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Abstract: In recent years, typical organic pollutants were frequently found in aquatic environments.
Among them, synthetic dyes were widely used in many industries, which resulting in a large
amount of wastewater contained dyes. Because of the characteristic of complex components, poor
biodegradability and high toxicity, this kind of wastewater brought lots of harm to the ecological
environment and organism. In this study, three different types of manganese dioxide (MnO2)
with the rod-like, needle-like and mixed morphologies respectively were successfully fabricated
by hydrothermal method with changing the preparation conditions and addition of the metal ions,
and utilized as activator of persulfate (PS) to remove the dyes aqueous. Subsequently, these MnO2

nanocomposite was characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM)
measurements. In addition, Rhodamine B (Rh B), as a representative substance of xanthene dyes
was chosen as the target degradants to researched and compared the efficiency of removal via PS
activated by different MnO2. By exploring the influences of different reaction parameters on the result
of removal, results indicated that PS activated by the acicular MnO2 (α-MnO2) can remove 97.41% of
Rh B over 60 min, with the optimal catalyst/PS ratio of 2:1 (the concentration of the α-MnO2 and
PS were 1.2 g/L and 0.6 g/L, respectively), pH value of 3, at the temperature of 20 ◦C. Meanwhile,
the probable degradation mechanism was also proposed. At last, as the catalyst was reused for four
times, the degradation rate of target degradants decreased less than 10%.

Keywords: PS; MnO2; morphologies; SO4
•−; mechanism

1. Introduction

In recent decades, with the rapid development of industrialization and urbanization,
the environmental problems caused by refractory organic wastewater are becoming in-
creasingly serious and need to be effectively treated [1]. Due to the widespread usage of
synthetic dyes in printing, dyeing, papermaking, textile, cosmetics, leather and other indus-
tries [2], a large number of highly toxic, complex ingredients, and difficult to biodegradable
dye wastewater have been produced, and many organic dyes are difficult to metabolize
in the body, gradual accumulation causes great harm to human health and ecological
environment [3]. Therefore, it is crucial to find a more efficient and green treatment method
to degrade organic dye wastewater. The rhodamine series of dyes are 3’,6’ diaminated
xanthene-like fluorescents with excellent pH stability and a variety of structures, and dif-
ferent structures offer fluorescence with different wavelengths and colors. Rhodamine B
(Rh B), as a representative substance of xanthene dyes, is most common and most frequently
used, similar to diphenylmethane and triphenylmethane derivatives, generally used in
industries such as colored glass, paper, textiles, fireworks, and etc. It is difficult to degrade
in the environment, highly toxic, persistent and carcinogenic [4]. Herein, Rh B was selected
as target pollutants in this study. It is hoped to provide some methods and references for
the degradation of such organic dyes.
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The usual methods for treating dyeing and printing wastewater include physical,
biological and chemical methods. The commonly used physical methods generally include:
adsorption, coagulation, membrane treatment, reverse osmosis, ion exchange and etc.
However, physical methods face many application limitations: (1) adsorption materials are
not suitable for hydrophobic dyes, and the regeneration cost is high and the loss is large;
(2) coagulation method is not effective for hydrophilic dyes, and it is easy to produce sludge
that needs further treatment; (3) membrane treatment and reverse osmosis membrane can
treat printing and dyeing wastewater well, but the cost is too high, the membrane is easy to
clog, and the treatment and disposal of waste membrane is also a problem; (4) ion exchange
method is only suitable for treating ionic dye wastewater, and it needs to be regenerated
continuously, which results in high loss. In addition, the biological treatment method is not
ideal for dye wastewater because most of these dyes are poorly biochemical and difficult to
biodegrade, among which it has been confirmed that reactive dyes are the most difficult to
be degraded in dyeing wastewater [5,6]. Chemical methods refer to the oxidation of organic
pollutants using oxidants, and the commonly used oxidants are H2O2, NaClO, O3 and etc.
The chemical method has the characteristics of good treatment effect, fast reaction rate,
complete degradation of pollutants, high treatment efficiency and wide application range.
Commonly used chemical methods are through the oxidant degradation of pollutants,
and will use photocatalysis [7], electrocatalysis [8], high temperature and other means
to catalyze the oxidant to produce a large number of hydroxyl radicals to improve the
degradation effect. However, for some hard-to-degrade organic substances, traditional
chemical methods still cannot effectively degrade them.

Advanced oxidation processes (AOPs), which have been developed in recent years, are
currently attracting much attention and can make most organic pollutants to be effectively
degraded by producing free radicals as the main active substance to eliminate pollutants
completely [9]. It is mainly represented by AOPs based on sulfate radical (SO4

•−) and
hydroxyl radical (•OH). By contrast, SO4

•− possesses a higher redox potential than •OH
(redox potential of •OH is 2.8 eV, while the SO4

•− is 2.5–3.1 eV) [10]; SO4
•− has better

selectivity through electron transfer, dehydrogenation, addition reaction to degrade organic
matter [11]; SO4

•− is more stable than •OH due to its shorter half-life [12]; the way to
produce SO4

•− is also easier and the origin of which shows a higher stability [13]. Currently,
AOPs based on SO4

•− radicals generally generate SO4
•− radicals by activating persulfates,

including peroxydisulfate (PS)and peroxymonosulfate (PMS). Among them, PS is a solid
that exists stably at room temperature, is easily preserved for transport and transfer,
dissolves easily in water, and is relatively inexpensive. The PS itself, as a strong oxidizing
agent, can also produce SO4

•− radicals in aqueous solution without a catalyst. In general,
PS is more stable and the above reaction rates are extremely low. After activation by applied
energy or catalyst, the peroxygen bond (O-O bond) in the PS breaks and a large number of
SO4

•− radicals can be efficiently produced with strong oxidizing properties. Herein, SO4
•−

radicals can degrade difficult-to-treat organic pollutants in wastewater into biodegradable
pollutants or even directly mineralize to carbon dioxide and water. In this process, SO4

•−

radicals will be reduced to sulfate (SO4
2−), and no toxic and harmful substances will be

produced, which is an environmentally friendly oxidant.
Therefore, the activation technology of PS has become the focus of current research.

The most commonly used PS activation methods are thermal activation, ultrasound, pho-
toactivation, and transition metal activation [14]. The reactions involved are as follows:

S2O8
2− + heat→ 2 SO4

•− (1)

adjust the pH in the reaction parameter influence tests. All the experiments
were carried out for three times to minimize the errors

(2)

Mn+ + S2O8
2− →M(n+1)+ + SO4

•− + SO4
2− (3)

Mn+ + HSO5
− →M(n+1)+ + SO4

•− + •OH (4)
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However, some of these methods require a large number of high-cost oxidants, high
reaction conditions, or consume large amounts of energy [15]; likewise, some metal oxides
or metal ions as catalysts are prone to secondary pollution, such as Co2+, Co3O4, CuO,
etc. [16–18]. Thus, the exploration and development of green and efficient persulfate
activator has become a hot spot and focus now.

Manganese oxides are considered as common mineral oxides found in sediments
and soils [19]. Among the various catalyst materials, MnO2 has become a very promising
candidate because of its natural abundance, wide source, low cost, high activation, and low
toxicity [20]. Because of its superior oxygen mobility, manganese oxides can induce a wider
range of redox reactions [21]. More importantly, the reactivity of manganese-based oxides
is relatively high. Meanwhile, as a promising alternative to iron minerals, manganese
oxides are often applied in Fenton or Fenton-like reactions [22]. In recent reports, MnO2
have attracted considerable attention as activator for PS [23], especially, multi-component
magnetic material compounded with it [19,24]. In this paper, three different morphologies
of MnO2 activated PS were prepared to degrade organic pollutants, which can provide
a certain reference for the technology of activation of PS with MnO2 and research of its
multielement composite.

Herein, the main works of this study are: (1) Preparation of catalyst materials: three
different morphologies of MnO2 were fabricated by hydrothermal method by changing the
reaction conditions and adding metal ions; (2) Characterization of catalysts’ crystallographic
structure and micromorphology: X-ray diffraction (XRD) was employed to analyze the
materials’ composition and structure of atoms or molecules inside. Scanning electron
microscope (SEM) was used to observe the microscopic surface morphology of the MnO2
with different morphologies; (3) Study on the catalytic performance: Rhodamine B was
chosen as target pollutants to evaluate the catalytic activity of MnO2 on PS activation. The
tests of exploring the influences of different reaction parameters on the result of removal
were also conducted; (4) Stability evaluation: the repeated degradation experiments were
carried out for 4 times. The main objective of this study was to compare and select the
most dominant species among three different morphologies of MnO2 catalysts and to
reveal the relationship between the microscopic morphology of the materials and their
performance in activating PS for Rh B degradation. Ultimately, this research was expected
to provide an important reference for the study of the activation of PS by MnO2 and their
multicomponent complexes and the development of new nanomaterials for the efficient
removal of organic dyes from wastewater.

2. Materials and Methods
2.1. Chemicals

Potassium permanganate (KMnO4), manganese sulfate monohydrate (MnSO4•H2O),
manganese chloride tetrahydrate (MnCl2•4H2O), ferric chloride hexahydrate (FeCl3•6H2O),
potassium persulfate (K2S2O8), hydrochloric acid (HCl), absolute ethanol (C2H5OH), sulfu-
ric acid (H2SO4), potassium hydroxide (KOH), Rhodamine B (C28H31ClN2O3, Rh B) were
purchased from Kermel Chemical Reagent Co. Ltd. (Tianjin, China). All the chemicals
above were directly used when received without further purification. Noted, deionized
(DI) water was used throughout this experiment.

2.2. Fabrication of MnO2 with Different Morphologies

In this experiment, MnO2 was prepared by hydrothermal method. By changing the
preparation conditions, the reactant ratio and trying to add metal ions as auxiliary agents,
three different morphologies of MnO2 were obtained.

2.2.1. Fabrication of Rod-Shaped MnO2

8 mmol (1.3520 g) of MnSO4•H2O and 8 mmol (1.2640 g) of KMnO4 dissolved in
50 mL of deionized water, and performed magnetic stirring for 30 min to dissolve fully.
The mixed solution was then transferred to a 100 mL Teflon-lined stainless-steel autoclave,
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sealed and kept at 140 ◦C for 12 h. After cooling to room temperature, the precipitate was
centrifuged and washed with deionized water and absolute ethanol alternately three times,
finally dried in a vacuum oven at 120 ◦C for 12 h. The sample was ground and stored for
following use [25].

2.2.2. Fabrication of Acicular MnO2

The fabrication conditions of the above rod-shaped MnO2 were changed to some ex-
tent, instead of changing the dosing ratio of MnSO4•H2O and KMnO4 (1:1), an appropriate
amount of iron ions (Fe3+) was added to the reaction system. In this test, 1 mmol (0.2702 g)
of FeCl3•6H2O was added to the mixed solution, followed by magnetic stirring for 30 min
to dissolve thoroughly. The mixed solution was then transferred to a 100 mL Teflon-lined
stainless-steel autoclave, sealed and placed in a vacuum oven at 140 ◦C for 12 h. After
cooling to room temperature, subsequent processing was consistent with the rod-shaped
MnO2 above. After grinding, sample was stored for use [26].

2.2.3. Fabrication of Mixed MnO2

To obtain the mixed MnO2, 1.5 mmol (0.2970 g) of MnCl2•4H2O and 2.5 mmol
(0.3950 g) of KMnO4 were dissolved in 50 mL of deionized water, and 0.45 mmol (0.1216 g)
of FeCl3•6H2O were added to the mixture, which was sufficiently dissolved by vigorously
stirring. The mixed solution was poured into a Teflon-lined stainless-steel autoclave, sealed
and kept at 150 ◦C for 24 h. After cooling to room temperature, the treatment of the
precipitate simulated the preparation process of the first two types of MnO2 [27].

2.3. Characterizations

Powder X-ray diffraction (XRD) spectrograms of the samples were obtained on Panalyt-
ical multifunctional powder X-ray diffractometer (XRD D8 Advance, Rigaku Corporation,
Matsumoto, Japan) with a graphite monochromatic Cu Kα radiation (λ = 0.15418 nm). The
morphology and microstructure of three types of MnO2 were determined by field-emission
scanning electron microscopy (SEM, Japan Electron Optics Laboratory Co. Ltd., Mitaka,
Tokyo, JSM-6701F) at 20 kV.

2.4. Catalytic Activity Tests

Prepared a 10 mg/L Rh B solution of the target substance for use and took 50 mL
each time into 100 mL Erlenmeyer flasks, added a certain amount of catalyst and PS,
then marked according to different reaction conditions. At the same time, set a blank
group and pure adsorption group to contrast. Degradation experiments were conducted
at the temperature of 20 ◦C, on the shaking table with the rocking speed kept 180 rpm.
After the given time intervals, 5 mL of mixed solution was aspirated with a syringe
and filtered through a 0.22 µm to remove the catalyst, and immediately measured at
maximum absorption wavelengths of the Rh B (549 nm) in a T6 UV–vis spectrophotometer
(Evolution 300, Thermo Fisher Scientific Inc., Shanghai, China) [28]. Besides, the ratio
of the measured absorbance of the sample to the absorbance of the initial target solution
(At/A0) was regarded as the analysis index. Where At was the absorbance measured for
each sampled sample and A0 was the absorbance of the initial 10 mg/L solution of the
target pollutant. Meanwhile, in the following equation, C0 was the initial concentration of
the target degradant and Ct was the concentration of the target degradant in the solution at
time t. The degradation rate of this experiment was calculated using the following Equation
(5) [29]. Additionally, H2SO4 (pH = 2) and KOH (pH = 11) were employed to adjust the pH
in the reaction parameter influence tests. All the experiments were carried out for three
times to minimize the errors.

η% = [(C0 − Ct)/C0] × 100% = [(C0 − Ct)/C0] × 100% = (1 − At/A0) × 100% (5)
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3. Results and Discussion
3.1. XRD and SEM Analysis

In order to obtain the crystallographic structure of different types of the as-prepared
MnO2, X-ray diffraction (XRD) was carried out and results were displayed in Figure 1.
As depicted in Figure 1a, lines appearing at 28.7◦, 37.3◦, 40.9◦, 42.8◦, 56.7◦, 59,3◦, 64.9◦,
67.3◦ and 72.3◦ can be appreciably consistent with characteristic lines of β-MnO2 (JCPDS:
24-0735), corresponding to the (110), (101), (200), (111), (211), (220), (002), (310) and (301)
planes of tetragonal β-MnO2 crystals [30]. Meanwhile, several diffraction lines at 12.6◦,
18.0◦, 28.7◦, 37.4◦, 41.8◦, 49.7◦, 56.4◦, 59.9◦, 65.0◦ and 69.2◦displayed in Figure 1b can be
indexed to the hexagonal phase of K1.33Mn8O16 (JCPDS: 77-1796) with the exposure of
(110), (200), (130), (330), (240), (140), (251), (620), (002) and (541) planes. In addition, lines
at 12.7◦, 18.0◦, 25.7◦, 28.7◦, 37.5◦, 42.0◦, 49.7◦, 56.3◦, 60.0◦, 65.3◦, 69.2◦ and 72.8◦ shown
in Figure 1c, were attributed to (110), (200), (220), (310), (211), (301), (411), (600), (260),
(002), (541) and (321) crystal facets of tetragonal α-MnO2 (JCPDS: 44-0141) [31]. These
phenomena could rationally verify that three types of MnO2 were supposed to be pure
β-MnO2, mixed K1.33Mn8O16 and pure α-MnO2, respectively. In addition, all three MnO2
catalysts prepared in this study exhibited an excellent crystallinity and no obvious spurious
lines appeared in characteristic XRD patterns, indicating that pure MnO2 materials were
successfully synthesized.
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Besides, to further analyzed the surface morphology of β-MnO2, K1.33Mn8O16 and
α-MnO2, SEM consequences of different samples were shown in Figure 2. As exhibited in
Figure 2a, as-prepared smooth and evenly distributed rod-like β-MnO2 with an average
diameter of about 80 nm showed a number of aggregated states. Moreover, the combination
between MnO2 nanoparticles and MnO2 nanorods observed in Figure 2b, were matched
with K1.33Mn8O16, a kind of mixed MnO2. While, α-MnO2 displayed acicular-like appear-
ance in Figure 2c were agglomerated with an average diameter of about 60 nm. In addition,
rod-like β-MnO2 and acicular-like α-MnO2 are essentially MnO2 nanorods, and the mixed
type is a combination one. However, the shorter length and finer diameter of α-MnO2
leaded to larger specific surface area in comparing with β-MnO2 and K1.33Mn8O16, which
could theoretically provide more reaction and activation sites to better activate PS [32]. This
inference was proved by the subsequent experiments.
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3.2. Organic Pollutants Degradation Performance

Herein, the degradation experiments of Rh B were carried out in various systems
under the unadjusted pH (4.86) to evaluate and compare the organic pollutants degradation
performance of three types of MnO2. As presented in Figure 3, only about 4.01%, 7.13% and
9.46% of Rh B could be removed with absorption of β-MnO2, K1.33Mn8O16 and α-MnO2,
respectively, which revealed the decolorization of Rh B had little to do with adsorption.
Besides, the degradation efficiency of Rh B was less than 45% over 60 min with the single
PS addition, which was ascribed to the weak direct oxidation of PS (E0 = 2.01 V) [33],
This result suggested that chemical oxidation alone could not efficiently oxidized organic
pollutants. Noted, for as-synthesized β-MnO2, K1.33Mn8O16 and α-MnO2, the Rh B removal
efficiency was markedly improved in presence of each type of MnO2 and PS simultaneously,
indicated that the activation effect on PS of catalysts in aqueous solution play a vital role in
the degradation of organic pollutants [34]. Among them, the efficiency of PS activation on
Rh B degradation with different catalysts was α-MnO2 > K1.33Mn8O16 > β-MnO2, which
was 78.43%, 67.48% an 47.62%, respectively. The result was consistent with those inference
obtained by SEM analysis, which was mainly caused by larger specific surface area α-
MnO2 possessed. In detail, the specific surface area of β-MnO2 with a rod-like structure
was approximately 7.9~13.2 m2/g, which was much lower than that of α-MnO2 with a
needle-like structure (44.4~76.5 m2/g) [32,35], while the specific surface area of hybrid
MnO2 should be somewhere in between. Thus, α-MnO2 enhanced the activation of PS with
its ability to expose more active sites, facilitating the elimination of Rh B in water.
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3.3. Optimization of Reaction Parameters

Generally speaking, as we all know that the addition of catalyst dosage, PS dosage and
catalyst/PS dosing ratio play important roles in degradation experiments by PS activation.
Moreover, detecting the influence of initial pH is great significance to prove the adaptability
of α-MnO2 in complicated practical water with various pH in the different places [36].
Therefore, a serious of tests were conducted to optimize reaction conditions. The effect of
α-MnO2 dosage (0.2 g/L, 0.4 g/L, 0.6 g/L, 0.8 g/L and 1.2 g/L) on the Rh B degradation
was displayed in Figure 4a. Obviously, the removal rate of Rh B promoted (43.38%, 62.71%,
68.89%, 78.61%, 84.49% and 93.80%) with the increased concentration of the α-MnO2.
Likewise, as illustrated in Figure 4b, the decoloration efficiency of Rh B promoted with the
increased dosage of PS, loading from 0.2 to 1.2 g/L corresponding to degradation efficiency
of 38.31%, 59.85%, 75.25%, 81.39%, 85.61% and 86.71%. These phenomena might imply that
with the increase of the amount of catalyst and PS, the available active metal ions increased,
which accelerated the activation of PS and generated more active substance to degrade Rh
B more efficiently [28]. In consideration of economics and inhibition caused by interaction
between the catalyst and PS, reasonable catalyst/PS dosing ratio needed to be determined
experimentally. It can be seen from Figure 4c that when the ratio of α-MnO2/PS was 2:1
(the concentration of the α-MnO2 and PS were 1.2 g/L and 0.6 g/L, respectively), the
effect of activating PS to degrade Rh B was best. The effects of initial pH were studied at
different values of 3, 5, 7, 9 and 11, as shown from Figure 4d, the degradation rate decreases
significantly with the pH value increasing. 97.41% of Rh B could be removed for 60 min at
the pH of 3, while the pH was increased to 5, 7, or 9, the degradation efficiency decreased
by 18%, 25, or 27% over 60 min. In addition, when the pH was increased to 11, only 28.53%
of Rh B was removed. The reasons of this result were as follow: (1) The zero point charge of
MnO2 and its complexes was reported to generally occur in the pH range of 3 to 5 [35,37,38].
Therefore, when the pH was sufficiently low, the crystalline surface became positively
charged, which was more favorable for electrostatic adsorption between the electron-rich
contaminants, PS and α-MnO2; (2) When the pH was too high, the large amount of SO4

2−

produced by the reactivity of SO4
•− and OH− (Equation (6)), caused the loss of SO4

•− [39].

SO4
•− + OH− → •OH + SO4

2− (6)
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Figure 4. Effect of reaction parameters on the degradation of Rh B: catalyst dosage (a), persul-
fate concentration (b), catalyst/PS dosing ratio (c) and initial pH value (d). Experiment condi-
tions: PS concentration = 0.6 g/L, catalyst dosage = 0.6 g/L, catalyst/PS dosing ratio = 2:1, Rh B
concentration = 10 mg/L and initial pH value = 4.86 (unadjusted).
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3.4. Mechanism Analysis

Based on the previous study [19,24,28], we proposed a possible mechanism in α-
MnO2/PS reaction system. As shown in Figure 5, continuous conversion of Mn (IV) and
Mn (III), which occurred on the surface of α-MnO2 were depicted in Equations (7) and
(8), a great number of SO4

•− produced via the activation of PS. Moreover, moiety SO4
•−

could further react with H2O to induce ·OH (Equation (9)). Therefore, the mineralization of
Rh B was mainly ascribed to strong active species, SRs (SO4

•−), hydroxyl radicals (•OH)
and even persulfate (PS). SO4

•− radicals and •OH radicals would preferentially attack the
central carbon ring position of Rh B to decolorize the dye and further degrade it through a
ring opening process. Rh B would be converted into complex xanthene benzene radicals
and produce three different forms of phthalic acid (phthalic acid, isophthalic acid and p-
phthalic acid) [40]. In addition, an alternative degradation pathway for Rh B under SO4

•−

radicals and •OH radicals attacking has been proposed. The main degradation products
were malonic acid, oxalic acid, glycine, m-aminophenol, adipic acid, 2-hydroxybenzoic
acid and trans-crotonic acid [41], as long as they were converted to simpler organic acids
and inorganic small molecule compounds by stepwise oxidation. Most of the above
low molecular weight acids were environmentally friendly and may also be eventually
converted to CO2, H2O and inorganic compounds.

Mn(IV) + S2O8
2− →Mn(III) + S2O8

•− (7)

Mn(III) + S2O8
2− →Mn(IV) + SO4

•− + SO4
2− (8)

SO4
•− + H2O→ •OH + H+ + SO4

2− (9)
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3.5. Reusability of α-MnO2

Generally speaking, stability of catalysts is one of the most important characteristics
in all evaluation indicators. Considering practical application potential of α-MnO2, the
repeated degradation experiment was performed for four runs. As exhibited in Figure 6,
the degradation efficiency got slightly decreased after each cycle, from 97.41% to 89.76%,
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indicating that α-MnO2 had expectation of putting into practical application in the organic
pollutants’ degradation due to its good repeatability. In addition, there were several reasons
could explain this reduction of removal rate along the Rh B recycle degradation: (1) the
slight leaching of metal ions on the catalyst [42,43]; (2) the absorption of degradation
intermediate or remaining Rh B occupied the active sites on the surface of the catalyst in
the previous cycle [43]; (3) the by-production produced during the several cycles would
compete for active species with the Rh B molecules [44].
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4. Conclusions

All in all, rod-shaped, acicular and mixed MnO2 were successfully fabricated by hy-
drothermal method with controlling the conditions of reaction and addition of the metal
ions. From the results of surface morphology and crystallographic structure analyzed
by scanning electron microscope (SEM) and X-ray diffraction (XRD), three different mor-
phologies of MnO2 were corresponding to β-MnO2, mixed K1.33Mn8O16 and α-MnO2,
respectively. In the microscopic state, the α-MnO2 nanorods were more dispersed, and their
nanorods were shorter in length and smaller in diameter. The mixed type, K1.33Mn8O16
was a combination of manganese dioxide nanorods and manganese dioxide particles. In
contrast, the β-MnO2 mostly showed a polymerized state. Thus, the α-MnO2 with needle-
shaped microscopic morphology had a larger specific surface area and could provide more
activation sites. As-prepared α-MnO2 had a superior activity for Rh B degradation with the
addition of PS, and 97.41% of Rh B could be removed within 60 min. More importantly, the
reaction parameters are also optimized in this study, when the catalyst/PS ratio was 2:1 (the
concentration of the α-MnO2 and PS were 1.2 g/L and 0.6 g/L, respectively), pH value was
3, and the best catalytic efficiency for PS activation was obtained at the temperature of 20
◦C. Meanwhile, the probable degradation mechanism was also proposed. What’s more, the
catalyst was reused 4 times, and the degradation rate decreased by less than 10%. In a word,
this study provided an important reference for study on activation of PS by manganese
oxides and their multicomponent complexes and exploitation of new nano materials for
efficient removal of organic dyes in wastewater. In future research, the preparation of
composite materials from α-MnO2 with needle-shaped microscopic morphology together
with other substances as raw materials could be explored in depth. For example, magnetic
composites can be prepared to facilitate the recovery of the catalyst. Or other reactants can
be added to obtain composites with better activation and regeneration performance.
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