall event
characterization forms the basis of analytical derivations in the hydrologic modelling.
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The rainfall event characteristics can be obtained by the statistical frequency analysis
of the individual rainfall events resulting from the separation of the observed continuous
rainfall series with a selected minimum inter-event time (MIET, also referred to as the
inter-event time definition in some of the literature) and a threshold of minimum rainfall
event volume (denoted as rainfall event volume threshold) [18]. These rainfall events are
usually characterized by rainfall event depth, event duration, and inter-event time [1,16]. It
has been adopted worldwide that the probability density function (PDF) of an exponential
probability distribution function can favorably fit the observed frequency distributions of
the three characteristics [3,5,19–21]. The exponential PDF has the advantage of analytical
tractability for derivations compared to other types of distributions [22]. With a pair of
selected MIET and rainfall event volume threshold values, the rainfall event characteri-
zation can be completed, and the fitted PDF can be determined. However, it is difficult
to propose a universal procedural criterion of selecting the appropriate MIET and rainfall
event volume threshold values for any location of interest.

The conventional approaches to estimating MIET can be generally classified into three
types, namely, the autocorrelation analysis, average annual number of events analysis, and
coefficient of variation analysis. Refs. [3,23] proposed similar concepts of autocorrelation
coefficient based on the lag time which represents the temporal spacing between the
observations; the lag time when it causes autocorrelation function sufficiently close to
zero is then defined as MIET. Refs. [24,25] determined the suitable MIET according to the
principle that the average annual event number corresponding to the increasing value of
MIET diminishes and approaches an essentially unchanged number. Ref. [1] assumed that
the probability density of MIET follows an exponential distribution, and the appropriate
MIET can be obtained while the coefficient of variation is equal to one. These three
approaches have the limitations of not providing mathematically standardized procedures
and lacking reliable statistical tests. In addition, there is no unified way to determine the
rainfall event volume threshold. Since events with a total depth less than hydrological loss
do not produce any runoff, it is necessary to apply the rainfall event volume threshold in
the rainfall event characterization [6,22,26]. Ref. [6] chose a rainfall event volume threshold
of 1 mm and discovered that the exponential PDF fits well with the observed frequency
distributions. The recommended values of the rainfall event volume threshold that is
suitable for the urban environment is usually no greater than 5 mm [8,18,22,27].

Frequency histogram is the most widely used way to estimate the PDF of a random
variable. Using the histogram to represent the observed frequency distributions of rainfall
event characteristics causes inevitable arbitrariness and subjectivity in selecting parameters,
especially when dealing with the large sample size such as inter-event time. Non-parametric
statistical test is an effective way to evaluate the goodness-of-fit (GOF) between the specific
theoretical distribution and the observed frequency distribution of rainfall event charac-
teristics. Ref. [22] suggested using the Poisson test for the exponentiality of inter-event
times and using the chi-square GOF test for the exponentiality of rainfall event volume
and duration. The Kolmogorov–Smirnov (K-S) GOF test [16] and Anderson-Darling (A-D)
GOF test [23] are also widely applied to the exponentiality of rainfall event characteristics.
The chi-square GOF test has limitations with its parameters that are often selected with
arbitrariness to some extent because of the high sensitivity of test results to the number
and width of bins grouped from the sample data [22]. However, the statistical tests above
based on frequency histograms may result in high rejection rates of the hypothesis because
of the arbitrariness in selecting the number of bins and the minimum number of samples
between bins.

As an alternative to frequency histogram methods for estimating the PDFs of the
rainfall data, the kernel density estimation (KDE) is a non-parametric method to estimate the
PDF of a random variable based on kernels as weights [28,29]. Ref. [30] first came up with
the kernel distribution. Ref. [31] proved that the produced KDE is strongly consistent with
the theoretical PDF of a variable using the integrated absolute error (IAE) as the evaluation
indicator. Unlike the discrete form of histograms, using KDE can resolve such discontinuity
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problems [32]. Additionally, KDE only requires the use of the sample data itself and has
the advantage without any prior knowledge or hypothesis of the data distribution [33].
The KDE approach has been recently adopted and applied in hydrology fields such as
flash floods [34], ecological streamflow [35], the stream water quality indicator [36], etc.
Nevertheless, the KDE approach has not yet been attempted in the use of rainfall event
separation and characterization.

To address the above-mentioned limitations, this study aims to propose a kernel-
based approach to achieving the optimal MIET and rainfall event volume threshold for
rainfall event separation and characterization. The proposed method can overcome the
shortcomings of a traditional PDF estimation approach using histograms, i.e., empirical
distribution parameters are often selected with arbitrariness and subjectivity while the
GOF performance is usually poor for a variable with large sample size. In this paper, a
kernel-based approach to estimating the exponential distribution of rainfall event charac-
teristics is put forward as well as the procedures to evaluate the K-S GOF performance
are proposed. The optimal MIET and rainfall event threshold are further determined
based on the GOF performance indicators. Finally, this study takes two representative and
climatically different cities in China (i.e., Hangzhou representing a humid climate and Jinan
representing a semi-humid climate) as an example to demonstrate the validity and accuracy
of the KDE-based approach used in rainfall event separation and rainfall characterization.

2. Materials and Methods
2.1. Statistical Representation of Rainfall Events

Isolated from a historical continuous rainfall series, a series of rainfall event-dry period
cycles are obtained, and each cycle can be characterized by three characteristics: rainfall
event volume (v), rainfall event duration (t), and rainfall inter-event time (b) based on a pair
of selected MIET and rainfall event volume threshold (vt) values. v, t and b can be regarded
as three random variables with units expressed in mm over the catchment for v and in
hours for t and b. Using the exponential PDFs to approximate the observed frequency
distributions of rainfall event characteristics, these PDFs can be expressed as [9,37]:

fV(v) = ζe−ζv, v > 0 (1)

fT(t) = λe−λt, t > 0 (2)

fB(b) = ψe−ψb, b > 0 (3)

where ζ, λ, and ψ are the exponential distribution parameters for rainfall event volume,
duration, and inter-event time, respectively. The single-parameter exponential distribution
has the simplest form in theoretical distributions to be used to represent rainfall event char-
acteristics. The advantage of its analytical tractability and its validity has been recognized
in many studies [3,16,38].

2.2. Rainfall Event Characterization Using KDE Approach
2.2.1. KDE for Estimating PDFs of Rainfall Characteristics

The kernel density estimation is defined as adding a kernel function to every sample
value, then convoluting all kernel functions to obtain the final estimation [35,39].

ˆf (x) =
1

nh

n

∑
i=1

K
(

x− xi
h

)
(4)

where n is the total number of samples; h is the window width; xi is the ith independent
identically distributed sample of the total rainfall sample data x; K(·) is the kernel function,
which is the symmetry function and the integral is unity where the upper and lower limit

of integration is positive infinity and negative infinity, respectively, i.e.,
+∞∫
−∞

K(x)dx = 1 for

K(x) > 0 [39,40].
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Common kernel functions include Gaussian kernel, Epanechnikov kernel, Exponential
kernel, Cosine kernel, Box kernel, etc., which are all based on the characteristics of symmetry
and unbiasedness. In this study, the Gaussian kernel function was adopted for the kernel
function which is expressed as:

K(u) =
1√
2π

e
u2
2 (5)

where u is the variable of Gaussian kernel function. It is noted that the kernel types have
much less influence on density estimation than the choice of window width since the
integrated mean squared error (IMSE) is quite insensitive to the shape of the kernel [41].
The optimal choice of h can be obtained by minimizing the asymptotic mean of integrated
squared error. As a commonly used method to determine the window width, Silverman’s
rule of thumb replaces the theoretical function (denoted as ft(x) hereinafter) by a normal
density in which the unknown standard deviation is replaced by the estimator σ̂. When
the Gaussian function is used, the Silverman’s rule-of-thumb formulae [35,42] was used to
determine h in this study:

h =

(
4

3n

)− 1
5
σ̂ (6)

where σ̂ = standard deviation of the sample.

2.2.2. Correction for Boundary Bias of KDE

The increased bias often exists within one bandwidth of the boundary (e.g., in the
neighborhood of zero for data from exponential distribution) of the sample space. Such
boundary bias is a consequence of the increasingly asymmetric distribution of the random
variable as one approaches the boundary [28]. Data reflection is a method of bias correction
by adding data points outside the boundary so as to expand the data set. Since the rainfall
event characteristics are all non-negative values, a boundary bias issue exists when dealing
with the sample data of rainfall event characteristics (x1, x2, . . . , xn) using KDE. Therefore,
the data reflection approach is applicable to correct the boundary bias. The common practice
of the data reflection technique is to mirror the data around the boundary. Given a new
data set {x1,−x1, x2,−x2, . . . , xn,−xn}, a new reflection KDE incorporating the mirrored
data (denoted as ˆfn(x)) can be expressed as:

ˆfn(x) =
1

nh

(
n

∑
i=1

K
(

x− xi
h

)
+

n

∑
i=1

K
(
−x− xi

h

))
(7)

The mean square error (MSE) between fn(x) and ft(x) is defined as E
[(

ˆfn(x)− ˆft(x)
)2
]

where E[·] represents the mathematic expectation function. It is found that E
[(

ˆfn(x)− ˆft(x)
)2
]

approaches zero when the term of nh approaches positive infinity, which demonstrates that
fn(x) is close to ft(x) and proves the feasibility of reflection method [43,44].

2.2.3. KDE for Estimating PDFs of Rainfall Characteristics

K-S statistical test was used to evaluate the GOF between the KDE-induced PDF and
the theoretical exponential distribution. In this study, the Simpson’s Rule Formula was
applied to calculate the incremental value of the cumulative distribution function (CDF)
by integrating the KDE-induced PDF ˆfn(x) with x in the range between a and b where the
range is divided into a number of 2ns intervals with equal width [45–47]. Using Simpson’s
Rule Formula, the integral of the PDF ˆfn(x) with x in the range between a and b obtained is
expressed as:

∫ b

a
ˆfn(x)dx ≈ hs

3

[
ˆfn(a) + 4

ns

∑
k=1

ˆfn(x2k−1) + 2
ns−1

∑
k=1

ˆfn(x2k) +
ˆfn(b)

]
(8)
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where hs = (b–a)/2ns, in which hs is the width of the interval and ns is a positive integer.
The CDF of the KDE-induced PDF ˆfn(x) with a specific value of x (denoted as ˆFn(x)) can
be calculated using Equation (8).

The statistical test methods for rainfall event characteristics and criterion for selecting
the optimal MIET are described below:

(1) Poisson Statistical Test: The exponential distribution assumption for inter-event
times between rainfall events indicates that the occurrence of rainfall events follows a
Poisson process approximately when b is much longer than t [1]. As a result, the annual
number of rainfall events (denoted as θ) is Poisson distributed as reasonably assumed.
Using the Poisson distribution test technique as detailed in Ref. [27], the ratio rp = Var(θ)/〈θ〉;
is defined as the Poisson test statistic. When specifying different MIET values, the numbers
of annual rainfall events (denoted as N) change. rp can be further calculated based on the
transformed test statistic (N–1)rp that follows a chi-square distribution with (N–1) degrees
of freedom and a specified level of significance α [48,49].

(2) K-S GOF Test: As described in Equations (1)–(3), rainfall event characteristics v, t
and b are assumed to follow exponential distributions. This study selected the Kolmogorov–
Smirnov (K-S) test for testing the goodness-of-fit (GOF) of exponential distributions for
v, t, and b. In the K-S test, the maximum deviation between the theoretical CDF and the
observational cumulative distribution is determined. A null hypothesis is made that the
GOF between the theoretical exponential distribution and the empirical distribution is
favorable. With a specified significance level α, the decision of acceptance or rejection can
thus be made [50].

(3) Criterion for Selecting the Optimal MIET: The rainfall event volume v is the pre-
dominant role among the three rainfall event characteristics from a perspective of water
quantity in urban stormwater management; therefore, the relative error (denoted as Rr)
is proposed to evaluate the agreement between the KDE-induced CDF and theoretical
exponential distribution for v. For a pair of selected MIET and vt, Rr can be calculated using
Equation (9).

Rr =
max

∣∣∣ ˆFn(v)− F(v)
∣∣∣

F(v∗)
× 100% (9)

where ˆFn(v) is the KDE-based CDF for v; F(v) = 1− exp(−ζv), represents the CDF value
of theoretical exponential distribution; F(v∗) corresponds to the theoretical exponential
CDF when the maximum absolute difference between the KDE-based CDF and the theo-
retical exponential CDF for v is achieved at v*. For 24 combinations of MIET and vt, their
corresponding Rr can be calculated, respectively. The optimal combination of MIET and vt
can be determined when the minimum Rr is achieved.

2.2.4. Procedures of Rainfall Event Separation and Characterization Based on KDE

Based on the abovementioned statistical tests approach and optimization criterion,
the standardized procedures of rainfall event separation and characterization for historical
hourly rainfall time series are recommended as follows:

(1) Selection of MIET and vt: pairs of suitable values for the minimum inter-event time
(MIET) (from 6–12 h) and the volume threshold vt (from 0–5 mm) are selected first;

(2) Rainfall event separation: secondly, with any pair of selected MIET and vt, the
hourly rainfall time series is divided into several discrete rainfall events following the rule
that b is smaller than MIET, as well as the rule that the small rainfall events with a volume
less than the threshold vt should be removed; the three time series of the corresponding
rainfall event characteristics, i.e., rainfall event volume v, rainfall event duration t, and
inter-event time b, are then obtained;

(3) Calculation of the KDE-based PDF: with a selected pair of MIET and vt, KDE is
applied to obtain the PDFs for each variable of v, t, and b based on the Gaussian kernel
function and Silverman’s rule-of-thumb formulae;
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(4) Correction of boundary bias: boundary bias correction using the reflection method is
performed for the KDE-based PDFs of three characteristics in all cases of MIET-vt combinations;

(5) Calculation of the KDE-based CDF: Simpson’s rule is used to integrate the PDF after
boundary bias correction for all combinations of the three characteristics to obtain CDF;

(6) Poisson test for the annual number of events: the Poisson test as described in
Section 2.2.3 is used to test the annual number of events θ; the rainfall event separation
results for specific combinations of MIET and vt are excluded if the corresponding Poisson
test results are not acceptable;

(7) K-S statistical test: the Kolmogorov–Smirnov (K-S) test was used to test v, t, and b,
respectively; the rainfall event separation results for specific combinations of MIET and vt
are further excluded if the corresponding K-S statistical test results are not acceptable;

(8) Determination of the optimal combination of MIET and vt: for the separated rainfall
events with all acceptable pairs of selected MIET and vt after finishing the step (8), using
Equation (9) to calculate Rr for the corresponding CDF of v; the optimal pair of MIET and
vt is determined when the minimum value of the calculated Rr among all pairs is achieved;
then the combination of MIET and vt corresponding to for the minimum Rr is selected as
the optimal one;

(9) Rainfall event characterization: the distribution parameters in Equations (1)–(3) are
finally obtained to calculate the mean values of three rainfall event characteristics (donated
as 〈v〉, 〈t〉, 〈b〉, respectively) with the optimal pair of MIET and vt determined in step (8).

Performing the procedures above for rainfall event separation and characterization
can provide a standardized approach from a perspective of statistics as an alternative to
the conventional histogram approach. Figure 1 shows the flow chart of the methodology
for rainfall event separation and characterization.
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2.3. Study Area and Data

Two climatically represented regions in China were selected as the case study areas.
They are Jinan in Shandong Province representing a semi-humid climate, and Hangzhou in
Zhejiang Province representing a humid climate, respectively. The historical hourly rainfall
data were retrieved from China Meteorological Data Service Centre (https://data.cma.cn,
accessed on 31 December 2022). The geographic and climatic information of the rain gauge
stations for the two cities are shown in Table 1. It is noted that the ranges of years and
months for the two stations are not exactly the same due to the limited hourly rainfall

https://data.cma.cn
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data collected from the database as well as the data quality control. Additionally, winter
months are usually excluded in the rainfall event analysis for the purpose of stormwater
management [51]. The results of rainfall event separation and characterization obtained
using the proposed method in this study can be easily updated once more recent and
high-quality rainfall data are available in future. The location map of the two case study
areas is displayed in Figure 2.

Table 1. Geographic and climatic information of the rain gauge stations for two case study areas.

Station Station
Number Latitude Longitude Range of

Years
Range of
Months

Average Annual
Precipitation (mm)

Climate
Condition

Jinan 54,823 N36◦60′ E117◦00′ 1959–2015 May.–Oct. 688.5 Semi-humid
Hangzhou 58,457 N30◦23′ E120◦17′ 1955–2015 Apr.–Oct. 1510.0 Humid

Note: the average annual precipitation is obtained from China Statistical Yearbook (2007–2016). Humid climate
area is defined based on the annual precipitation > 800 mm while semi-humid area is usually associated with the
annual precipitation ranging from 400 to 800 mm [52,53].
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3. Case Study of the Rainfall Event Separation
3.1. Parameters for Rainfall Event Separation

In this study, the typical values of MIET are selected as 6 h, 8 h, 10 h and 12 h while
those of vt are 0, 1, 2, 3, 4 and 5 mm as suggested in the reasonable ranges of MIET (6–12 h)
and threshold vt (0–5 mm) for typical urban catchments. The total combination number of
different MIET and vt values is 24 for each study area.

In processing the hourly rainfall data, three series of v, t, and b are obtained with a
selected pair of MIET and vt combination values. More specifically, if the dry time between
two adjacent rainfall episodes is less than the selected MIET, these two rainfall episodes
are treated as if they belong to the same rainfall event, and they should be further merged
into one rainfall episode; otherwise, they are identified as two individual and consecutive
rainfall events. Additionally, when the volume of the rainfall episode (v) is no larger than
the selected threshold value (vt), the rainfall volume of this episode should be removed and
adjusted to be zero and the duration of this episode will be appended to the inter-event
time between the current and the previous rainfall episodes. In such circumstances, the
redefined rainfall event is characterized by an event volume and an event duration that are,
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respectively, equal to those of the previous rainfall episode. However, the inter-event time
of the redefined rainfall event should be equal to the original inter-event time between the
current and the previous rainfall episodes with the addition to the duration of the current
rainfall episode.

Table 2 presents the total numbers of rainfall events obtained using different pairs
of MIET and vt for event separation at Jinan and Hangzhou. It is worth noting from
Table 2 that the numbers of rainfall event volume v, rainfall event duration t, and rainfall
inter-event time b are equal with the same combination of MIET and vt, and the decrease
in the number of rainfall events is observed with the increase in either MIET or vt. The
rainfall characterization results (i.e., 〈v〉,〈t〉,〈b〉) for all possible pairs of MIET or vt before
performing statistical tests are shown in Table 3. It is found that all the mean values of three
event characteristics decrease with the increase in either MIET or vt from Table 3.

Table 2. Total number of rainfall events with different pairs of MIET and vt for Jinan and Hangzhou.

Hangzhou Jinan

vt (mm)
MIET (h)

6 8 10 12 vt (mm)
MIET (h)

6 8 10 12

0 5769 5132 4628 4172 0 2567 2408 2290 2180
1 3854 3525 3234 2955 1 1860 1797 1744 1692
2 3276 3036 2807 2590 2 1606 1562 1521 1490
3 2893 2695 2517 2333 3 1453 1419 1390 1360
4 2602 2444 2301 2147 4 1326 1301 1276 1248
5 2364 2239 2129 2000 5 1227 1207 1189 1164

Table 3. Rainfall event characteristics with different pairs of MIET and vt for Jinan and Hangzhou.

Hangzhou Jinan

MIET (h)-vt (mm) 〈v〉 (mm) 〈t〉 (h) 〈b〉 (h) 〈v〉 (mm) 〈t〉 (h) 〈b〉 (h)

6-0 10.48 8.48 44.66 13.21 7.48 87.18
6-1 15.49 11.64 66.70 18.07 9.49 117.23
6-2 17.95 12.88 78.69 20.69 10.32 135.80
6-3 20.00 13.85 88.60 22.61 10.84 148.47
6-4 21.84 14.71 98.92 24.43 11.28 161.50
6-5 23.58 15.45 109.51 26.04 11.66 174.30
8-0 11.78 10.34 49.41 14.08 8.40 92.51
8-1 16.96 14.03 71.63 18.73 10.45 120.71
8-2 19.45 15.50 83.33 21.31 11.35 138.90
8-3 21.60 16.68 93.32 23.21 11.93 151.20
8-4 23.45 17.67 103.35 24.99 12.40 163.71
8-5 25.19 18.56 113.41 26.59 12.83 176.23
10-0 13.06 12.39 53.87 14.81 9.27 96.85
10-1 18.51 16.71 76.75 19.31 11.42 123.74
10-2 21.10 18.43 88.46 21.92 12.44 141.87
10-3 23.24 19.83 98.04 23.74 13.05 154.12
10-4 25.09 20.98 107.67 25.55 13.51 166.07
10-5 26.76 21.93 116.89 27.09 13.97 177.97
12-0 14.49 14.89 58.62 15.56 10.26 101.22
12-1 20.29 20.03 82.27 19.91 12.51 126.82
12-2 22.94 22.03 93.90 22.41 13.56 144.14
12-3 25.19 23.67 103.53 24.31 14.23 156.64
12-4 27.06 25.01 112.91 26.18 14.73 169.17
12-5 28.72 26.12 121.73 27.74 15.26 180.88
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3.2. Results and Discussion
3.2.1. Poisson Test for the Annual Number of Events θ

For each pair of MIET (6–12 h) and vt (0–5 mm), Poisson tests for the annual number
of events were performed for the two study cities. As shown in Table 4, with a level of
significance α = 0.1, the Poisson test results for the annual number of events θ for 22 out of
24 cases with pairs of MIET and vt at Hangzhou indicate the acceptance of the hypothesis
that θ follows the Poisson distribution. In the meanwhile, the rp of Jinan was found to lie
within the interval between 0.71 and 1.33 of critical values in all 24 cases with pairs of MIET
and vt, demonstrating that the hypothesis cannot be rejected. It is worth noting that while
vt is too large or too small, the rejection of the Poisson distribution hypothesis may occur.

Table 4. Results of Poisson Tests for Hangzhou and Jinan—Annual Number of Rainfall Events.

Hangzhou Jinan

MIET (h)-vt (mm) Critical Value of rp
Ranges (α = 0.10) Resulting rp Decision Critical Value of rp

Ranges (α = 0.10) Resulting rp Decision

6-0 0.72–1.32 1.54 Reject 0.71–1.33 1.25 Accept
6-1 0.72–1.32 1.25 Accept 0.71–1.33 0.86 Accept
6-2 0.72–1.32 1.29 Accept 0.71–1.33 0.97 Accept
6-3 0.72–1.32 1.25 Accept 0.71–1.33 1.12 Accept
6-4 0.72–1.32 1.22 Accept 0.71–1.33 1.08 Accept
6-5 0.72–1.32 1.16 Accept 0.71–1.33 1.21 Accept
8-0 0.72–1.32 1.44 Reject 0.71–1.33 1.01 Accept
8-1 0.72–1.32 1.15 Accept 0.71–1.33 0.83 Accept
8-2 0.72–1.32 1.13 Accept 0.71–1.33 0.95 Accept
8-3 0.72–1.32 1.17 Accept 0.71–1.33 1.09 Accept
8-4 0.72–1.32 1.11 Accept 0.71–1.33 1.06 Accept
8-5 0.72–1.32 1.07 Accept 0.71–1.33 1.16 Accept

10-0 0.72–1.32 1.29 Accept 0.71–1.33 0.93 Accept
10-1 0.72–1.32 1.01 Accept 0.71–1.33 0.79 Accept
10-2 0.72–1.32 0.94 Accept 0.71–1.33 0.93 Accept
10-3 0.72–1.32 0.98 Accept 0.71–1.33 1.02 Accept
10-4 0.72–1.32 0.98 Accept 0.71–1.33 0.98 Accept
10-5 0.72–1.32 0.90 Accept 0.71–1.33 1.10 Accept
12-0 0.72–1.32 1.15 Accept 0.71–1.33 0.87 Accept
12-1 0.72–1.32 0.82 Accept 0.71–1.33 0.76 Accept
12-2 0.72–1.32 0.73 Accept 0.71–1.33 0.84 Accept
12-3 0.72–1.32 0.75 Accept 0.71–1.33 0.93 Accept
12-4 0.72–1.32 0.74 Accept 0.71–1.33 0.86 Accept
12-5 0.72–1.32 0.70 Reject 0.71–1.33 0.95 Accept

3.2.2. GOF Test of Exponentiality Using KDE

GOF tests were performed using KDE with all pairs of MIET and vt for Jinan and
Hangzhou. Silverman’s rule of thumb was used for choosing the window width and
Gaussian kernel function is used for the kernel function. The algorithms of the convolution
of KDE and the data reflection (i.e., mirror the data) for correcting the boundary bias were
coded in Python. Each pair of MIET and vt uses the same window width method, kernel
function type, and boundary correction method to estimate the kernel density. As shown
in Figure 3, the PDF of the rainfall event sample data obtained by KDE fits theoretically
PDF very well overall, although slight downward trends near the origin are observed due
to the formula property of kernel density.
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volume v, rainfall event duration t, rainfall inter-event time b: (a–c). Hangzhou (MIET = 12 h,
vt = 3 mm); (d–f). Jinan (MIET = 10 h, vt = 3 mm).

Figure 4 shows the KDE-derived PDF and the theoretical exponential PDF for rainfall
event volume v with different MIETs and fixed vt of 2 mm at Jinan. It is found in Figure 4
that both the PDFs obtained from KDE and theoretical values present a decreasing trench
with the increase in MIET when v is very small. The maximum values and the PDF curve
shape fit favorably between the PDFs obtained from KDE and theoretical PDFs from visual
observation. It is noted that the PDFs estimated by KDE have a larger variation compared
to the theoretical PDFs for v near the origin.
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Apart from visual observation of the GOF, statistical GOF tests were further performed.
The PDFs of three event characteristics (v, t, b) of 24 pairs of MIET and vt for Jinan and
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Hangzhou were estimated by KDE using Equation (7). The CDFs were further calculated
using Equation (8) and K-S test was performed accordingly. It is noted that the pair of
MIET and vt is accepted when the resulting v, t, and b all pass their corresponding K-S
tests. The K-S statistical test results for v, t, and b at Hangzhou and Jian are displayed in
Tables 5 and 6, respectively. As shown in Tables 5 and 6, there are 13 out of 24 pairs of MIET
and vt that are accepted in Jinan, while 5 out of 24 of those are accepted in Hangzhou. It
is, generally, found that the pass rates of K-S statistical tests for v is relatively lower than
that for t and b. The minimum K-S statistics achieved among the pairs of MIET and vt that
passed the K-S test for v under different MIETs for all cases result in equal vt values of
3 mm for both Hangzhou and Jinan. This implies that the threshold value vt may have a
greater effect on the GOF test compared to MIET.

Table 5. Results of K-S statistical tests for Hangzhou.

Rainfall Event Volume v Rainfall Event Duration t Rainfall Inter-Event Time b

MIET (h)- vt
(mm) K-S Statistic Critical Value

(α = 0.10) K-S Statistic Critical Value
(α = 0.10) K-S Statistic Critical Value

(α = 0.10)

6-0 0.213 0.066 0.107 0.102 0.155 0.209
6-1 0.098 0.066 0.044 0.102 0.096 0.188
6-2 0.069 0.066 0.033 0.102 0.078 0.188

6-3 a 0.058 0.066 0.031 0.102 0.073 0.174
6-4 0.081 0.066 0.033 0.101 0.064 0.174
6-5 0.108 0.066 0.032 0.102 0.054 0.174
8-0 0.210 0.066 0.132 0.100 0.124 0.209
8-1 0.099 0.066 0.052 0.100 0.069 0.188
8-2 0.071 0.066 0.033 0.100 0.063 0.186

8-3 a 0.058 0.066 0.019 0.099 0.056 0.176
8-4 0.069 0.066 0.016 0.099 0.048 0.174
8-5 0.093 0.066 0.017 0.098 0.040 0.174
10-0 0.202 0.059 0.143 0.086 0.087 0.209
10-1 0.097 0.059 0.055 0.086 0.055 0.188
10-2 0.068 0.059 0.033 0.085 0.047 0.186

10-3 a 0.056 0.059 0.017 0.085 0.040 0.174
10-4 0.060 0.059 0.013 0.085 0.031 0.174
10-5 0.084 0.059 0.017 0.085 0.026 0.174
12-0 0.198 0.059 0.151 0.086 0.076 0.209
12-1 0.092 0.059 0.062 0.085 0.037 0.188
12-2 0.063 0.059 0.038 0.085 0.027 0.186

12-3 a 0.051 0.059 0.021 0.084 0.021 0.174
12-4 a 0.055 0.059 0.020 0.084 0.020 0.174
12-5 0.079 0.059 0.026 0.084 0.017 0.174

Note: a The pair of MIET and vt with acceptable K-S test results hypothesizing that the three rainfall event
characteristics (v, t, b) follow the exponential distribution.

Table 6. Results of K-S tests for Jinan.

Rainfall Event Volume v Rainfall Event Duration t Rainfall Inter-Event Time b

MIET (h)- vt
(mm) KS Statistic Critical Value

(α = 0.10) KS Statistic Critical Value
(α = 0.10) KS Statistic Critical Value

(α = 0.10)

6-0 0.179 0.071 0.049 0.125 0.056 0.188
6-1 0.089 0.071 0.042 0.124 0.025 0.171

6-2 a 0.061 0.071 0.052 0.123 0.029 0.169
6-3 a 0.051 0.071 0.055 0.123 0.026 0.169
6-4 a 0.058 0.071 0.055 0.123 0.028 0.151
6-5 0.079 0.071 0.059 0.123 0.026 0.150
8-0 0.168 0.071 0.047 0.119 0.039 0.188
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Table 6. Cont.

Rainfall Event Volume v Rainfall Event Duration t Rainfall Inter-Event Time b

MIET (h)- vt
(mm) KS Statistic Critical Value

(α = 0.10) KS Statistic Critical Value
(α = 0.10) KS Statistic Critical Value

(α = 0.10)

8-1 0.087 0.071 0.032 0.118 0.018 0.171
8-2 a 0.061 0.071 0.043 0.118 0.027 0.169
8-3 a 0.051 0.071 0.049 0.117 0.025 0.169
8-4 a 0.054 0.071 0.052 0.117 0.026 0.155
8-5 0.075 0.071 0.055 0.117 0.023 0.150
10-0 0.160 0.071 0.051 0.118 0.030 0.188
10-1 0.084 0.071 0.024 0.118 0.015 0.171

10-2 a 0.060 0.071 0.037 0.117 0.025 0.169
10-3 a 0.049 0.071 0.044 0.117 0.023 0.169
10-4 a 0.052 0.071 0.049 0.117 0.024 0.155
10-5 0.071 0.071 0.053 0.117 0.021 0.150
12-0 0.154 0.071 0.058 0.106 0.022 0.188
12-1 0.086 0.071 0.016 0.105 0.024 0.171

12-2 a 0.062 0.071 0.028 0.105 0.022 0.169
12-3 a 0.050 0.071 0.035 0.105 0.022 0.169
12-4 a 0.048 0.071 0.041 0.104 0.023 0.155
12-5 a 0.067 0.071 0.047 0.104 0.020 0.150

Note: a The pair of MIET and vt with acceptable K-S test results hypothesizing that the three rainfall event
characteristics (v, t, b) follow the exponential distribution.

3.2.3. Optimal MIET, vt and Rainfall Event Characterization

After passing the Poisson test and K-S tests, 5 and 13 acceptable pairs of MIET and vt
for Hangzhou and Jinan are determined, respectively. The results of the corresponding Rr
of these acceptable pairs of MIET and vt calculated using Equation (9) for the two cities are
shown in Table 7. It is observed in Table 7 that the minimum values of Rr for Hangzhou
and Jinan are 8.84% and 8.97%, respectively, with the corresponding pairs of MIET and vt
are (12 h-3 mm) and (10 h-3 mm), respectively. Therefore, the optimal MIETs determined
are 12 h for Hangzhou and 10 h for Jinan whereas the optimal vt values are 3 mm for both
Hangzhou and Jinan. With the selected optimal pair of MIET and vt, the CDFs obtained
from KDE and the theoretical exponential CDFs for v, t and b are plotted as shown in
Figure 5. The excellent agreements between the two CDFs for each rainfall characteristic
are observed from Figure 5, which further demonstrates the validity of the selected optimal
results. The rainfall event characterization can be finally obtained by calculating the mean
values of the three event characteristics with the optimal pairs of MIET and vt for Hangzhou
and Jinan. The rainfall event characterization results are: 〈v〉 = 25.19 mm, 〈t〉 = 23.67 h,
〈b〉 = 103.53 h for Hangzhou and 〈v〉 = 23.74 mm, 〈t〉 = 13.05 h, 〈b〉 = 154.12 h for Jinan; the cor-
responding exponential distribution parameters are ζ = 0.0397 mm−1, λ = 0.0422 h−1, and
ψ = 0.00966 h−1 for Hangzhou and ζ = 0.0421 mm−1, λ = 0.0766 h−1, and ψ = 0.00649 h−1

for Jinan.
It is found that there is a paucity of literature on the rainfall event separation based

on historical hourly rainfall data in China. Ref. [21] demonstrated that the rainfall event
characteristics at Guangzhou, China follow exponential distributions with a MIET of 12 h
when using the histogram analysis. Ref. [54] found that the MIET of 10 h is appropriate for
most of 18 stations in the eastern monsoon region of China when adopting the exponential
distribution assumption for the inter-event time. The optimal MIET values determined for
Hangzhou and Jinan in this study are close to the above-mentioned findings, demonstrating
that the results are reasonable. It is also worth noting that the appropriateness and accuracy
of the distribution parameters of the three rainfall event characteristics obtained based on
the optimal MIET and event volume threshold should be further verified in the hydrologic
analysis and design of stormwater control facilities in future.
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Table 7. The Rr results for Hangzhou and Jinan.

Hangzhou Jinan

MIET (h)-vt (mm) Rr (%) MIET (h)-vt (mm) Rr (%)

12-3 8.84 10-3 8.97
10-3 9.67 8-3 9.08
6-3 9.77 6-3 9.20
8-3 10.19 12-3 9.29

12-4 32.54 6-2 11.88
8-2 12.09

10-2 12.13
12-2 12.75
12-4 27.35
10-4 29.21
8-4 30.04
6-4 31.24

12-5 34.68
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4. Summary and Conclusions

This study proposed a kernel density estimation (KDE) approach to estimating the
probability density functions (PDFs) of three rainfall event characteristics including rainfall
event volume, event duration, and inter-event time. The KDE-based approach associated
with the Poisson and Kolmogorov–Smirnov (K-S) statistical tests were further performed
to determine the optimal pair of minimum inter-event time (MIET) and rainfall event
volume threshold (vt), which are two key parameters for rainfall event separation and
characterization. A detailed standardized procedure was also provided for rainfall event
separation and characterization at any specific site where the exponential distribution is
suitable for characterizing the rainfall event statistics. Taking two climatically different
cities, Hangzhou and Jinan of China, for a demonstration example, the validation and
application of the proposed KDE-based approach were investigated for rainfall event
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separation and characterization. The results show that the optimal MIETs determined
are 12 h for Hangzhou and 10 h for Jinan while the optimal vt values are 3 mm for both
Hangzhou and Jinan. The corresponding distribution parameters of three rainfall event
characteristics for two cities are obtained as well.

The proposed KDE-based approach can be used for the exponential test of the rainfall
event characteristics and as a method to partition hourly rainfall time series into consecutive
events. As an alternative to the traditional PDF estimation approach using histograms, the
proposed method can achieve favorable GOF test results and obtain the optimal MIET and
event volume threshold while overcoming the shortcomings of histogram approach. The
KDE-based approach to rainfall event separation and characterization can form the model
derivation basis for the analytical probabilistic models of urban drainage/stormwater
control facilities.
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